COMP6714: Information Retrieval and Web Search

Introduction

Outline

•Introduction of the course

•Introduction of IR and Web Search

Lecture in Charge

- •Lecturer-in-charge:
 - Dr. Yifang Sun
 - Email: <u>yifangs@cse.unsw.edu.au</u>
 - use [comp6714] in subject (otherwise I may miss your email)
 - I will reply your email in 24 hours on weekdays and 48 hours on weekends

Lectures

- Online lecture with pre-recorded slides
 - location: anywhere you like
 - Software: MS Teams
 - Invitation will be sent to you every Wed and Fri morning
 - Time (Sydney time)
 - Wed 1300 1500
 - Fri 1100 1300
 - Recording can be found in MS Teams
- Slides on course website
 - <u>http://www.cse.unsw.edu.au/~cs6714</u>
- QA sessions
 - You can ask during the lectures (and I will pause the video and answer)
 - Ask in the forum (i.e., piazza) or during online consultations
 - Will address common questions in forum at the beginning of each lecture
- Schedule and length of lectures may vary based on the progress of the course
- Note: attending/watching every lecture is assumed

Consultations

- •Online QA discussions using Piazza
 - <u>https://piazza.com/class/ksfa3ry3ud5md</u>
 - encourage every student to participant
 - Raise questions and try to help others
- •Online consultation
 - 1300 1400 every Friday
 - using MS Teams
- Private online consultation with LiC
 - please book an appointment with me with a brief description of your questions, with [comp6714] in subject
 - only for problems that cannot be solved in the forum and during the online consultation

Course Aims

- •Not possible to cover every aspect of Information Retrieval and Web Search
- •We will focus on
 - concepts
 - algorithms
 - principles
- •We will not focus on
 - programming languages and APIspecific platforms/tools
- •Make use of tutorials and documents on the Internet

Expectation

- What are expected in this course
 - Many modules covering a **broad spectrum** of IR/NLP/SE
 - Heavy workload expected: must read and digest the **textbook and slides** + **additional notes**
 - Requires substantial **algorithm/data structure** design/analysis experience & capability + some maths.
 - **Up-to-date** viewpoints, understanding, knowledge (from the academia & industry)
 - → Plan your time well
- You are welcome to ask questions at anytime
- Review after the lecture

Knowledge Assumed (non-exhaustive)

- •Data structures & algorithms:
 - Heap/priority queue: build a heap in O(n) time?
 - Membership query: tradeoffs? worst/avg-case time complexities = ?
 - Recursion:
 - DFS/BFS/Best-first search

Given an array A of integers. Design an algorithm to return two elements x, y in A, such that x + y = 100 if any, and

- 1. the algorithm takes O(n*log(n)) time, or
- 2. the algorithm takes O(n) time

Knowledge Assumed (non-exhaustive)/2

- •C/C++ & Python Programming:
 - Pointer
 - sizeof(int) = ? sizeof(p) = ? sizeof(*p) = ?
 sizeof(str) = ?
 - Be able to learn to use new Python libraries and write & debug python programs
 - Quickly learn a python-based framework in this course

Knowledge Assumed (non-exhaustive)/3

- •CS Architecture
 - Memory hierarchy: name the levels?
 - Bit representation: binary string for any x? How to obtain the 3rd-5th bits of a byte?
- Maths
 - Calculus: How to find the minimum/minimal value of a function f(x)?
 - Probabilities and statistics: rv; linearity of expectation; indicator variable; number of heads by tossing a biased coin n times; Bayesian theorem
 - Linear algebra: inner/dot product of **u** and **v** = ? matrix multiplication

Assessment

- •One written assignment (25%)
- •One programming project (25%)
- •Final exam (50%)
- •Most likely to due after week 7
- •Details to be available later

Written Assignment

- •Exam-style questions
 - computational, short answer
 - no essay, no multiple choice
- •Regarding the lecture contents
 - algorithms, principles, ...
 - to assess your understanding, not memory
- •Late penalty
 - firm deadline
 - zero mark for late submission

Programming project

- •Individual task
- •Both results and source codes will be checked.
 - Zero mark if your codes cannot be run due to some bugs.
- •Late penalty
 - 10% reduction of raw marks for the 1st day, 30% reduction per day for the following 3 days

Final exam

- •Open book exam
- •Firm deadline
- •No supplementary exam will be given if you fail
- Special consideration must be submitted prior to the start of the exam

Warning

- •This course has
 - Broad coverage
 - Heavy workload
 - High fail rate $\geq 20\%$
- Specially, we do not accept personal plea or excuses
 - if you have valid reasons that affect your performance, apply for a UNSW Special Consideration
 - https://student.unsw.edu.au/special-consideration.

Warning - cont.

- •Common excuses/arguments
 - I spent so much time and effort on this course but still failed?
 - I did the work by myself and may have shared it with my classmate for discussion.
 - If I fail this course, I will [...]. Please.

Academic honesty and plagiarism

- Zero tolerance to plagiarism
 - You will get 0 marks
- Examples of misconduct:
 - Copy other students' work
 - Let other students copy your work
 - Copy from GitHub
 - Find a ghost writer
 - ...
- I will not accept the following excuses:
 - "I've left the lab with my screen unlocked"
 - "He stole it from my computer"
 - "I only gave my code to A. A didn't use it but gave it to B"
 - . . .
- Make sure you read all types of plagiarism, esp. collusion in https://student.unsw.edu.au/plagiarism.

Please do not enrol if you...

