Given an XPath query, how to return the selected set of nodes?

- NodeSet algorithm: very easy, very inefficient
Given an XPath query, how to return the selected set of nodes?

- NodeSet algorithm: very easy, very inefficient
- Automata-based algorithm: very efficient, not too difficult ;-)

XPath
Given an XPath query, how to return the selected set of nodes?

- NodeSet algorithm: very easy, very inefficient
- Automata-based algorithm: very efficient, not too difficult ;-)}
XPath

Given an XPath query, how to return the selected set of nodes?

- NodeSet algorithm: very easy, very inefficient
- Automata-based algorithm: very efficient, not too difficult ;-)

We assume that the XPath query has been parsed into a sequence:

\[
p ::= [(a_1, l_1, p_1); \ldots; (a_n, l_n, p_n)]
\]

\[
a ::= \text{child} | \text{descendant} | \ldots
\]

\[
l ::= * | \text{tagname} | \text{text}()
\]
XPath

Given an XPath query, how to return the selected set of nodes?

- NodeSet algorithm: very easy, very inefficient
- Automata-based algorithm: very efficient, not too difficult ;-)

We assume that the XPath query has been parsed into a sequence:

\[
p ::= \[(a_1, l_1, p_1); \ldots; (a_n, l_n, p_n)\]
\]

\[
a ::= \text{child} | \text{descendant} | \ldots
\]

\[
l ::= * | \text{tagname} | \text{text}()
\]

All the \(p_i\) have the form:

\[
p_i ::= \[(a_{i1}, l_{i1}, [...]); \ldots; (a_{in}, l_{in}, [...])\]
\]
XPath

Given an XPath query, how to return the selected set of nodes?

- **NodeSet algorithm**: very easy, very inefficient
- **Automata-based algorithm**: very efficient, not too difficult ;-)

We assume that the XPath query has been parsed into a sequence:

\[
p ::= [(a_1, l_1, p_1); \ldots; (a_n, l_n, p_n)]
\]

\[
a ::= \text{child} | \text{descendant} | \ldots
\]

\[
l ::= \ast | \text{tagname} | \text{text}()
\]

All the \(p_i \) have the form:

\[
p_i ::= [(a_{i1}, l_{i1}, [\ldots]); \ldots; (a_{in}, l_{in}, [\ldots])]
\]
Node Set Algorithm (1/6)

NodeSet eval(Path p, NodeSet nodes, bool all)

Applies the path \(p \) to the set of nodes \(\text{nodes} \) and returns:
- All the nodes matching the query if \(\text{all} \) is true
- The first node matching the query if \(\text{all} \) is false

NodeSet eval_axis(Axis a, Label l, NodeSet nodes, bool all)

Given a set of nodes \(\text{nodes} \) of a document returns the nodes in the axis \(\text{a} \) with label \(\text{l} \)
- if \(\text{all} \) is true, returns all the matching nodes.
- if \(\text{all} \) is false, returns the first matching node
Node Set Algorithm (2/6)

```c
NodeSet eval(Path p, NodeSet nodes, bool all) {
    NodeSet r = nodes;
    //we apply the steps one after another
    for each (a, l, f) in p {
        //we select all the node matching the axis and label
        r = eval_axis(a, l, r, all);
        if (filter != []) {
            r' = Empty;
            for each n in r
                if (eval(f, {n}, false) != Empty)
                    r' = add(r', n);
            r = r';
        }
    }
    return r;
}
```
Node Set Algorithm (3/6)

```
NodeSet eval_axis(Axis a, Label l, NodeSet n, bool all) {
    switch (a) {
    case child:
        return eval_child(l, n, all);
    case descendant:
        return eval_descendant(l, n, all);
    //continue for all the axes
        ...
    }
}
```
Node Set Algorithm (4/6)

NodeSet eval_descendant(Label l, NodeSet n, bool all)
{
 NodeSet r = Empty;
 for each t in n {
 for each tc in children(t) {
 if (label(tc) == l) {
 r = add(r, tc);
 if (!(all)) // we only want the first result
 return r;
 }
 }
 } // r contains all the children of t tagged l
 r = r \cup eval_descendant(l, children(t));
}
return r;
Node Set Algorithm (5/6)

Example: XPath expresison //a[d//e]/b//c
Called initially with the NodeSet containing the root

```
eval_axis(desc,a,. . . ,true)
eval(d//e,. . . ,false)
```

