Introduction to Information Retrieval

Spelling Correction and the Noisy Channel

Spelling Correction and the Noisy Channel

The Spelling Correction Task

Applications for spelling correction

	Phones	
	e Spelling and Grammar: English (US)	New iMessage Cancel
Spell checking is a componant of	Not in dictionary: Spell checking is a componant of Ignore Ignore All Add Suggestions: component Change Change All AutoCorrect	To: Dan Jurafsky Sorry, running layr QWERTYUIOP
	Web search	A S D F G H J K L
ploogle	natural langage processing	

Showing results for <u>natural *language* processing</u> Search instead for natural langage processing

Spelling Tasks

- Spelling Error Detection
- Spelling Error Correction:
 - Autocorrect
 - hte→the
 - Suggest a correction
 - Suggestion lists

Types of spelling errors

- Non-word Errors
 - graffe \rightarrow giraffe
- Real-word Errors
 - Typographical errors
 - three \rightarrow there
 - Cognitive Errors (homophones)
 - piece \rightarrow peace,
 - too → two

Rates of spelling errors

- 26%: Web queries Wang et al. 2003
- 13%: Retyping, no backspace: Whitelaw et al. English&German
- **7**%: Words corrected retyping on phone-sized organizer
- 2%: Words uncorrected on organizer Soukoreff & MacKenzie 2003
- **1-2%:** Retyping: Kane and Wobbrock 2007, Gruden et al. 1983

Non-word spelling errors

- Non-word spelling error detection:
 - Any word not in a *dictionary* is an error
 - The larger the dictionary the better
- Non-word spelling error correction:
 - Generate candidates: real words that are similar to error
 - Choose the one which is best:
 - Shortest weighted edit distance
 - Highest noisy channel probability

Real word spelling errors

- For each word *w*, generate candidate set:
 - Find candidate words with similar pronunciations
 - Find candidate words with similar spelling
 - Include w in candidate set
- Choose best candidate
 - Noisy Channel
 - Classifier

Spelling Correction and the Noisy Channel

The Noisy Channel Model of Spelling

Noisy Channel Intuition

Noisy Channel

- We see an observation x of a misspelled word
- Find the correct word w

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(w \mid x)$$
$$= \underset{w \in V}{\operatorname{argmax}} \frac{P(x \mid w)P(w)}{P(x)}$$
$$= \underset{w \in V}{\operatorname{argmax}} P(x \mid w)P(w)$$

COMP6714: Information Retrieval & Web Search

History: Noisy channel for spelling proposed around 1990

IBM

 Mays, Eric, Fred J. Damerau and Robert L. Mercer. 1991. Context based spelling correction. *Information Processing and Management*, 23(5), 517–522

AT&T Bell Labs

Kernighan, Mark D., Kenneth W. Church, and William A.
 Gale. 1990. A spelling correction program based on a noisy channel model. Proceedings of COLING 1990, 205-210

Non-word spelling error example

acress

1. Candidate (V) generation

- Words with similar spelling
 - Small edit distance to error
- Words with similar pronunciation
 - Small edit distance of pronunciation to error

Damerau-Levenshtein edit distance

- Minimal edit distance between two strings, where edits are:
 - Insertion
 - Deletion
 - Substitution
 - Transposition of two adjacent letters

Words within 1 of acress

Error	Candidate Correction	Correct Letter	Error Letter	Туре
acress	actress	t	8	deletion
acress	cress	ε	a	insertion
acress	caress	са	ac	transposition
acress	access	С	r	substitution
acress	across	0	е	substitution
acress	acres	Е	S	insertion
acress	acres	Е	S	insertion

Candidate generation

- 80% of errors are within edit distance 1
- Almost all errors within edit distance 2
- Also allow insertion of space or hyphen
 - thisidea ightarrow this idea
 - inlaw → in-law

2. Prior Probability P(w): Language Model

- Use any of the language modeling algorithms we've learned
- Unigram, bigram, trigram
- Web-scale spelling correction
 - Stupid backoff

Unigram Prior probability

Counts from 404,253,213 words in Corpus of Contemporary English (COCA)

word	Frequency of word	P(word)
actress	9,321	.0000230573
cress	220	.000005442
caress	686	.0000016969
access	37,038	.0000916207
across	120,844	.0002989314
acres	12,874	.0000318463

3. Likelihood Pr(x|w): Channel model probability

- Error model probability, Edit probability
- Kernighan, Church, Gale 1990
- Misspelled word x = x₁, x₂, x₃... x_m
- Correct word w = w₁, w₂, w₃,..., w_n
- P(x|w) = probability of the edit
 - Only consider edit
 (deletion/insertion/substitution/transpositio distance = 1 case here

Computing error probability: confusion matrix

<pre>del[x,y]:</pre>	count(xy typed as x)
ins[x,y]:	count(x typed as xy)
sub[x,y]:	count(x typed as y)
trans[x, y]:	count(xy typed as yx)