- •Don't have the required knowledge
- •Cannot produce correct Python program on your own
- •Have poor time management
- •Are too busy to watch lecture videos
- •Are not honest

•Otherwise, you are likely to perform badly in this subject

Tentative course schedule

Week	Торіс	Labs/Assignment/Project
1	Course Introduction + Boolean Retrieval	
2	Preprocessing	
3	Index construction	
4	Compression	
5	Vector Space Model	
6	Flexibility Week (no lecture)	project
7	Evaluation	Assignment
8	Crawling	
9	Link Analysis	
10	Revision and Exam Preparation	

General Suggestions

- •Make use of LiC and tutors
 - don't hesitate to ask questions
- •Make use of the forum
 - read the notices in course website and Piazzaparticipate in the discussions in Piazza
- •Make use of course materials
 - understand lecture slidesread specifications carefully
- •Do not misconduct

Your Feedbacks are Always Welcome

•Please advice where I can improve after each lecture, through Piazza or by email

•myExperience system

Outline

- Introduction of the course
- •Introduction of IR and Web Search

What is Information Retrieval?

- •Let's start with Search
- •Search on the Web is a daily activity for many people throughout the world
- •Search and communication are most popular uses of the computer
- •Applications involving search are everywhere
- •The field of computer science that is most involved with R&D for search is *information retrieval (IR)*

Information Retrieval

- Information Retrieval (IR) is finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections (usually stored on computers).
- These days we frequently think first of web search, but there are many other cases:
 - E-mail search
 - Searching your laptop
 - Corporate knowledge bases
 - Legal information retrieval
- Primary focus of IR since the 50s has been on *text* and *documents*

Search Engine

- •As a user
 - What you can do?
 - What to expect?
- •As a server
 - How to meet the users' requirements?
 - How to improve the users' experience?
- •As an observer
 - How to evaluate a search engine?

Basic assumptions of Information Retrieval

Collection: A set of documents

• Assume it is a static collection for the moment

 Goal: Retrieve documents with information that is relevant to the user's information need and helps the user complete a task

What is a Document?

•Examples:

• web pages, email, books, news stories, scholarly papers, text messages, WordTM, PowerpointTM, PDF, forum postings, patents, IM sessions, etc.

•Common properties

- Significant text content
- Some structure (e.g., title, author, date for papers; subject, sender, destination for email)

Unstructured (text) vs. structured (database) data in the mid-nineties

Unstructured (text) vs. structured (database) data in 2019

Documents vs. Database Records

- •Database records (or *tuples* in relational databases) are typically made up of well-defined fields (or *attributes*)
 - e.g., bank records with account numbers, balances, names, addresses, social security numbers, dates of birth, etc.
- •Easy to compare fields with well-defined semantics to queries in order to find matches
- Text is more difficult

Documents vs. Records

- •Example bank database query
 - *Find records with balance > \$50,000 in branches located in Amherst, MA.*
 - Matches easily found by comparison with field values of records
- •Example search engine query
 - bank scandals in western mass
 - This text must be compared to the text of entire news stories

Comparing Text

- •Comparing the query text to the document text and determining what is a good match is the <u>core issue</u> of information retrieval
- •Exact matching of words is not enough
 - Many different ways to write the same thing in a "natural language" like English
 - e.g., does a news story containing the text *"bank director in Amherst steals funds"* match the query?
 - Some stories will be better matches than others

Dimensions of IR

- •IR is more than just text, and more than just web search
 - although these are central
- •People doing IR work with different media, different types of search applications, and different tasks

Other Media

- •New applications increasingly involve new media
 - •e.g., video, photos, music, speech
- •Like text, content is difficult to describe and compare
 - text may be used to represent them (e.g. tags)
- •IR approaches to search and evaluation are appropriate

Dimensions of IR

Content	Applications	Tasks
Text	Web search	Ad hoc search
Images	Vertical search	Filtering
Video	Enterprise search	Classification
Scanned docs	Desktop search	Question answering
Audio	Forum search	
Music	P2P search	
	Literature search	

IR Tasks

- •Ad-hoc search
 - Find relevant documents for an arbitrary text query
- •Filtering (aka information dissemination)
 - Identify relevant user profiles for a new document
- •Classification
 - Identify relevant labels for documents
- •Question answering
 - Give a specific answer to a question

Big Issues in IR

- •Relevance
 - What is it?
 - Simple (and simplistic) definition: A relevant document contains the information that a person was looking for when they submitted a query to the search engine
 - Many factors influence a person's decision about what is relevant: e.g., task, context, novelty, style
 - *Topical relevance* (same topic) vs. *user relevance* (everything else)

Big Issues in IR

- •Relevance
 - Retrieval models define a view of relevance
 - Ranking algorithms used in search engines are based on retrieval models
 - Most models describe statistical properties of text rather than linguistic
 - i.e. counting simple text features such as words instead of parsing and analyzing the sentences
 - Statistical approach to text processing started with Luhn in the 50s
 - Linguistic features can be part of a statistical model

Big Issues in IR

- •Evaluation
 - Experimental procedures and measures for comparing system output with user expectations
 - Originated in Cranfield experiments in the 60s
 - IR evaluation methods now used in many fields
 - Typically use *test collection* of documents, queries, and relevance judgments
 - Most commonly used are TREC collections
 - *Recall* and *precision* are two examples of <u>effectiveness</u> measures

Web Search

- •New Challenges
- •How to obtain data?
- •Additional features for Web data