Fast Substring Search

Recall the `contains` predicate of XPath:

```
// book/abstract[contains(., "fix")]
```

For instance the abstract node:
```
<book>
  
  <abstract>This article discusses the advantages of suffix arrays, for the purpose of substring search..
  
  </abstract>

</book>
```

will be returned, because it contains the substring “fix” because it appears in the word “suffix” mentioned in the abstract text.
Fast Substring Search

Question

Given a *very large text*, how do you search for

→ All occurrences of a given keyword?
→ All occurrences of a given substring?
→ Count them (can be done faster?)
Fast Substring Search

Question

Given a very large text, how do you search for

→ All occurrences of a given keyword?
→ All occurrences of a given substring?
→ Count them (can be done faster?)

What we know so far:

→ can use KMP-algorithm.
 for a text of length n, it only takes $O(n)$ time to locate all occurrences of the substring.

→ in a database, that is *way* to slow!!
How do you think Google indexes text for fast search??
Fast Substring Search

Question

Given a *very large text*, how do you search for

- All occurrences of a given keyword?
- All occurrences of a given substring?
- Count them (can be done faster?)

We want search time to be independent of the size n of the text, but should only depend on the length of the keyword.

We are allowed to preprocess the string in linear time (“indexing”).
Fast Substring Search

Question

Given a very large text, how do you search for

- All occurrences of a given keyword?
- All occurrences of a given substring?
- Count them (can be done faster?)

Idea 1 --we search for exact WORDS, not substrings—

Make a “dictionary” of every WORD that occurs in the text:

1: this[0, 89, 2098]
2: article[8, 29300]
3: ...

Sort it!
Fast Substring Search

Given a keyword $a_1a_2...a_m$ of length m,

How much time required to locate all occurrences of the keyword?

Easy: keep start rows of strings that “start with a_1” (for any letter), and within those rows, again those that “continue with letter a_2” (for all letters) Etc. (this is a tree of height=length of longest word, and branching=# different letters)

Idea 1 --we search for exact WORDS, not substrings--

Make a “dictionary” of every WORD that occurs in the text:

1: **this** [0, 89, 2098]
2: **article** [8, 29300]
3: ...

Sort it!

1: **a** [90, 183, 290, ...]
2: **actual** [450, 9812, ...]
3: **article** [8, 29300]
3: ...
Fast Substring Search

Given a keyword $a_1a_2...a_m$ of length m,

How much time required to locate all occurrences of the keyword?

→ only time $O(m)!$ 😊

Problems (1) indexing time?!
(2) how to do substring search??

Idea 1 --we search for exact WORDS, not substrings—

Make a “dictionary” of every WORD that occurs in the text:

1: this[0, 89, 2098]
2: article[8, 29300]
3: ...

Sort it!

1: a[90, 183, 290, ...]
2: actual[450, 9812, ...]
3: article[8, 29300]
3: ...
Fast Substring Search

Given the text of length n, how many substrings are there?

→ (begin position, end position)

Quadratically many! That is, $O(n^2)$. Thus, it is impossible in linear time to list all these substrings and put them into a (sorted) dictionary!

Idea 1 --we search for exact WORDS, not substrings—

Make a “dictionary” of every WORD that occurs in the text:

1: this [0, 89, 2098]
2: article [8, 29300]
3: ...

Sort it!

1: a [90, 183, 290, ...]
2: actual [450, 9812, ...]
3: article [8, 29300]
3: ...
The Burrows-Wheeler Transform

Idea comes from compression.

bzip2 is based on the Burrows-Wheeler Transform!

1) Add an end-marker “$” to the end of the text
2) End-marker $ is smallest in ordering:
 ‘$’ < ‘a’ < ‘b’ < ‘c’ < ….. < ‘z’ < ‘A’ < ….
3) Compute all cyclic shifts of text
4) Sort them lexicographically

Burrows-Wheeler Transform of text T

banana$
$banana
a$banan
na$bana
ana$ban
nana$ba
anana$b

sort

Burrows-Wheeler Transform of text T
The Burrows-Wheeler Transform

Idea comes from compression.

bzip2 is based on the Burrows-Wheeler Transform!

