
COMP6451 - Cryptocurrency and
Distributed Ledger Technologies

Lecture - Bitcoin Block and Transaction Structure
Ron van der Meyden

UNSW School of Computer Science and Engineering

Summary
Overall structure of components of the Bitcoin Blockchain:

• Bitcoin Denominations

• Blocks

• Transactions

• Bitcoin Script

Bitcoin Denominations

1 Satoshi = The smallest allowable unit of Bitcoin

1 Bitcoin = 100,000,000 Satoshis

Currency symbols used for Bitcoin: BTC, XBT (depends on the exchange/service)

Current exchange rate 1 BTC ≈ $A 5,000

Overall Structure of the Blockchain

h()

t

h()

t

h()

t

h()

t

h()

t

h()

t

h()

t

h()

t

h()

h()h()

h()h()

h() h()

t

h()

t

h()

t

h()

t

h()

t

h()

t

h()

t

h()

t

h()

h()h()

h()h()

h()

h() h()

h() h()

h()

h()

t

h()

t

h()

t

h()

t

h()

t

h()

t

h()

t

h()

h()h()

h()h()

h()

h()

h()

t

metadata
noncemetadata

nonce
metadata

nonce

transactions

coinbase
transaction

block header

size

Block Structure
A block consists of the following fields:

• Block size

• Block Header = {

• Software Version number

• Previous Block Hash

• Hash of Root of the Merkle tree of this block’s transactions

• TimeStamp (approximate creation time)

• Difficulty Target (for proof of work)

• Nonce (proof of work puzzle solution) }

• Transaction Counter (no of transactions in this block)

• Transactions in this block (a list, the Merkle tree is computed from this with h=SHA256(SHA256(.)))

• A block is identified by the hash SHA256(SHA256(block header)) or  
(ambiguously) by its height in the blockchain. (Neither is included in the block.)

Bitcoin block explorers

http://blockexplorer.com

http://blockchain.info

http://insight.bitpay.com

Genesis Block
The blockchain starts with the Genesis Block.

This block is hard-coded into the Bitcoin client software, in file chainparams.cpp

It has hash 000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

(note the leading zero’s for proof of work puzzle solution)

Account-based Systems
In an account-based system (e.g. your current bank account) each user has an account.

An account holds a balance.

Transfers into or out of the account change the balance.

Example:

 Alice: $0, Bob: $600, Carol: $100

 Bob transfers $100 to Alice

 Carol transfers $100 to Alice

 Alice: $200, Bob: $500, Carol: $0

 Alice transfers $20 to Bob

 Alice: $180, Bob: $520, Carol: $0

Bitcoin uses a different representation: to send $20, Alice needs to indicate if she is spending  
from the $100 she got from Bob or the $100 she got from Carol

Bitcoin Transaction Abstract Structure
When Alice spends $20 of the $100 she received from Carol, we view the situation like this:

$100

$100

Alice
$100 Alice

Bob

$80

$20

Alice
$100

Bob

Carol

Unspent

Transaction

Outputs

(UTXO)

Transactions

(change)

Transaction Abstract Structure
In general, a Bitcoin transaction looks like

where the total amount of inputs and outputs satisfy I ≥ O

If I > O then the difference I-O is the transaction fee, paid to the miner who includes the
transaction in a block.

inputs outputs
o1

i2

on

o2

im

i1

⋮⋮

I = Σj=1..m ij O = Σj=1..n oj

Bitcoin Addresses
An address is

• a destination where Bitcoin can be sent/held.

• constructed from a user’s EDCSA public key,

• a 160-bit hash + checksum

• encoded using the Satoshi’s Base58Check encoding  
scheme (Upper+Lower case letters + digits,  
but, for usability, omits ambiguous characters  
like 0 and O, I (upper i) and l (lower ell)) 
Includes a checksum.

Why hash the public key?

• shorter, so more convenient

• hiding the public key protects against attempts to  
compute the private key from public key

Image: https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses

Transactions in more detail: structure
A transaction consists of the following parts:

• metadata = {

• hash of the transaction  
(used as an identifier of the transaction)

• version number

• number of inputs

• number of outputs

• lock time (earliest time the transaction can be included in a block)

• size of the transaction }

• inputs (an array)

• outputs (an array)

Transactions in more detail: Transaction outputs

Each output has the following structure:

• The value of the output  
(an amount of Bitcoin, in Satoshis)

• A locking script that specifies a condition that needs to be met for the value to be released,  
and the output spent

The simplest type of locking script describes a “recipient” of the output (the holder of a private
key), by saying “release this output into a transaction signed using (the corresponding
private key)”.

However, more complicated types of locking scripts can be specified:

Locking scripts are programs written in Bitcoin Script, a small programming language.  

Transactions in more detail: Transaction inputs

Each input specifies the following:

• hash of a previous transaction

• index of one of the outputs of the previous transaction

• unlocking script size

• unlocking script  
(proof that the unlocking condition of the previous output has been satisfied)

• sequence number (presently unused, for a future extension under debate)

In order for the transaction to be valid:

• the previous transaction output should be unspent,

• the unlocking script should satisfy the condition in the output’s locking script.