Result of the rst step
```
eval_axis(child,b,. . . ,true)
```
Result of the 2nd step
```
eval_axis(desc,c,. . . ,true)
```
Final result
Example: XPath expresison //a[d//e]//b//c
Called initially with the NodeSet containing the root

```
//a[desc]//b[desc]//c[desc]
```

Result of the 1st step
```
//d[desc]
```

Result of the 2nd step
```
//a[desc]//b[desc]//d[desc]//e[desc]//c[desc]
```

Final result
Node Set Algorithm (5/6)

Example: XPath expression //a[d//e]/b//c
Called initially with the NodeSet containing the root

eval_axis(desc,a,...,true)
Example: XPath expression //a[d///e]/b///c
Called initially with the NodeSet containing the root

```
7 / 18
```
Example: XPath expression //a[d//e]/b//c
Called initially with the NodeSet containing the root

```
NodeSet Algorithm (5/6)

eval_axis(desc,a,\ldots,true)
eval(d//e,\ldots,false)
Result of the first step
```
Node Set Algorithm (5/6)

Example: XPath expression //a[d//e]/b//c
Called initially with the NodeSet containing the **root**

```
\[ \text{eval\_axis(desc,a,\ldots,\text{true})} \]
\[ \text{eval(d//e,\ldots,\text{false})} \]
Result of the first step
\[ \text{eval\_axis(child,b,\ldots,\text{true})} \]
```
Example: XPath expression //a[d//e]/b//c
Called initially with the NodeSet containing the root

eval_axis(desc,a,...,true)
eval(d//e,...,false)
Result of the first step
eval_axis(child,b,...,true)
Result of the 2nd step
Example: XPath expression //a[d//e]/b//c
Called initially with the NodeSet containing the root

eval_axis(desc,a,...,true)
eval(d//e,...,false)
Result of the first step
eval_axis(child,b,...,true)
Result of the 2nd step
eval_axis(desc,c,...,true)
Node Set Algorithm (5/6)

Example: XPath expression //a[d//e]/b//c
Called initially with the NodeSet containing the root

eval_axis(desc,a,...,true)
eval(d//e,...,false)
Result of the first step
eval_axis(child,b,...,true)
Result of the 2\(^{nd}\) step
eval_axis(desc,c,...,true)
Final result
Pros and cons of the algorithm:

+ Easy to implement

Remains very inefficient: \(O(|D|^2) \) for forward XPath, \(O(2^{|Q|} + |D|^2) \) for full XPath (cf. Lecture)
Pros and cons of the algorithm:

+ Easy to implement
+ Can can be extended to all XPath axes easily

Remains very inefficient: $O(|D|^2)$ for forward XPath, $O(2^{|Q|} + |D|^2)$ for full XPath (cf. Lecture)
Node Set Algorithm (6/6)

Pros and cons of the algorithm:

+ Easy to implement
+ Can can be extended to all XPath axes easily
 - May return several copies of the same node, thus either use a Set datastructure for the result, or sort and sieve the result at the end.

Remains very inefficient: \(O(|D|^2) \) for forward XPath, \(O(2^{|Q|} + |D|^2) \) for full XPath (cf. Lecture)
Pros and cons of the algorithm:

+ Easy to implement
+ Can be extended to all XPath axes easily
 - May return several copies of the same node, thus either use a Set datastructure for the result, or sort and sieve the result at the end.
 - Need to traverse many times the tree, cannot be done in streaming

Remains very inefficient: \(O(|D|^2) \) for forward XPath, \(O(2^{|Q|} + |D|^2) \) for full XPath (cf. Lecture)
Automata based algorithm

We proceed in two steps:

- first we see how this works for XPath expressions without filters
Automata based algorithm

We proceed in two steps:

- first we see how this works for XPath expressions without filters
- we add filters
Automata based algorithm

We proceed in two steps:

- first we see how this works for XPath expressions without filters
- we add filters
Automata based algorithm

We proceed in two steps:

- first we see how this works for XPath expressions without filters
- we add filters

The idea is to see the XPath expression as a regular expression matching the paths of the tree. The translation of a forward XPath expression into an NFA is straightforward:
Automata based algorithm

We proceed in two steps:

▶ first we see how this works for XPath expressions without filters
▶ we add filters