1) Add an end-marker “$” to the end of the text
2) End-marker $ is smallest in ordering:
 ‘$’ < ‘a’ < ‘b’ < ‘c’ < ….. < ‘z’ < ‘A’ < ….
3) Compute all cyclic shifts of text
4) Sort them lexicographically

Question
Why do you think is the BWT good for compression?
The Burrows-Wheeler Transform

Idea comes from compression.

bzip2 is based on the Burrows-Wheeler Transform!

1) Add an end-marker “$” to the end of the text
2) End-marker $ is smallest in ordering:
 ‘$’ < ‘a’ < ‘b’ < ‘c’ < < ‘z’ < ‘A’ <
3) Compute all cyclic shifts of text
4) Sort them lexicographically

Burrows-Wheeler Transform of text T

First row: only tells us how many substrings
→ start with “a” (3)
→ how many start with “b” (1)
 etc.
Same for any text with these letters!
We can NOT reconstruct T from row 1!
The Burrows-Wheeler Transform

Idea comes from compression.

bzip2 is based on the Burrows-Wheeler Transform!

1) Add an end-marker “$” to the end of the text
2) End-marker $ is smallest in ordering:
 ‘$’ < ‘a’ < ‘b’ < ‘c’ < ….. < ‘z’ < ‘A’ < ….
3) Compute all cyclic shifts of text
4) Sort them lexicographically

CanNOT reconstruct T from second row!

First row: only tells us how many substrings
→ start with “a” (3)
→ how many start with “b” (1)
etc.
Same for any text with these letters!
We canNOT reconstruct T from row 1!

Second row: tells us how many substrings
→ start with “n”, if letter before is “a” (2)
→ start with “a” if letter before is “n” (2)
The Burrows-Wheeler Transform

But, we can reconstruct T from the last row!! 😊

How?

Naïve way:
1. given “annb$aa”, sort the letters. This gives row 1!

What’s next?
Hint: this tells us all two-letter substrings!

Burrows-Wheeler Transform of text T
The Burrows-Wheeler Transform

But, we can reconstruct T from the last row!! 😊

How?

Naïve way:
1. given “annb$aa”, sort the letters. This gives row 1!

What’s next?
Hint: this tells us all two-letter substrings!

This is row 2!
The Burrows-Wheeler Transform

But, we can reconstruct T from the last row! 😊

How?

Naïve way:
1. given “annb$aa”, sort the letters. This gives row 1!
2. Construct 2-letter substrings, sort. Gives row 2!
 etc

Text contains

ba ba
na na
na na
an an
an an
ba ba
ab ba
an na
na na
bn nan

sort

pre-pend
The Burrows-Wheeler Transform

But, we can reconstruct T from the last row! 😊

How?

Naïve way:
1. Given “annb$aa”, sort the letters. This gives row 1!
2. Construct 2-letter substrings, sort. Gives row 2!
 etc

Original!
BWT: Better Decompression

→ In a real implementation we may NOT construct all cyclic shifts and sort… (because that takes quadratic time!!)
→ Same for decompression. May not do it the naïve way!

Retrieving T: start from end marker, read backwards (by applying LF)

\(LF(5)=1, \) \(LF(1)=2, \) \(LF(2)=6, \) \(LF(6)=3, \) \(LF(3)=7, \) \(LF(7)=4 \)

\(L[\cdot]= \) $ a n a n a n a b

O(\log S) time using wavelet tree
Backward Search

Here comes the *magic*: we are now able to count the number of occurrences of a substring of length m, only in time $O(m \log S)$!

This is what makes fast keyword Search *a la* Google possible!

Search time is INDEPENDENT of the size of the text!!

$S = \text{size of alphabet}$
Backward Search

Here comes the **magic**: we are now able to count the number of occurrences of a substring of length m, only in time $O(m \log S)$!