Output and Input Structure for a Simple Transfer

Suppose <Transaction> includes a simple transfer of 100 Satoshi from Alice to Bob.

The corresponding inputs and outputs use Bitcoin script structures that say the following:

Alice output:  
value: 100  
locking script: “Check that the input consists of two values <sig> <PublicKey>, where  
 1. hash(<PublicKey>) is <AliceAddress>, and  
 2. <PublicKey> verifies that <sig> is a signature of hash(<Transaction>)”

Input:  
unlocking script : <hash(<Transaction>) signed AlicePrivateKey> <AlicePublicKey>

Recall that <AliceAddress> = hash(<AlicePublicKey>)

100Alice output
100 Input

<Transaction>

Bob output

Security Argument for the Transfer
Note that anyone who knows <AliceAddress> is able to construct the output locking script.

This means that anyone could have sent the money to Alice by constructing a transaction with this
output.

For the unlocking condition to evaluate to True, we need:

1. hash(<PublicKey>) = <AliceAddress>  
 
The only value likely to satisfy this is <PublicKey> = <AlicePublicKey>

2. <PublicKey>, i.e., <AlicePublicKey> verifies that <sig> is a signature of hash(<Transaction>)  
 
The only person likely to have been able to construct such a <sig> is Alice, using  
<AlicePrivateKey> 
 
(We assume Alice has kept <AlicePrivateKey> private!)  

Summary
That is, with this input/output pattern:

• To send someone money, you only need to know their address

• To spend money sent to an address, you need to know the associated private key

Summary
That is, with this input/output pattern:

• To send someone money, you only need to know their address

• To spend money sent to an address, you need to know the associated private key

Bitcoin Script in More Detail
Bitcoin Script is based on a stack-based memory model.

There are conditional statements, but no loops - this guarantees termination.

A program is a linear sequence of Opcodes (instructions) and data.

• A data value is simply pushed onto the stack

• Each Opcode may do any of

• consume some values from the top of the stack,

• calculate a value

• push a result value onto the top of the stack.

An input I in a transaction T validly consumes an unspent output O, when executing

unlocking-script(I) ; locking-script(O)

(L to R) leaves the stack containing just value TRUE on termination

Opcode Examples
OP_ADD (pop the two top values on the stack, add them, and push the result)

OP_SUB (pop the two top values on the stack, subtract first from second, and push the result)

OP_EQUAL (test the two top values for equality and push the Boolean result)

OP_DUP (duplicate the top value on the stack, i.e. push a copy onto the stack)

Example script:

2 7 OP_ADD 3 OP_SUB 1 OP_ADD 7 OP_EQUAL

Executes as:

empty 2

7
2 9

3
9 6

1
6 7

7
7 TRUE

2 7 OP_EQUAL7OP_ADD1OP_SUB3OP_ADD

Stack:

Instructions:

Exercise:
What does this return?

2 OP_DUP OP_ADD OP_DUP OP_ADD 4 OP_EQUAL

Some More (Cryptographic) Opcodes:

OP_HASH160 (pop x, and push (RIPEMD(SHA256(x)))

OP_HASH256 (pop x, and push (SHA256(SHA256(x)))

OP_CHECKSIG (pop K and S and push the result of checking if  
 K is a public key that verifies S as a signature  
 (by the corresponding private key) of  
 the hash of the current transaction)

OP_EQUALVERIFY (first check equality of the top two values, 
 If TRUE then run OP_CHECKSIG on the next two values)

Using these, we can write the “Simple Transfer” example in Bitcoin Script ….

Pay to Public Key Hash Transaction Script
The Simple Transfer has

Output locking script:

 OP_DUP OP_HASH160 <recipient address> OP_EQUALVERIFY

Input unlocking script:

 <sig> <publicKey>

These combine to give the following computation:

empty <sig>
<PubK>

<sig>

(not
equal)

TRUE
<sig> <PubK> OP_EQUALVERIFY

<recipient
 address>

(equal)

OP_HASH160OP_DUP

<PubK>
<PubK>

<sig>

Hash(<PubK>)
<PubK>

<sig>

Hash(<PubK>)
<PubK>

<sig>

FALSE
<PubK>

<sig>

<recipient
 address>

FALSE

(<PubK> verifies <sig> as
signature of Hash(trans)?)

Coinbase Transactions

The first transaction in a block is a coinbase, or generation transaction, constructed by the miner
of the block, to pay themselves the block mining reward and transaction fees.

The output of this transaction needs to be equal to

block reward + the sum of the fees from transactions in the block

It has the same structure as a normal transaction, except that there is no input being spent. This
leaves a field that can be used to encode a message.

E.g., Satoshi put the following in the input of the coinbase transaction of the first block:

“The Times 03/Jan/2009 Chancellor on brink of second bailout for banks”

Once block difficulty became high, miners also started using this for extra nonce space.

