Introduction to

Information Retrieval

Lecture 7: Scoring and results assembly
Recap: tf-idf weighting

- The tf-idf weight of a term is the product of its tf weight and its idf weight.

\[w_{t,d} = (1 + \log tf_{t,d}) \times \log_{10}(N / df_t) \]

- Best known weighting scheme in information retrieval
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection
Recap: Queries as vectors

- **Key idea 1**: Do the same for queries: represent them as vectors in the space
- **Key idea 2**: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
Recap: \(\cos(\vec{q}, \vec{d}) \) is the cosine similarity of \(\vec{q} \) and \(\vec{d} \) ... or, equivalently, the cosine of the angle between \(\vec{q} \) and \(\vec{d} \).
This lecture

- Speeding up vector space ranking
- Putting together a complete search system
 - Will require learning about a number of miscellaneous topics and heuristics

Question: Why don’t we just use the query processing methods for Boolean queries?
Computing cosine scores

\text{CosineScore}(q)

1. \text{float Scores}[N] = 0
2. \text{float Length}[N]
3. \text{for each} query term \(t \)
4. \text{do} calculate \(w_{t,q} \) and fetch postings list for \(t \)
5. \text{for each} pair(\(d, tf_{t,d} \)) in postings list
6. \text{do} \(\text{Scores}[d] += w_{t,d} \times w_{t,q} \)
7. \text{Read the array Length}
8. \text{for each} \(d \)
9. \text{do} \(\text{Scores}[d] = \text{Scores}[d]/\text{Length}[d] \)
10. \text{return} Top \(K \) components of \(\text{Scores}[] \)
Efficient cosine ranking

- Find the K docs in the collection “nearest” to the query $\Rightarrow K$ largest query-doc cosines.

- Efficient ranking:
 - Computing a single cosine efficiently.
 - Choosing the K largest cosine values efficiently.
 - Can we do this without computing all N cosines?
Efficient cosine ranking

- What we’re doing in effect: solving the K-nearest neighbor problem for a query vector
- In general, we do not know how to do this efficiently for high-dimensional spaces
- But it is solvable for short queries, and standard indexes support this well
Special case – unweighted queries

- No weighting on query terms
 - Assume each query term occurs only once
- Then for ranking, don’t need to normalize query vector
 - Slight simplification of algorithm from Lecture 6
Faster cosine: unweighted query

```
FastCosineScore(q)
1    float Scores[N] = 0
2    for each d
3    do  Initialize Length[d] to the length of doc d
4    for each query term t
5    do  calculate $w_{t,q}$ and fetch postings list for t
6    for each pair($d$, $tf_{t,d}$) in postings list
7    do  add $[\text{w}_{f_{t,d}}]$ to Scores[$d$]
8    Read the array Length[$d$]
9    for each $d$
10   do  Divide Scores[$d$] by Length[$d$]
11   return Top K components of Scores[]
```

Figure 7.1 A faster algorithm for vector space scores.
Computing the K largest cosines: selection vs. sorting

- Typically we want to retrieve the top K docs (in the cosine ranking for the query)
 - not to totally order all docs in the collection
- Can we pick off docs with K highest cosines?
- Let n of docs with nonzero cosines
 - We seek the K best of these n
Use heap for selecting top $K/1$

- **Max-heap:**
 - Binary tree in which each node’s value > the values of children
- Takes $2n$ operations to construct, then each of K “winners” read off in $2\log n$ steps
- Total time is $O(n + K\log(n))$; space complexity is $O(n)$
- For $n=1M$, $K=100$, this is about 10% of the cost of sorting.

http://en.wikipedia.org/wiki/Binary_heap
Use heap for selecting top $K/2$

- What about using a min-heap?
- Use the min-heap to maintain the top k scores so far.
- For each new score, s, scanned:
 - H.push(s)
 - H.pop()
- Total time is $O(n \cdot \log(k) + k \cdot \log(k))$; space complexity is $O(k)$

http://en.wikipedia.org/wiki/Binary_heap
Quick Select

- QuickSelect is similar to QuickSort to find the top-K elements from an array
 - Takes $O(n)$ time (in expectation)
- Sorting the top-K items takes $O(K \cdot \log(K))$ time
- Total time is $O(n + K \cdot \log(K))$

Query Processing

- **Document-at-a-time**
 - Calculates complete scores for documents by processing all term lists, one document at a time

- **Term-at-a-time**
 - Accumulates scores for documents by processing term lists one at a time