<table>
<thead>
<tr>
<th>banana$</th>
<th>$banana</th>
</tr>
</thead>
<tbody>
<tr>
<td>$banana</td>
<td>a$banan</td>
</tr>
<tr>
<td>a$banan</td>
<td>ana$ban</td>
</tr>
<tr>
<td>na$banan</td>
<td>anana$b</td>
</tr>
<tr>
<td>ana$ban</td>
<td>banana$</td>
</tr>
<tr>
<td>nana$ba</td>
<td>na$banan</td>
</tr>
<tr>
<td>anana$b</td>
<td>nana$ba</td>
</tr>
</tbody>
</table>

LF-mapping

$L_F(i) = C[L[i]] + \text{rank}_{L[i]}(L, i)$

$O(\log S)$ time using *wavelet tree*

Backward search for Pattern $P[1]..P[m]$

Initial range: $[sp, ep]$ with $sp = C[P[m]] + 1$ and $ep = C[P[m]+1]$

Then $[s, e]$ with

$$s = C[P[i]] + \text{rank}_{L[i]}(L, sp-1) + 1$$

$$e = C[P[i]] + \text{rank}_{L[i]}(L, ep)$$
Here comes the **magic**: we are now able to count the number of occurrences of a substring of length m, only in time $O(m \log S)$!

Backward Search

Backward search for Pattern $P[1]..P[m]$

- **Initial range:** $[sp, ep]$ with $sp=C[P[m]]+1$ and $ep=C[P[m]+1]$
- Then $[s,e]$ with
 - $s = C[P[i]] + \text{rank}_{L[i]}(L, sp-1) + 1$
 - $e = C[P[i]] + \text{rank}_{L[i]}(L, ep)$

$S =$ size of alphabet
Backward Search

Here comes the *magic*: we are now able to count the number of occurrences of a *substring of length m*, only in time $O(m \log S)$!

<table>
<thead>
<tr>
<th>Pattern</th>
<th>C</th>
<th>$</th>
<th>a</th>
<th>b</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

$banana$

Backward search for Pattern $P[1]..P[m]$

Then $[s,e]$ with

\[
\begin{align*}
 s &= C[P[i]] + \text{rank}_{L[i]}(L, sp-1) + 1 \\
 e &= C[P[i]] + \text{rank}_{L[i]}(L, ep)
\end{align*}
\]

$P = \text{ana}$

$[sp, ep] = [2, 4]$

\[
\begin{align*}
 s &= C["n"] + \text{rank}_{n}(L, 1) + 1 \\
 &= 5 + 0 + 1 = 6
\end{align*}
\]

\[
\begin{align*}
 e &= 5 + \text{rank}_{n}(L, 4) \\
 &= 5 + 2 = 7
\end{align*}
\]

$S = \text{size of alphabet}$
Backward Search

Here comes the magic: we are now able to count the number of occurrences of a substring of length m, only in time $O(m \log S)!$

Backward search for Pattern $P[1]..P[m]$

$$s = C[P[i]] + \text{rank}_{L[i]}(L, sp - 1) + 1$$
$$e = C[P[i]] + \text{rank}_{L[i]}(L, ep)$$

$s = C["a"] + \text{rank}_a(L, 5) + 1 = 1 + 1 + 1 = 3$
$$e = 1 + \text{rank}_a(L, 7) = 1 + 3 = 4$$

Done!

$[3, 4] = \text{final range}$

$\Rightarrow 2$ Oocc of “ana”
Backward Search

Here comes the magic: we are now able to count the number of occurrences of a substring of length m, only in time $O(m \log S)$!

Backward search for Pattern $P[1]..P[m]$

Counting: $O(m \log S)$ time

Locating
If every $i = \log^{1+\epsilon} n$ position is sampled then $O(i \log S)$ per occurrence, by backward traversal using LF.
Real Performance

/* In order: IsContains, Timing of IsContains, Global Count, Timing of Global Count, CountContains, time of CountContains, time of Full Report Contains */

Sampling rate 64

"Bakst": 1, 0.038, 1, 0.004, 1, 0.04, 0.012, max_mem = 61
"rumi nants": 1, 0.04, 22, 0.009, 19, 2.281, 1.588, max_mem = 61
"morph ine": 1, 0.026, 392, 0.009, 144, 29.924, 32.668, max_mem = 61
"AUSTRALI A": 1, 0.028, 438, 0.009, 438, 4.616, 4.457, max_mem = 61
"mol ecule": 1, 0.051, 1472, 0.008, 966, 128.28, 122.014, max_mem = 61
"brain": 1, 0.02, 2685, 0.005, 1493, 218.462, 215.196, max_mem = 61
"human": 1, 0.019, 6897, 0.005, 4690, 553.496, 548.009, max_mem = 62
"blood": 1, 0.018, 10402, 0.005, 8534, 401.214, 399.674, max_mem = 62