The idea is to see the XPath expression as a regular expression matching the paths of the tree. The translation of a forward XPath expression into an NFA is straightforward:

//a/b//c becomes:
Automata based algorithm

We proceed in two steps:

- first we see how this works for XPath expressions without filters
- we add filters

The idea is to see the XPath expression as a regular expression matching the paths of the tree. The translation of a forward XPath expression into an NFA is straightforward:

\[
//a/b//c \text{ becomes: } 1 \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} 4
\]
Automata based algorithm

We proceed in two steps:
- first we see how this works for XPath expressions without filters
- we add filters

The idea is to see the XPath expression as a regular expression matching the paths of the tree. The translation of a forward XPath expression into an NFA is straightforward:

\[
//a/b//c \text{ becomes: } \begin{array}{c}
1 & \xrightarrow{*} & a & \xrightarrow{} & 2 & \xrightarrow{} & b & \xrightarrow{*} & c & \xrightarrow{} & 3 & \xrightarrow{} & 4
\end{array}
\]

If we determinise, it becomes:
Automata based algorithm

We proceed in two steps:

- first we see how this works for XPath expressions without filters
- we add filters

The idea is to see the XPath expression as a regular expression matching the paths of the tree. The translation of a forward XPath expression into an NFA is straightforward:

\[
//a/b//c \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4
\]

If we determinise, it becomes:

\[
\begin{align*}
1 & \rightarrow 1,2 & 1,3 & 1,2,3 \\
*\{a\} & \rightarrow & a & \rightarrow & c \\
*\{a, b\} & \rightarrow & a & \rightarrow & a \\
1,3,4 & \rightarrow & c & \rightarrow & a
\end{align*}
\]
Automata based algorithm

Problems of determinisation:

- Exponential blow-up in the number of states
Automata based algorithm

Problems of determinisation:

- Exponential blow-up in the number of states
- computing the default transition * is tricky!
Automata based algorithm

Problems of determinisation:

- Exponential blow-up in the number of states
- computing the *default* transition *is tricky!*

Reference:
Processing XML streams with deterministic automata and stream indexes
By T.J. Green, A. Gupta, G. Miklau, M. Onizuka, D. Suciu, TODS 2004
Automata based algorithm

Problems of determinisation:

- Exponential blow-up in the number of states
- Computing the *default* transition *is* tricky!

Good news: we don’t need to determinize!

Reference:

Processing XML streams with deterministic automata and stream indexes

By T.J. Green, A. Gupta, G. Miklau, M. Onizuka, D. Suciu, TODS 2004
Topdown XPath evaluation

// Takes a NFA, a set of states and a document node
// Returns the set of nodes matched by the automaton
NodeSet eval(Automaton a, States S, Node t) {
 // The empty tree yields no result
 if (t == null) return Empty
 else {
 // Everything is done here, see next slide
 S' = \{ q' | \forall q \in S, \text{s.t. } q, l \rightarrow q' \in a, l = \text{label}(t) \text{ or } \ast\}
 r = Empty;
 for each t' in children(t) {
 r = r \cup eval(a, S', t');
 };
 if (finalstate(a) \in S')
 r = r \cup \{t\}
 };
 return r;
}
Topdown XPath evaluation

What does this do?

\[S' = \{ q' \mid \forall q \in S, \text{s.t. } q, l \rightarrow q' \in a, \text{ } l = \text{label}(t) \text{ or } * \} \]
Topdown XPath evaluation

What does this do?

\[S' = \{ q' \mid \forall q \in S, \text{s.t. } q, l \rightarrow q' \in a, \ l = \text{label}(t) \ or \ * \}\]

For each state \(q \) of the NFA in \(S \) it computes the set of states in which we can go with the label of the current node \(t \)

- Then we recursively evaluate \(S' \) on all the children of \(t \)
- If we took a transition which lead us to an accept state, then we also need to add \(t \) to the final result
Topdown XPath evaluation

What does this do?

\[S' = \{ q' \mid \forall q \in S, \text{s.t. } q, l \rightarrow q' \in a, \ l = \text{label}(t) \text{ or } * \} \]

For each state \(q \) of the NFA in \(S \) it computes the set of states in which we can go with the label of the current node \(t \)

- Then we recursively evaluate \(S' \) on all the children of \(t \)
- If we took a transition which lead us to an accept state, then we also need to add \(t \) to the final result