- Both approaches have optimization techniques that significantly reduce time required to generate scores
 - Distinguish between safe and heuristic optimizations
Document-At-A-Time

- **salt**: 1:1
- **water**: 1:1
- **tropical**: 1:2
- **score**: 1:4

- **4:1**
- **2:1**
- **3:1**
- **4:2**
Document-At-A-Time

procedure DocumentAtATimeRetrieval(Q, I, f, g, k)
 $L \leftarrow$ Array()
 $R \leftarrow$ PriorityQueue(k)
 for all terms w_i in Q do
 $l_i \leftarrow$ InvertedList(w_i, I)
 $L.add(l_i)$
 end for
 for all documents $d \in I$ do
 for all inverted lists l_i in L do
 if l_i points to d then
 $s_D \leftarrow s_D + g_i(Q) f_i(l_i)$
 $l_i.movePastDocument(d)$
 end if
 end for
 $R.add(s_D, D)$
 end for
 return the top k results from R
end procedure
Term-At-A-Time

<table>
<thead>
<tr>
<th>Term</th>
<th>Old Partial Scores</th>
<th>New Partial Scores</th>
<th>Final Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>salt</td>
<td>1:1 4:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>partial scores</td>
<td>1:1 4:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>old partial scores</td>
<td>1:1 4:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>water</td>
<td>1:1 2:1 4:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>new partial scores</td>
<td>1:2 2:1 4:2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>old partial scores</td>
<td>1:2 2:1 4:2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tropical</td>
<td>1:2 2:2 3:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>final scores</td>
<td>1:4 2:3 3:1 4:2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Term-At-A-Time

procedure TERMATATIMERETRIEVAL(Q, I, f, g k)
 $A \leftarrow$ HashTable()
 $L \leftarrow$ Array()
 $R \leftarrow$ PriorityQueue(k)
 for all terms w_i in Q do
 $l_i \leftarrow$ InvertedList(w_i, I)
 $L.add(l_i)$
 end for
 for all lists $l_i \in L$ do
 while l_i is not finished do
 $d \leftarrow l_i$.getCurrentDocument()
 $A_d \leftarrow A_d + g_i(Q)f(l_i)$
 l_i.moveToNextDocument()
 end while
 end for
 for all accumulators A_d in A do
 $s_D \leftarrow A_d$ \textgreater; Accumulator contains the document score
 $R.add(s_D, D)$
 end for
 return the top k results from R
end procedure

// accumulators

// A_d contains partial score
Optimization Techniques

- Term-at-a-time uses more memory for accumulators, but accesses disk more efficiently.

- Two classes of optimization:
 - Read less data from inverted lists
 - e.g., skip lists
 - better for simple feature functions
 - Calculate scores for fewer documents
 - e.g., conjunctive processing
 - better for complex feature functions
Conjunctive Processing

- Requires the result document containing all the query terms (i.e., conjunctive Boolean queries)
 - More efficient
 - Can also be more effective for short queries
 - Default for many search engines
- Can be combined with both DAAT and TAAT
procedure TERMATATIMERETRIEVAL(Q, I, f, g, k)
1: $A \leftarrow \text{HashTable}()$
2: $L \leftarrow \text{Array}()$
3: $R \leftarrow \text{PriorityQueue}(k)$
4: for all terms w_i in Q
5: $l_i \leftarrow \text{InvertedList}(w_i, I)$
6: L.add(l_i)
7: end for
8: for all lists $l_i \in L$
9: while l_i is not finished do
10: if $i = 0$ then
11: $d \leftarrow l_i$.getCurrentDocument()
12: $A_d \leftarrow A_d + g_i(Q)f(l_i)$
13: end if
14: else
15: $d \leftarrow l_i$.getCurrentDocument()
16: $d \leftarrow A$.getNextDocumentAfter(d)
17: l_i.skipForwardTo(d)
18: if l_i.getCurrentDocument() = d then
19: $A_d \leftarrow A_d + g_i(Q)f(l_i)$
20: else
21: A.remove(d)
22: end if
23: end if
24: end while
25: end for
26: for all accumulators A_d in A
27: $s_D \leftarrow A_d$ \quad \triangleright Accumulator contains the document score
28: R.add(s_D, D)
29: end for
30: return the top k results from R
31: end procedure
Conjunctive Document-at-a-Time

