
COMP6714: Information Retrieval & Web Search

Introduction to

Information Retrieval

Lecture 17: Crawling and web indexes

1

COMP6714: Information Retrieval & Web Search

Today’s lecture
§ Crawling

2

COMP6714: Information Retrieval & Web Search

Basic crawler operation
§ Begin with known “seed” URLs
§ Fetch and parse them
§ Extract URLs they point to
§ Place the extracted URLs on a queue

§ Fetch each URL on the queue and
repeat

Sec. 20.2

3

COMP6714: Information Retrieval & Web Search

Structure of the Web (circa 2000)

Sec. 20.2

4

http://www.nature.com/nature/journal/v405/n6783/pdf/405112a0.pdf

http://www.nature.com/nature/journal/v405/n6783/pdf/405112a0.pdf

COMP6714: Information Retrieval & Web Search

Crawling picture

Web

URLs crawled
and parsed

URLs frontier

Unseen Web

Seed
pages

Sec. 20.2

5

COMP6714: Information Retrieval & Web Search

Simple Crawler Thread

1

2

3

4

5

6

7

8

9

10

11

12

13

14

6

COMP6714: Information Retrieval & Web Search

Simple picture – complications
§ Web crawling isn’t feasible with one machine

§ All of the above steps distributed
§ Malicious pages

§ Spam pages
§ Spider traps – incl dynamically generated

§ Even non-malicious pages pose challenges
§ Latency/bandwidth to remote servers vary
§ Webmasters’ stipulations

§ How “deep” should you crawl a site’s URL hierarchy?
§ Site mirrors and duplicate pages

§ Politeness – don’t hit a server too often

Sec. 20.1.1

7

COMP6714: Information Retrieval & Web Search

What any crawler must do

§ Be Polite: Respect implicit and explicit
politeness considerations
§ Only crawl allowed pages
§ Respect robots.txt (more on this shortly)

§ Be Robust: Be immune to spider traps and
other malicious behavior from web servers

Sec. 20.1.1

8

COMP6714: Information Retrieval & Web Search

What any crawler should do
§ Be capable of distributed operation: designed to

run on multiple distributed machines
§ Be scalable: designed to increase the crawl rate

by adding more machines
§ Performance/efficiency: permit full use of

available processing and network resources

Sec. 20.1.1

9

COMP6714: Information Retrieval & Web Search

What any crawler should do

§ Fetch pages of “higher quality” first
§ Continuous operation: Continue fetching

fresh copies of a previously fetched page
§ Extensible: Adapt to new data formats,

protocols

Sec. 20.1.1

10

COMP6714: Information Retrieval & Web Search

Freshness
§ HTTP protocol has a special request type called HEAD

that makes it easy to check for page changes
§ returns information about page, not page itself

11

COMP6714: Information Retrieval & Web Search

Freshness
§ Web pages are constantly being added, deleted, and

modified
§ Web crawler must continually revisit pages it has

already crawled to see if they have changed in order
to maintain the freshness of the document collection
§ stale copies no longer reflect the real contents of the web

pages

12

COMP6714: Information Retrieval & Web Search

Freshness
§ Not possible to constantly check all pages

§ must check important pages and pages that change
frequently

§ Freshness is the proportion of pages that are fresh
§ Optimizing for this metric can lead to bad decisions,

such as not crawling popular sites
§ Age is a better metric

13

COMP6714: Information Retrieval & Web Search

Freshness vs. Age

14

COMP6714: Information Retrieval & Web Search

Age
§ Expected age of a page t days after it was last

crawled:

§ Web page updates follow the Poisson distribution on
average
§ time until the next update is governed by an exponential

distribution

15

COMP6714: Information Retrieval & Web Search

Age
§ The older a page gets, the more it costs not to crawl

it
§ e.g., expected age with mean change frequency λ = 1/7

(one change per week)

16

COMP6714: Information Retrieval & Web Search

Updated crawling picture

URLs crawled
and parsed

Unseen Web

Seed
Pages

URL frontier

Crawling thread

Sec. 20.1.1

17

COMP6714: Information Retrieval & Web Search

Simple Crawler Thread

1

2

3

4

5

6

7

8

9

10

11

12

13

14

18

COMP6714: Information Retrieval & Web Search

URL frontier

§ Can include multiple pages from the same
host

§ Must avoid trying to fetch them all at the
same time

§ Must try to keep all crawling threads busy

Sec. 20.2

19

COMP6714: Information Retrieval & Web Search

Explicit and implicit politeness

§ Explicit politeness: specifications from
webmasters on what portions of site can be
crawled
§ robots.txt