"from": 1, 0.016, 20859, 0.004, 12073, 1722.95, 1717.83, max_mem = 62
"with": 1, 0.016, 63332, 0.004, 22974, 5084.14, 5083.77, max_mem = 62
"i n": 1, 0.014, 238638, 0.003, 42586, 19641.8, 19630.3, max_mem = 64
"a": 1, 0.001, 2932251, 0, 595716, 189299, 188377, max_mem = 93
"\n": 1, 0.001, 9730750, 0.001, 5870474, 132780, 132241, max_mem = 86

CountContains / FullContains on naïve text: ca. 2700ms
Real Performance

/* In order : IsContains, Timing of IsContains, Global Count, Timing of Global Count, Count Contains, time of Count Contains, time of Full Report Contains */

Sampling rate 5
"Bakst": 1, 0.038, 1, 0.005, 1, 0.049, 0.013, max_mem = 100
"runinants": 1, 0.038, 22, 0.01, 19, 0.156, 0.086, max_mem = 100
"morphine": 1, 0.027, 392, 0.009, 144, 1.718, 1.357, max_mem = 100
"AUSTRALI A": 1, 0.098, 438, 0.009, 438, 4.145, 3.942, max_mem = 100
"molecule": 1, 0.029, 1472, 0.009, 966, 6.247, 5.853, max_mem = 101
"brain": 1, 0.019, 2685, 0.006, 1493, 12.24, 11.588, max_mem = 101
"human": 1, 0.018, 6897, 0.005, 4690, 25.403, 27.344, max_mem = 101
"blood": 1, 0.026, 10402, 0.005, 8534, 77.175, 73.613, max_mem = 101
"front": 1, 0.016, 20859, 0.003, 12073, 84.012, 78.663, max_mem = 101
"with": 1, 0.015, 63332, 0.004, 22974, 242.834, 235.043, max_mem = 102
"in": 1, 0.012, 238638, 0.002, 42586, 1105.6, 1091.43, max_mem = 103
"b": 1, 0, 411409, 0.001, 135307, 1779.27, 1762.62, max_mem = 108
"g": 1, 0.001, 748326, 0, 320440, 3411.65, 3378.85, max_mem = 119
"a": 1, 0, 2932251, 0, 595716, 13183.4, 13173.4, max_mem = 133
"n": 1, 0.001, 9730750, 0.001, 5870474, 87770.9, 88230.4, max_mem = 126

Count Contains/Full Contains on naïve text: ca. 2700ms
Construction Time

XMark data 174 different element labels
Max Depth: 14, Average Depth: 9.6

<table>
<thead>
<tr>
<th>Size of the Input Document (MB)</th>
<th>Size of the Index in Memory (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>116MB XMark 6,074,297 nodes</td>
<td>Text: 7min 18s TOTAL= 9min 20s</td>
</tr>
<tr>
<td>559MB XMark 29,239,763 nodes</td>
<td>Text: 38min 45s TOTAL= 53min 25s</td>
</tr>
<tr>
<td>1GB XMark 58,472,941 nodes</td>
<td>Text: 1h 24min TOTAL= 1h 55min</td>
</tr>
</tbody>
</table>
New course, will be first offered in Session 1 of 2011.

COMP9319 -- Web Data Compression and Search (PG, UOC: 6)

Contents

Data Compression: (a) Adaptive Coding, Information Theory
(b) Text Compression (ZIP, GZIP, BZIP, etc)
(c) Burrows-Wheeler Transform and Backward Search
(d) XML Compression

Search: (a) Indexing
(b) Pattern Matching and Regular Expression Search
(c) Distributed Querying
(d) Fast Index Construction
(e) Implementation
If time allows: Streaming Algorithms, On-Line Data Analytics

The lecture materials will be complemented by projects and assignments.
END
Lecture 13 and of the course.

→ Thanks for your attention and hard work.
→ Hopefully you have enjoyed the lecture.
→ Good luck and all the best with
 the exam on June 12th.