1: \textbf{procedure} \textsc{DocumentAtATimeRetrieval}(Q, I, f, g, k)
2: \hspace{1em} \textbf{let} \(L \leftarrow \text{Array}() \)
3: \hspace{1em} \textbf{let} \(R \leftarrow \text{PriorityQueue}(k) \)
4: \hspace{1em} \textbf{for all} terms \(w_i \) in \(Q \) \textbf{do}
5: \hspace{2em} \textbf{let} \(l_i \leftarrow \text{InvertedList}(w_i, I) \)
6: \hspace{2em} \(L.\text{add}(l_i) \)
7: \hspace{1em} \textbf{end for}
8: \hspace{1em} \textbf{while} all lists in \(L \) are not finished \textbf{do}
9: \hspace{2em} \textbf{for all} inverted lists \(l_i \) in \(L \) \textbf{do}
10: \hspace{3em} \textbf{if} \(l_i.\text{getCurrentDocument}() > d \) \textbf{then}
11: \hspace{4em} \textbf{let} \(d \leftarrow l_i.\text{getCurrentDocument}() \)
12: \hspace{3em} \textbf{end if}
13: \hspace{2em} \textbf{end for}
14: \hspace{1em} \textbf{for all} inverted lists \(l_i \) in \(L \) \textbf{do} \(l_i.\text{skipForwardToDocument}(d) \)
15: \hspace{2em} \textbf{if} \(l_i \) points to \(d \) \textbf{then}
16: \hspace{3em} \textbf{let} \(s_d \leftarrow s_d + g_i(Q)f_i(l_i) \) \textbf{▷ Update the document score}
17: \hspace{3em} \textbf{let} \(l_i.\text{movePastDocument}(d) \)
18: \hspace{2em} \textbf{else}
19: \hspace{3em} \textbf{break}
20: \hspace{2em} \textbf{end if}
21: \hspace{2em} \textbf{end for}
22: \hspace{1em} \(R.\text{add}(s_d, d) \)
23: \hspace{1em} \textbf{end while}
24: \hspace{1em} \textbf{return} the top \(k \) results from \(R \)
25: \textbf{end procedure}
Threshold Methods

- Threshold methods use number of top-ranked documents needed \((k)\) to optimize query processing
 - for most applications, \(k\) is small
- For any query, there is a *minimum score* that each document needs to reach before it can be shown to the user
 - score of the \(k\)th-highest scoring document
 - gives *threshold* \(\tau\)
 - optimization methods estimate \(\tau'\) to ignore documents
Threshold Methods

- For document-at-a-time processing, use score of lowest-ranked document so far for τ'
 - for term-at-a-time, have to use k_{th}-largest score in the accumulator table
- $MaxScore$ method compares the maximum score that remaining documents could have to τ'
 - $safe$ optimization in that ranking will be the same without optimization
MaxScore Example

- Compute max term scores, μ_t, of each list and sort them in decreasing order (fixed during query processing).
- Assume $k = 3$, τ' is lowest score of the current top-k documents.
- If $\mu_{tree} < \tau'$ any doc that scores higher than τ' must contain at least one of the first two keywords (aka required term set).
 - Use postings lists of required term set to “drive” the query processing.
 - Will only check some of the white postings in the list of “tree” to compute score \Rightarrow at least all gray postings are skipped.

Better than the example in the textbook. See my Note 2 too.
MaxScore

xyz

eucalyptus

tree
Other Approaches

- Early termination of query processing
 - ignore high-frequency word lists in term-at-a-time
 - ignore documents at end of lists in doc-at-a-time
 - *unsafe* optimization

- List ordering
 - order inverted lists by quality metric (e.g., PageRank) or by partial score
 - makes unsafe (and fast) optimizations more likely to produce good documents
Bottlenecks

- Primary computational bottleneck in scoring: *cosine computation*
- Can we avoid all this computation?
- Yes, but may sometimes get it wrong
 - a doc *not* in the top K may creep into the list of K output docs
 - Is this such a bad thing?
Cosine similarity is only a proxy

- **Justifications**
 - User has a task and a query formulation
 - Cosine matches docs to query
 - Thus cosine is anyway a proxy for user happiness

- **Approximate query processing**
 - If we get a list of K docs “close” to the top K by cosine measure, should be ok
Generic approach

- Find a set \(A \) of *contenders*, with \(K < |A| \ll N \)
 - \(A \) does not necessarily contain the top \(K \), but has many docs from among the top \(K \)
 - Return the top \(K \) docs in \(A \)
- Think of \(A \) as *pruning* non-contenders
- The same approach is also used for other (non-cosine) scoring functions
- Will look at several schemes following this approach
Index elimination