To represent the NFA, we need:

- The set of all states, \(Q \), the initial state \(I \), the final state \(F \)
- A hash table mapping pairs of states \(\times \) labels to states
Topdown XPath evaluation

\[Q = \{1, 2, 3, 4\} \]
\[I = \{1\} \]
\[F = \{4\} \]

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
Topdown XPath evaluation

We start on the root, with the initial state

\[Q = \{1, 2, 3, 4\} \]
\[I = \{1\} \]
\[F = \{4\} \]

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
Topdown XPath evaluation

For label “a” in state 1, the NFA can end up in two states, 1 and 2...

\[Q = \{1, 2, 3, 4\} \]
\[I = \{1\} \]
\[F = \{4\} \]

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
So we call recursively, with \(S = \{1, 2\} \) on the first child of the root...
Topdown XPath evaluation

\[Q = \{1, 2, 3, 4\} \]
\[I = \{1\} \]
\[F = \{4\} \]

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
Topdown XPath evaluation

\[Q = \{1, 2, 3, 4\} \]
\[I = \{1\} \]
\[F = \{4\} \]

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
Topdown XPath evaluation

Here label “b” allows us to go in state 3 and also stays in state 1.

\[Q = \{1, 2, 3, 4\} \]
\[I = \{1\} \]
\[F = \{4\} \]

1, a ⇔ 2
1, * ⇔ 1
2, b ⇔ 3
3, c ⇔ 4
3, * ⇔ 3
Topdown XPath evaluation

\[Q = \{1, 2, 3, 4\} \]
\[I = \{1\} \]
\[F = \{4\} \]

- $1, a \mapsto 2$
- $1, * \mapsto 1$
- $2, b \mapsto 3$
- $3, c \mapsto 4$
- $3, * \mapsto 3$
Topdown XPath evaluation

We arrive in “c”. The call on the children returns Empty. One of our state is final, so there is a run of the automaton which accepts this path, we mark the node as selected.

\[Q = \{1, 2, 3, 4\} \]
\[I = \{1\} \]
\[F = \{4\} \]

\[
1, a \mapsto 2 \\
1, * \mapsto 1 \\
2, b \mapsto 3 \\
3, c \mapsto 4 \\
3, * \mapsto 3
\]
Topdown XPath evaluation

\[Q = \{1, 2, 3, 4\} \]
\[I = \{1\} \]
\[F = \{4\} \]

1. a \mapsto 2
2. b \mapsto 3
3. c \mapsto 4
3. * \mapsto 3

[Diagram of XPath evaluation process]
Topdown XPath evaluation

Q = {1, 2, 3, 4}
I = {1}
F = {4}

1, a ↦→ 2
1, * ↦→ 1
2, b ↦→ 3
3, c ↦→ 4
3, * ↦→ 3
Topdown XPath evaluation

Q = \{1, 2, 3, 4\}
I = \{1\}
F = \{4\}

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
Topdown XPath evaluation

\[
Q = \{1, 2, 3, 4\}
\]
\[
I = \{1\}
\]
\[
F = \{4\}
\]

\[
1, a \mapsto \ 2 \\
1, * \mapsto \ 1 \\
2, b \mapsto \ 3 \\
3, c \mapsto \ 4 \\
3, * \mapsto \ 3
\]
Topdown XPath evaluation

\[Q = \{1, 2, 3, 4\} \]
\[I = \{1\} \]
\[F = \{4\} \]

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
Topdown XPath evaluation

Q = \{1, 2, 3, 4\}
I = \{1\}
F = \{4\}

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
Topdown XPath evaluation

Q = \{1, 2, 3, 4\}
I = \{1\}
F = \{4\}

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
Topdown XPath evaluation

```
Q = \{1, 2, 3, 4\}
I = \{1\}
F = \{4\}
```

- 1, a \mapsto 2
- 1, * \mapsto 1
- 2, b \mapsto 3
- 3, c \mapsto 4
- 3, * \mapsto 3
Topdown XPath evaluation

Q = \{1, 2, 3, 4\}
I = \{1\}
F = \{4\}

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
Topdown XPath evaluation

\[Q = \{1, 2, 3, 4\} \]
\[I = \{1\} \]
\[F = \{4\} \]