§ Implicit politeness: even with no
specification, avoid hitting any site too
often

Sec. 20.2

20

COMP6714: Information Retrieval & Web Search

Robots.txt
§ Protocol for giving spiders (“robots”) limited

access to a website, originally from 1994
§ www.robotstxt.org/wc/norobots.html

§ Website announces its request on what can(not)
be crawled
§ For a URL, create a file URL/robots.txt
§ This file specifies access restrictions

Sec. 20.2.1

21

http://www.robotstxt.org/wc/norobots.html

COMP6714: Information Retrieval & Web Search

Robots.txt example
§ No robot should visit any URL starting with

"/yoursite/temp/", except the robot called
“searchengine":

User-agent: *
Disallow: /yoursite/temp/

User-agent: searchengine

Disallow:

Sec. 20.2.1

22
try http://www.taobao.com/robots.txt

COMP6714: Information Retrieval & Web Search

Processing steps in crawling
§ Pick a URL from the frontier
§ Fetch the document at the URL
§ Parse the URL

§ Extract links from it to other docs (URLs)

§ Check if URL has content already seen
§ If not, add to indexes

§ For each extracted URL
§ Ensure it passes certain URL filter tests
§ Check if it is already in the frontier (duplicate URL

elimination)

E.g., only crawl .edu,
obey robots.txt, etc.

Which one?

Sec. 20.2.1

23

COMP6714: Information Retrieval & Web Search

Basic crawl architecture

WWW

DNS

Parse

Content
seen?

Doc
FP’s

Dup
URL
elim

URL
set

URL Frontier

URL
filter

robots
filters

Fetch

Sec. 20.2.1

24

COMP6714: Information Retrieval & Web Search

DNS (Domain Name Server)
§ A lookup service on the internet

§ Given a URL, retrieve its IP address
§ Service provided by a distributed set of servers – thus,

lookup latencies can be high (even seconds)

§ Common OS implementations of DNS lookup are
blocking: only one outstanding request at a time

§ Solutions
§ DNS caching
§ Batch DNS resolver – collects requests and sends them out

together

Sec. 20.2.2

25

COMP6714: Information Retrieval & Web Search

Parsing: URL normalization

§ When a fetched document is parsed, some of the
extracted links are relative URLs

§ E.g., at http://en.wikipedia.org/wiki/Main_Page
we have a relative link to

/wiki/Wikipedia:General_disclaimer which is the same
as the absolute URL
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

§ During parsing, must normalize (expand) such relative
URLs

Sec. 20.2.1

26

http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Wikipedia:General_disclaimer

COMP6714: Information Retrieval & Web Search

Content seen?
§ Duplication is widespread on the web
§ If the page just fetched is already in

the index, do not further process it
§ This is verified using document

fingerprints or shingles

Sec. 20.2.1

27

COMP6714: Information Retrieval & Web Search

Removing Noise
§ Many web pages contain text, links, and pictures that

are not directly related to the main content of the
page

§ This additional material is mostly noise that could
negatively affect the ranking of the page

§ Techniques have been developed to detect the
content blocks in a web page
§ Non-content material is either ignored or reduced in

importance in the indexing process

28

COMP6714: Information Retrieval & Web Search

Noise Example

29

COMP6714: Information Retrieval & Web Search

Filters and robots.txt

§ Filters – regular expressions for URL’s to
be crawled/not

§ Once a robots.txt file is fetched from a
site, need not fetch it repeatedly
§ Doing so burns bandwidth, hits web

server
§ Cache robots.txt files

Sec. 20.2.1

30

COMP6714: Information Retrieval & Web Search

Duplicate URL elimination

§ For a non-continuous (one-shot) crawl, test
to see if an extracted+filtered URL has
already been passed to the frontier

§ For a continuous crawl – see details of
frontier implementation

Sec. 20.2.1

31

COMP6714: Information Retrieval & Web Search

Distributing the crawler
§ Run multiple crawl threads, under different

processes – potentially at different nodes
§ Geographically distributed nodes

§ Partition hosts being crawled into nodes
§ Hash used for partition

§ How do these nodes communicate?