- Basic algorithm FastCosineScore of Fig 7.1 only considers docs containing at least one query term
- Take this further:
 - Only consider high-idf query terms
 - Only consider docs containing many query terms
High-idf query terms only

- For a query such as *catcher in the rye*
- Only accumulate scores from *catcher* and *rye*
- Intuition: *in* and *the* contribute little to the scores and so don’t alter rank-ordering much
- Benefit:
 - Postings of low-idf terms have many docs → these (many) docs get eliminated from set A of contenders
Docs containing many query terms

- Any doc with at least one query term is a candidate for the top K output list
- For multi-term queries, only compute scores for docs containing several of the query terms
 - Say, at least 3 out of 4
 - Imposes a “soft conjunction” on queries seen on web search engines (early Google)
- Easy to implement in postings traversal
3 of 4 query terms

Antony → 3 4 8 16 32 64 128
Brutus → 2 4 8 16 32 64 128
Caesar → 1 2 3 5 8 13 21 34
Calpurnia → 13 16 32

Scores only computed for docs 8, 16 and 32.
Champion lists

- Precompute for each dictionary term t, the r docs of highest weight in t’s postings
 - Call this the champion list for t
 - (aka fancy list or top docs for t)

- Note that r has to be chosen at index build time
 - Thus, it’s possible that $r < K$

- At query time, only compute scores for docs in $A = \bigcup_{t \in Q} \text{ChampionList}(t)$
 - Pick the K top-scoring docs from amongst these

Inspired by “fancy lists” of Google:
http://infolab.stanford.edu/~backrub/google.html
Exercises

- How do Champion Lists relate to Index Elimination? Can they be used together?
- How can Champion Lists be implemented in an inverted index?
 - Note that the champion list has nothing to do with small docIDs
Static quality scores

- We want top-ranking documents to be both *relevant* and *authoritative*.
- *Relevance* is being modeled by cosine scores.
- *Authority* is typically a query-independent property of a document.
- Examples of authority signals:
 - Wikipedia among websites
 - Articles in certain newspapers
 - A paper with many citations
 - Many diggs, Y!buzzes or del.icio.us marks
 - (PageRank)
Modeling authority

- Assign to each document a \textit{query-independent} quality score in [0,1] to each document d
 - Denote this by $g(d)$
- Thus, a quantity like the number of citations is scaled into [0,1]
 - Exercise: suggest a formula for this.
Net score

- Consider a simple total score combining cosine relevance and authority

\[\text{net-score}(q,d) = g(d) + \cosine(q,d) \]

- Can use some other linear combination than an equal weighting
- Indeed, any function of the two “signals” of user happiness – more later

- Now we seek the top \(K \) docs by net score
Top K by net score – fast methods

- First idea: Order all postings by $g(d)$
- Key: this is a common ordering for all postings
- Thus, can concurrently traverse query terms’ postings for
 - Postings intersection
 - Cosine score computation
- Exercise: write pseudocode for cosine score computation if postings are ordered by $g(d)$
Why order postings by $g(d)$?

- Under $g(d)$-ordering, top-scoring docs likely to appear early in postings traversal

- In time-bound applications (say, we have to return whatever search results we can in 50 ms), this allows us to stop postings traversal early
 - Short of computing scores for all docs in postings
Champion lists in $g(d)$-ordering

- Can combine champion lists with $g(d)$-ordering
- Maintain for each term a champion list of the r docs with highest $g(d) + \text{tf-idf}_{td}$
- Seek top-K results from only the docs in these champion lists
High and low lists

- For each term, we maintain two postings lists called *high* and *low*
 - Think of *high* as the champion list
- When traversing postings on a query, only traverse all the *high* lists first
 - If we get more than K docs, select the top K and stop
 - Only union the high lists
 - Else proceed to get docs from the *low* lists
- Can be used even for simple cosine scores, without global quality $g(d)$
- A means for segmenting index into two tiers
Impact-ordered postings

- We only want to compute scores for docs for which $wf_{t,d}$ is high enough
- We sort each postings list by $wf_{t,d}$
- Now: not all postings in a common order!
- How do we compute scores in order to pick off top K?
 - Two ideas follow
1. Early termination

