
COMP6714: Information Retrieval & Web Search

Introduction to

Information Retrieval

Lecture 4: Dictionaries and tolerant retrieval

1

COMP6714: Information Retrieval & Web Search

This lecture
§ Dictionary data structures
§ “Tolerant” retrieval

§ Wild-card queries
§ Spelling correction

Ch. 3

2

COMP6714: Information Retrieval & Web Search

Dictionary data structures for inverted
indexes
§ The dictionary data structure stores the term

vocabulary, document frequency, pointers to each
postings list … in what data structure?

Sec. 3.1

3

COMP6714: Information Retrieval & Web Search

A naïve dictionary
§ An array of struct:

char[20] int Postings *
20 bytes 4/8 bytes 4/8 bytes

§ How do we store a dictionary in memory efficiently?
§ How do we quickly look up elements at query time?

Sec. 3.1

4

COMP6714: Information Retrieval & Web Search

Dictionary data structures
§ Two main choices:

§ Hash table
§ Tree

§ Some IR systems use hashes, some trees

Sec. 3.1

5

COMP6714: Information Retrieval & Web Search

Hashes
§ Each vocabulary term is hashed to an integer

§ (We assume you’ve seen hashtables before)

§ Pros:
§ Lookup is faster than for a tree: O(1)

§ Cons:
§ No easy way to find minor variants:

§ judgment/judgement

§ No prefix search [tolerant retrieval]
§ If vocabulary keeps growing, need to occasionally do the

expensive operation of rehashing everything

Sec. 3.1

6

COMP6714: Information Retrieval & Web Search

Root
a-m n-z

a-hu hy-m n-sh si-z

aa
rd
va
rk

hu
yg
en
s

si
ck
le

zy
go
t

Tree: binary tree

Sec. 3.1

7

COMP6714: Information Retrieval & Web Search

Tree: B-tree

§ Definition: Every internal nodel has a number of children
in the interval [a,b] where a, b are appropriate natural
numbers, e.g., [2,4].

a-hu
hy-m

n-z

Sec. 3.1

8

COMP6714: Information Retrieval & Web Search

Trees
§ Simplest: binary tree
§ More usual: B-trees
§ Trees require a standard ordering of characters and hence

strings … but we standardly have one
§ Pros:

§ Solves the prefix problem (terms starting with hyp)
§ Cons:

§ Slower: O(log M) [and this requires balanced tree]
§ Rebalancing binary trees is expensive

§ But B-trees mitigate the rebalancing problem

Sec. 3.1

9

COMP6714: Information Retrieval & Web Search

WILD-CARD QUERIES

10

COMP6714: Information Retrieval & Web Search

Wild-card queries: *

§ mon*: find all docs containing any word beginning
“mon”.

§ Easy with binary tree (or B-tree) lexicon: retrieve all
words in range: mon ≤ w < moo

§ *mon: find words ending in “mon”: harder
§ Maintain an additional B-tree for terms backwards.
Can retrieve all words in range: nom ≤ w < non.

Exercise: from this, how can we enumerate all terms
meeting the wild-card query pro*cent ?

Sec. 3.2

11

COMP6714: Information Retrieval & Web Search

Query processing
§ At this point, we have an enumeration of all terms in

the dictionary that match the wild-card query.
§ We still have to look up the postings for each

enumerated term.
§ E.g., consider the query:

se*ate AND fil*er
This may result in the execution of many Boolean
AND queries.

Sec. 3.2

12

COMP6714: Information Retrieval & Web Search

B-trees handle *’s at the end of a
query term
§ How can we handle *’s in the middle of query term?

§ co*tion

§ We could look up co* AND *tion in a B-tree and
intersect the two term sets
§ Expensive
§ Still need verification to remove false-positives

§ The solution: transform wild-card queries so that the
*’s occur at the end

§ This gives rise to the Permuterm Index.

Sec. 3.2

13

COMP6714: Information Retrieval & Web Search

Permuterm index
§ For term hello, index under:

§ hello$, ello$h, llohe, lohel, o$hell
where $ is a special symbol.

§ Queries:
§ P
§ P*
§ *P
§ *P*
§ P*Q
§ P*Q*R ??? Exercise!

Query = hel*o
P=hel, Q=o

Lookup o$hel*

Sec. 3.2.1

Exact match P$

Range match $P*

Range match P$*

Range match P*

Range match Q$P*

Q: Why not P*$*

14

P

$?

??

COMP6714: Information Retrieval & Web Search

Permuterm query processing
§ Rotate query wild-card to the right
§ Now use B-tree lookup as before.
§ Permuterm problem: ≈ quadruples lexicon size

Empirical observation for English.

Sec. 3.2.1

15

COMP6714: Information Retrieval & Web Search

Bigram (k-gram) indexes
§ Enumerate all k-grams (sequence of k chars)

occurring in any term
§ e.g., from text “April is the cruelest month” we get

the 2-grams (bigrams)

§ $ is a special word boundary symbol

§ Maintain a second inverted index from bigrams to
dictionary terms that match each bigram.

a,ap,pr,ri,il,l,i,is,s,t,th,he,e,$c,cr,ru,
ue,el,le,es,st,t$, m,mo,on,nt,h

Sec. 3.2.2

16

COMP6714: Information Retrieval & Web Search

Bigram index example
§ The k-gram index finds terms based on a query

consisting of k-grams (here k=2).

mo

on

among

$m mace

among

amortize

madden

mound

Sec. 3.2.2

17

COMP6714: Information Retrieval & Web Search

Processing wild-cards
§ Query mon* can now be run as

§ $m AND mo AND on

§ Gets terms that match AND version of our wildcard
query.

§ But we’d enumerate moon.
§ Must verify these terms against query.
§ Surviving enumerated terms are then looked up in

the term-document inverted index.
§ Fast, space efficient (compared to permuterm).

Sec. 3.2.2

18

COMP6714: Information Retrieval & Web Search

Processing wild-card queries
§ As before, we must execute a Boolean query for each

enumerated, filtered term.
§ Wild-cards can result in expensive query execution

(very large disjunctions…)
§ pyth* AND prog*

§ If you encourage “laziness” people will respond!

Search
Type your search terms, use ‘*’ if you need to.
E.g., Alex* will match Alexander.

Sec. 3.2.2

19

COMP6714: Information Retrieval & Web Search

Resources
§ IIR 3, MG 4.2
§ Efficient spell retrieval:

§ K. Kukich. Techniques for automatically correcting words in text. ACM
Computing Surveys 24(4), Dec 1992.

§ J. Zobel and P. Dart. Finding approximate matches in large
lexicons. Software - practice and experience 25(3), March 1995.
http://citeseer.ist.psu.edu/zobel95finding.html

§ Mikael Tillenius: Efficient Generation and Ranking of Spelling Error
Corrections. Master’s thesis at Sweden’s Royal Institute of Technology.
http://citeseer.ist.psu.edu/179155.html

§ Nice, easy reading on spell correction:
§ Peter Norvig: How to write a spelling corrector
http://norvig.com/spell-correct.html

Sec. 3.5

20

http://citeseer.ist.psu.edu/zobel95finding.html
http://citeseer.ist.psu.edu/179155.html