Sec. 20.2.1

32

COMP6714: Information Retrieval & Web Search

Communication between nodes
§ The output of the URL filter at each node is sent to

the Duplicate URL Eliminator at all nodes

WWW

Fetch

DNS

Parse

Content
seen?

URL
filter

Dup
URL
elim

Doc
FP’s

URL
set

URL Frontier

robots
filters

Host
splitter

To
other
hosts

From
other
hosts

Sec. 20.2.1

33

COMP6714: Information Retrieval & Web Search

URL frontier: two main considerations

§ Politeness: do not hit a web server too frequently
§ Freshness: crawl some pages more often than

others
§ E.g., pages (such as News sites) whose content

changes often
These goals may conflict each other.
(E.g., simple priority queue fails – many links out of

a page go to its own site, creating a burst of
accesses to that site.)

Sec. 20.2.3

34

COMP6714: Information Retrieval & Web Search

Politeness – challenges

§ Even if we restrict only one thread to fetch
from a host, can hit it repeatedly

§ Common heuristic: insert time gap between
successive requests to a host that is >> time
for most recent fetch from that host

Sec. 20.2.3

35

COMP6714: Information Retrieval & Web Search

Back queue selector

B back queues
Single host on each

Crawl thread requesting URL

URL frontier: Mercator scheme

Biased front queue selector
Back queue router

Prioritizer

K front queues

URLs

Sec. 20.2.3

36

COMP6714: Information Retrieval & Web Search

Mercator URL frontier
§ URLs flow in from the top into the frontier
§ Front queues manage prioritization
§ Back queues enforce politeness
§ Each queue is FIFO

Sec. 20.2.3

37

COMP6714: Information Retrieval & Web Search

Front queues

Prioritizer

1 K

Biased front queue selector
Back queue router

Sec. 20.2.3

38

COMP6714: Information Retrieval & Web Search

Front queues
§ Prioritizer assigns to URL an integer priority

between 1 and K
§ Appends URL to corresponding queue

§ Heuristics for assigning priority
§ Refresh rate sampled from previous crawls
§ Application-specific (e.g., “crawl news sites more

often”)

Sec. 20.2.3

39

COMP6714: Information Retrieval & Web Search

Biased front queue selector
§ When a back queue requests a URL (in a

sequence to be described): picks a front queue
from which to pull a URL

§ This choice can be round robin biased to queues
of higher priority, or some more sophisticated
variant
§ Can be randomized

Sec. 20.2.3

40

COMP6714: Information Retrieval & Web Search

Back queues
Biased front queue selector

Back queue router

Back queue selector

1 B

Heap

Sec. 20.2.3

41

COMP6714: Information Retrieval & Web Search

Back queue invariants

§ Each back queue is kept non-empty while the
crawl is in progress

§ Each back queue only contains URLs from a
single host
§ Maintain a table from hosts to back queues

Host name Back queue

… 3

1

B

Sec. 20.2.3

42

COMP6714: Information Retrieval & Web Search

Back queue heap
§ One entry for each back queue
§ The entry is the earliest time te at which the host

corresponding to the back queue can be hit again
§ This earliest time is determined from

§ Last access to that host
§ Any time buffer heuristic we choose

Sec. 20.2.3

43

COMP6714: Information Retrieval & Web Search

Back queue processing

§ A crawler thread seeking a URL to crawl:
§ Extracts the root of the heap
§ Fetches URL at head of corresponding back queue q

(look up from table)
§ Checks if queue q is now empty – if so, pulls a URL v

from front queues
§ If there’s already a back queue for v’s host, append v to q

and pull another URL from front queues, repeat
§ Else add v to q

§ When q is non-empty, create heap entry for it

Sec. 20.2.3

44

COMP6714: Information Retrieval & Web Search

Number of back queues B
§ Keep all threads busy while respecting politeness
§ Mercator recommendation: three times as many

back queues as crawler threads

Sec. 20.2.3

45

COMP6714: Information Retrieval & Web Search

Resources
§ IIR Chapter 20
§ Mercator: A scalable, extensible web crawler (Heydon et al.

1999)

§ A standard for robot exclusion

46

http://www.springerlink.com/content/x52270wmu460582r/
http://www.robotstxt.org/orig.html