- When traversing \(t \)'s postings, stop early after either
 - a fixed number of \(r \) docs
 - \(wf_{t,d} \) drops below some threshold
- Take the union of the resulting sets of docs
 - One from the postings of each query term
- Compute only the scores for docs in this union
2. idf-ordered terms

- When considering the postings of query terms
- Look at them in order of decreasing idf
 - High idf terms likely to contribute most to score
- As we update score contribution from each query term
 - Stop if doc scores relatively unchanged
- Can apply to cosine or some other net scores
Cluster pruning: preprocessing

- Pick \sqrt{N} docs at random: call these leaders
- For every other doc, pre-compute nearest leader
 - Docs attached to a leader: its followers;
 - Likely: each leader has $\sim \sqrt{N}$ followers.
Cluster pruning: query processing

- Process a query as follows:
 - Given query Q, find its nearest leader L.
 - Seek K nearest docs from among L’s followers.
Visualization

- Leader
- Follower
- Query
Why use random sampling

- Fast
- Leaders reflect data distribution
General variants

- Have each follower attached to $b_1 = 3$ (say) nearest leaders.
- From query, find $b_2 = 4$ (say) nearest leaders and their followers.
- Can recur on leader/follower construction.
Exercises

- To find the nearest leader in step 1, how many cosine computations do we do?
 - Why did we have \sqrt{N} in the first place?
 - Hint: write down the algorithm, model its cost, and minimize the cost.

- What is the effect of the constants b_1, b_2 on the previous slide?

- Devise an example where this is likely to fail – i.e., we miss one of the K nearest docs.
 - Likely under random sampling.
Parametric and zone indexes

- Thus far, a doc has been a sequence of terms
- In fact documents have multiple parts, some with special semantics:
 - Author
 - Title
 - Date of publication
 - Language
 - Format
 - etc.
- These constitute the metadata about a document
Fields

- We sometimes wish to search by these metadata
 - E.g., find docs authored by William Shakespeare in the year 1601, containing *alas poor Yorick*
- Year = 1601 is an example of a **field**
- Also, author last name = shakespeare, etc
- Field or parametric index: postings for each field value
 - Sometimes build range trees (e.g., for dates)
- Field query typically treated as conjunction
 - (doc *must* be authored by shakespeare)
A **zone** is a region of the doc that can contain an arbitrary amount of text e.g.,

- Title
- Abstract
- References ...

Build inverted indexes on zones as well to permit querying

E.g., “find docs with *merchant* in the title zone and matching the query *gentle rain*”
Example zone indexes

Encode zones in dictionary vs. postings.
Tiered indexes

- Break postings up into a hierarchy of lists
 - Most important
 - ...
 - Least important
- Can be done by \(g(d) \) or another measure
- Inverted index thus broken up into tiers of decreasing importance
- At query time use top tier unless it fails to yield \(K \) docs
 - If so drop to lower tiers
Example tiered index

Tier 1
- auto → Doc2
- best
- car → Doc1 → Doc3
- insurance → Doc2 → Doc3

Tier 2
- auto
- best → Doc1 → Doc3
- car
- insurance

Tier 3
- auto → Doc1
- best
- car → Doc2
- insurance
Query term proximity

- Free text queries: just a set of terms typed into the query box – common on the web
- Users prefer docs in which query terms occur within close proximity of each other
- Let \(w \) be the smallest window in a doc containing all query terms, e.g.,
- For the query *strained mercy* the smallest window in the doc *The quality of mercy is not strained* is 4 (words)
- Would like scoring function to take this into account – how?
Query parsers

- Free text query from user may in fact spawn one or more queries to the indexes, e.g. query *rising interest rates*
 - Run the query as a phrase query
 - If <K docs contain the phrase *rising interest rates*, run the two phrase queries *rising interest* and *interest rates*
 - If we still have <K docs, run the vector space query *rising interest rates*
 - Rank matching docs by vector space scoring

- This sequence is issued by a query parser
Aggregate scores

- We’ve seen that score functions can combine cosine, static quality, proximity, etc.
- How do we know the best combination?
- Some applications – expert-tuned
- Increasingly common: machine-learned
 - See later lecture
Putting it all together

Documents → Parsing Linguistics → Indexers

Metadata in zone and field indexes
Inexact top K retrieval
Tiered inverted positional index
k-gram

Spell correction → Scoring and ranking

Free text query parser → User query

Results page

Scoring parameters → MLR

training set
Resources

- IIR 7, 6.1