Better than next()

• What’s the worst case for sequential merge-based intersection?

• \{52, 1\} ➞ move \(k_2\)’s cursor
 – To the position whose id is at least 52 ➞ **skipTo(52)**
 – Essentially, asking the first \(i\), such that \(K_2[i] \geq 52\) (\(K_2\)’s list is sorted).
 – Takes many sequential call of next()
 – Could use binary search in the rest of the list
 – Cost: \(\left\lceil \log_2(N_{\text{remainder}}) \right\rceil\)

\[
\begin{array}{cccccccc}
K_2: & 1 & 3 & 5 & \cdots & \cdots & \cdots & \cdots & 79 \\
K_1: & 52 & 54 & 56 & 58
\end{array}
\]
skipTo(id)

- Galloping search (gambler’s strategy)
 - [Stage 1] Doubling the search range until you overshoot
 - [Stage 2] Perform binary search in the last range

- Performance analysis (worst case)
 - Let the destination position be n positions away.
 - $\approx \log_2 n$ probes in Stage 1 + $\approx \log_2 n$ probes in Stage 2
 - Total = $2 \left\lceil \log_2 (n+1) \right\rceil = O(\log_2 n)$
Total Cost

- Galloping search (gambler’s strategy)
 - Cost of the i-th probe: $\approx 2 \log_2(n_i)$
 - Total cost of K_1 probes: $\approx 2 \log_2(\prod_{i=1}^{K_1} n_i) \leq 2 \log_2(\frac{(\sum_{i=1}^{K_2} n_i)}{|K_1|})^{\frac{|K_1|}{K_2}} \leq 2|K_1|*\log_2(|K_2|/|K_1|)$

- Asymptotically, resembles linear merge when $|K_2|/|K_1| = O(1)$, resembles binary search when $|K_1| = O(1)$

What about list intersection using binary search?
Multiple Term Conjunctive Queries

• K_1 AND K_2 AND … AND K_n
• SvS does not perform well if none of the associated lists are short
• In addition, it is blocking
• Can you design non-blocking multiple sorted array intersection algorithm?
Generalization

• Generalize the 2-way intersection algorithm
• 2-way:
 – \{1, 2\} \rightarrow move k_1’s cursor
 – skipTo(2)
• 3-way:
 – \{1, 2, 3\} \rightarrow move k_1,k_2’s cursor
 – skipTo(3)

\[
\begin{array}{c}
K_1: \begin{pmatrix} 1 \\ 3 \end{pmatrix} \\
K_2: \begin{pmatrix} 2 & 4 & 6 \end{pmatrix} \\
K_3: \begin{pmatrix} 3 & 9 & 27 & 81 \end{pmatrix}
\end{array}
\]

\[\text{eliminator} = \max_{1 \leq i \leq n}(k_i \cdot \text{cursor})\]
Optimization

- Mismatch found even before accessing K_3’s cursor
- Choice 1: continue to get cursors of other list
- Choice 2: settle the dispute within the first two lists \Rightarrow max algorithm [Culpepper & Moffat, 2010]
 - Better locality of access \Rightarrow fewer cache misses
 - Similar to SvS
Pseudo-Code for the Max Algorithm (Wrong)

- Input: K_1, K_2, \ldots, K_n in increasing size

1. $x := K_1[1]$; $startAt := 2$ \hspace{1cm} // x is the eliminator
2. while x is defined do
3. for $i = startAt$ to n do
4. $y := K_i$.skipTo(x)
5. if $y > x$ then \hspace{1cm} // mismatch
6. $x := K_1$.next() \hspace{1cm} // restart_1 \hspace{1cm} // restart_2
7. if $y > x$ then $startAt := 1$; $x := y$ else $startAt := 2$ end if
8. break \hspace{1cm} // match in all lists
9. elsif $i = n$ then \hspace{1cm} // $y = x$
10. Output x
11. $x := K_1$.next()
12. end if
13. end for
14. end while
1. Aligned on AB
2. Mismatch on C
3. (L6) Try A.next()
4. $6 < 8 \Rightarrow \text{restart}_1$
 • $x = 8$
 • Align from A, by A.skipTo(x)
1. Aligned on AB
2. Mismatch on C
3. (L6) Try A.next()
4. $9 < 8 \Rightarrow \text{restart}_2$
 - $x = 9$
 - Align from B, by B.skipTo(x)
Pseudo-Code for the **Max** Algorithm (Fixed)

- Input: K_1, K_2, \ldots, K_n in increasing size

(1) $x := K_1[1]; \ startAt := 2$

(2) while x is defined do

(3) for $i = startAt$ to n do

(4) $y := K_i$.skipTo(x)

(5) if $y > x$ then

(6) $x := K_1$.next()

(4.1) if $i = 1$ then

(4.2) if $y > x$ then

(4.3) $x := y$

(4.4) break

(4.5) end if

(4.6) end if

(7) if $y > x$ then $startAt := 1; x := y$ else $startAt := 2$ end if

(8) break

(9) elseif $i = n$ then

(10) Output x

(11) $x := K_1$.next()

(12) end if

(13) end for

(14) end while
References

• Stefan Buettcher, Charles L. A. Clarke, Gordon V. Cormack, Information Retrieval: Implementing and Evaluating Search Engines, 2010 [Chapter 5]