1. a \mapsto 2
2. b \mapsto 3
3. c \mapsto 4
4. * \mapsto * 3

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
Topdown XPath evaluation

\[Q = \{1, 2, 3, 4\} \]
\[I = \{1\} \]
\[F = \{4\} \]

1, a ↦ 2
1, * ↦ 1
2, b ↦ 3
3, c ↦ 4
3, * ↦ 3
Topdown XPath evaluation

\[Q = \{1, 2, 3, 4\} \]
\[I = \{1\} \]
\[F = \{4\} \]

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
Topdown XPath evaluation

\[Q = \{ 1, 2, 3, 4 \} \]
\[I = \{ 1 \} \]
\[F = \{ 4 \} \]

1. a \mapsto 2
2. b \mapsto 3
3. c \mapsto 4
3. * \mapsto 3
Topdown XPath evaluation

\[Q = \{ 1, 2, 3, 4 \} \]
\[I = \{ 1 \} \]
\[F = \{ 4 \} \]

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
Topdown XPath evaluation

\[
Q = \{1, 2, 3, 4\}
\]

\[
I = \{1\}
\]

\[
F = \{4\}
\]

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
Topdown XPath evaluation

\[Q = \{1, 2, 3, 4\} \]
\[I = \{1\} \]
\[F = \{4\} \]

1, a \rightarrow 2
1, * \rightarrow 1
2, b \rightarrow 3
3, c \rightarrow 4
3, * \rightarrow 3
Topdown XPath evaluation

![XPath Evaluation Diagram]

- $Q = \{1, 2, 3, 4\}$
- $I = \{1\}$
- $F = \{4\}$

- 1, a \mapsto 2
- 1, * \mapsto 1
- 2, b \mapsto 3
- 3, c \mapsto 4
- 3, * \mapsto 3
Topdown XPath evaluation

Q = \{1, 2, 3, 4\}
I = \{1\}
F = \{4\}

1, a \mapsto 2
1, * \mapsto 1
2, b \mapsto 3
3, c \mapsto 4
3, * \mapsto 3
Topdown XPath evaluation

What is the complexity of the algorithm?
- We do only one pre-order traversal
Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal
- For each node, we perform the following:

\[S' = \{ q' \mid \forall q \in S, s.t. q, l \rightarrow q' \in a, l = \text{label}(t) \text{ or } * \} \]

\[r = r \cup \{ t \} \]

Since we traverse the tree in pre-order and only once for every node, we can use a list for the result set, and just add \(\{ t \} \) at the beginning, which is constant time. In particular, we don't have to sort the result, nor use a data structure with \(|O(\log(n))|\) insertion to guarantee the right order nor do we have to filter the results to remove duplicates: huge improvement.

Complexity is \(O(|Q| \times |D|) \), which is the best complexity for this problem (cf lecture).
Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal
- For each node, we perform the following:
 1. \(S' = \{ q' \mid \forall q \in S, \text{s.t. } q, l \to q' \in a, \; l = \text{label}(t) \; \text{or} \; * \} \)
Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal
- For each node, we perform the following:

 1. \(S' = \{ q' \mid \forall q \in S, \text{s.t. } q, l \rightarrow q' \in a, \ l = \text{label}(t) \text{ or } * \} \)

 \(\Rightarrow \) this is linear in the size of \(S \), which is at most as big as the number of states in the NFA. As we have seen, the number of states is linear in the size of the query so this operation costs \(|Q|\)
Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal
- For each node, we perform the following:

1. \(S' = \{ q' \mid \forall q \in S, \text{s.t. } q, l \rightarrow q' \in a, l = \text{label}(t) \text{ or } * \} \)
 \(\Rightarrow \) this is linear in the size of \(S \), which is at most as big as the number of states in the NFA. As we have seen, the number of states is linear in the size of the query so this operation costs \(|Q| \)

2. \(r = r \cup \{ t \} \)

Complexity is \(O(|Q| \times |D|) \), which is the best complexity for this problem (cf lecture).
Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal
- For each node, we perform the following:
 1. \(S' = \{ q' \mid \forall q \in S, \text{s.t.} \; q, l \rightarrow q' \in a, \; l = \text{label}(t) \text{ or } * \} \)
 \(\Rightarrow \) this is linear in the size of \(S \), which is at most as big as the number of states in the NFA. As we have seen, the number of states is linear in the size of the query so this operation costs \(|Q|\)
 2. \(r = r \cup \{ t \} \)
 \(\Rightarrow \) Since we traverse the tree in pre-order and only once for every node we can use a list for the result set, and just add \(\{ t \} \) at the beginning, which is constant time. In particular, we don’t have to sort the result, nor use a data structure with \(|O(\log(n))| \) insertion to guarantee the right order nor do we have to filter the results to remove duplicates: huge improvement.
Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal
- For each node, we perform the following:
 1. \(S' = \{ q' \mid \forall q \in S, \text{s.t. } q, l \rightarrow q' \in a, \ l = \text{label}(t) \text{ or } * \} \)
 \[\Rightarrow \] this is linear in the size of \(S \), which is at most as big as the number of states in the NFA. As we have seen, the number of states is linear in the size of the query so this operation costs \(|Q| \)
 2. \(r = r \cup \{ t \} \)
 \[\Rightarrow \] Since we traverse the tree in pre-order and only once for every node we can use a list for the result set, and just add \(\{ t \} \) at the beginning, which is constant time. In particular, we don’t have to sort the result, nor use a data structure with \(O(\log(n)) \) insertion to guarantee the right order nor do we have to filter the results to remove duplicates: huge improvement.

Complexity is \(O(|Q| \times |D|) \), which is the best complexity for this problem (cf lecture).
Topdown XPath evaluation

What is the complexity of the algorithm?

- We do only one pre-order traversal
- For each node, we perform the following:
 1. \(S' = \{ q' \mid \forall q \in S, \text{s.t. } q, l \rightarrow q' \in a, l = \text{label}(t) \text{ or } * \} \)
 \(\Rightarrow \) this is linear in the size of \(S \), which is at most as big as the number of states in the NFA. As we have seen, the number of states is linear in the size of the query so this operation costs \(|Q|\)
 2. \(r = r \cup \{ t \} \)
 \(\Rightarrow \) Since we traverse the tree in pre-order and only once for every node we can use a list for the result set, and just add \(\{ t \} \) at the beginning, which is constant time. In particular, we don’t have to sort the result, nor use a data structure with \(\mathcal{O}(\log(n)) \) insertion to guarantee the right order nor do we have to filter the results to remove duplicates: huge improvement.

Complexity is \(O(|Q| \times |D|) \), which is the best complexity for this problem (cf lecture).
Topdown XPath evaluation

How do we add filters?
How do we add filters?
Consider:

```
//a[ d//e ]/b//c
```
Topdown XPath evaluation

How do we add filters?
Consider:

```
//a[ d//e ]/b//c
```

We build two automata:
Topdown XPath evaluation

How do we add filters?
Consider:

```
//a[ d//e ]/b//c
```

We build two automata:
Topdown XPath evaluation

NodeSet eval(Automata a, States S, Node t, FilterStack FS) {
 if (t == null) return Empty, FS
 else {
 S' = {q' | q, l → q' ∈ a, l = label(t) or *}
 FilterSet f = {{InitState(FilterAuto(q))} | q ∈ S}
 FS' = push(f, FS);
 FS'' = EmptyStack;
 for each fs in FS' {
 fs' = Empty;
 for each (_, s) in fs
 fs' = fs' ∪ {s × {q' | q, l → q' ∈ a_i, l = label(t) or *}}
 push(FS'', fs');
 }
 }

 ...
Topdown XPath evaluation

\[r = \text{Empty}; \]
\[fs = \text{Empty}; \]
\[\text{for each } t' \text{ in children}(t) \{ \]
\[r', FS''' = \text{eval}(a, S', t', FS'''); \]
\[r = r \cup r'; \]
\[fs''' = \text{pop}(FS'''); \]
\[fs'' = \text{pop}(FS''); \]
\[\text{for each } (s, s') \text{ in } fs''' \]
\[\quad \text{if } (\text{finalstate}(a') \cup s') \]
\[\quad \text{remove } (_, s) \text{ from } fs''; \]
\[\quad FS''' = \text{push}(FS''', fs'''); \]
\[\}; \]
Topdown XPath evaluation

\[
\begin{align*}
fs & = \text{peek}(FS") \\
\text{if } (\text{isempty}(fs)) \\
& \quad \text{if } (\text{finalstate}(a) \in S) \\
& \quad r = r \cup \{t\}; \\
\text{else} \\
& \quad r = \text{Empty} \\
\text{return } (r, FS")
\end{align*}
\]