Insertion and deletion conditioned on previous character

Confusion matrix M

$\hat{P}(w$	c) =		$\frac{M}{w'}$	$\frac{l[\iota]}{M}$	$\frac{v}{l[a]}$	$\frac{c]}{w'}$	c	_																				
wrong	correct	t																										
char	char "	,				St	ıb[]	K, Y] =	Sub	stitı	itio	n of	* X	(inc	orre	ect) f	or	Y ((orr	ect)							
•••••	X		h	~	đ	e	f	a	h	i	i	ŀ	1	(COF	rect) 	n	0	r	e	ŧ	11	v	317	v	v	7	
		<u>a</u>	-0-	7	1	342	$\frac{1}{0}$	<u> </u>	2	118	<u> </u>	1	- 1		3	76	<u> </u>	$-\frac{q}{0}$		35			$\overline{0}$		$\hat{\overline{0}}$	-5		
	b	Ő	0	9	9	2	2	3	1	Õ	Ő	ō	5	11	5	Õ	10	Õ	ō	2	í	Ó	Ő	8	Ō	õ	Ō	•••
	с	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0	
	d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0	
	C F	388	15	3	11	0	2	2	2	89	0	0	3	0	2	93	0	0	14	12	12	15	0	1	0	18	0	
	1 9	4	15	11	11	9	2	0	õ	0	1	1	3	0	0	2	1	3	5	13	21	õ	0	1	ő	3	ŏ	
	h	1	8	0	3	Ó	0	õ	ō	Ő	0	2	Ő	12	14	2	3	Ő	3	1	11	0	0	2	Ō	Ő	ŏ	
	i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0	
	j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0	
	k		2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3	
	l m	2	10	7	4	0	4	2	6	13	0	1	4	0	180	2	5	0	1	10	15	13	3	2	2	3	0	
	n		7	6	5	3	õ	ĭ	19	ĭ	ŏ	4	35	78	0	ŏ	7	ŏ	28	5	7	0	Ő	ĩ	ĩ	ő	2	
	0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0	
	р	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0	
	q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	r		14	27	30	12	2	2	8 1	2	1	2	27	4	20	1	14	0	14	12	15	4	0	5	3	20	1	
	s t	3	4		42	7	5	19	5	ő	1	Ő	14	9	5	5	6	Ő	11	37	0	ŏ	2	19	0	7	6	
	ů	20	Ó	Ó	0	44	0	Ő	Õ	64	Ō	Ő	0	Ō	2	43	Ō	Ő	4	0	0	Ő	0	2	0	8	Õ	
	v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0	
	w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0	
	x		0	2	2	0	0	0	0 7	0	0	0	0	0	0	0	0	0	7	36	0	0	0	0	0	0	0	
	y z	0	ő	0	7	0	0	0	ó	0	0	0	7	5	0	0	0	ő	2	21	3	0	0	0	ò	3	0	
	L	· ···	4	Ŷ		U		v	0	U	*	2			2	v	5	Ū			2	v	v	Ū				

Generating the confusion matrix

- Peter Norvig's list of errors
- Peter Norvig's list of counts of single-edit errors

https://norvig.com/ngrams/

Channel model

 $P(x|w) = \begin{cases} \frac{\mathrm{del}[w_{i-1}, w_i]}{\mathrm{count}[w_{i-1}w_i]}, & \text{if deletion} \\ \frac{\mathrm{ins}[w_{i-1}, x_i]}{\mathrm{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\mathrm{sub}[x_i, w_i]}{\mathrm{count}[w_i]}, & \text{if substitution} \\ \frac{\mathrm{trans}[w_i, w_{i+1}]}{\mathrm{count}[w_iw_{i+1}]}, & \text{if transposition} \end{cases}$

Kernighan, Church, Gale 1990

Channel model for acress

Candidate Word	Correct Letter	Error Letter	x w	P(x word)
actress	t	-	c ct	.000117
cress	-	а	a #	.00000144
caress	са	ac	ac ca	.00000164
access	С	r	r c	.000000209
across	0	е	elo	.0000093
acres	-	S	es e	.0000321
acres	-	S	ss s	.0000342

Noisy channel probability for acress

Candidate Word	Correct Letter	Error Letter	x w	P(x word)	P(word)	10 ^{9 *} P(x w)P(w)	
actress	t	-	c ct	.000117	.0000231	2.7	
cress	-	a	a #	.00000144	.000000544	.00078	
caress	са	ac	ac ca	.00000164	.00000170	.0028	
access	С	r	r c	.000000209	.0000916	.019	
across	0	е	e o	.0000093	.000299	2.8	
acres	-	S	es e	.0000321	.0000318	1.0	
acres	-	S	ss s	.0000342	.0000318	1.0	

Noisy channel probability for acress

Candidate Word	Correct Letter	Error Letter	x w	P(x word)	P(word)	10 ⁹ *P(x w)P(w)		
actress	t	-	c ct	.000117	.0000231	2.7		
cress	_	а	a #	.00000144	.000000544	.00078		
caress	са	ac	ac ca	.00000164	.00000170	.0028		
access	С	r	r c	.000000209	.0000916	.019		
across	0	e	elo	.0000093	.000299	2.8		
acres	_	S	es e	.0000321	.0000318	1.0		
acres	-	S	ss s	.0000342	.0000318	1.0		

Using a bigram language model

- "a stellar and versatile acress whose combination of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile)=.000021 P(whose|actress) = .0010
- P(across|versatile) =.000021 P(whose|across) = .000006
- P("versatile actress whose") = .000021*.0010 = 210 x10⁻¹⁰
- P("versatile across whose") = .000021*.000006 = 1 x10⁻¹⁰

Using a bigram language model

- "a stellar and versatile acress whose combination of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile)=.000021 P(whose|actress) = .0010
- P(across|versatile) =.000021 P(whose|across) = .000006
- P("versatile actress whose") = .000021*.0010 = 210 x10⁻¹⁰
- P("versatile across whose") = .000021*.000006 = 1 x10⁻¹⁰

Evaluation

- Some spelling error test sets
 - Wikipedia's list of common English misspelling
 - Aspell filtered version of that list
 - Birkbeck spelling error corpus
 - <u>Peter Norvig's list of errors (includes Wikipedia and</u> <u>Birkbeck, for training or testing)</u>

Spelling Correction and the Noisy Channel

Real-Word Spelling Correction

Real-word spelling errors

- ...leaving in about fifteen *minuets* to go to her house.
- The design **an** construction of the system...
- Can they **lave** him my messages?
- The study was conducted mainly **be** John Black.
- 25-40% of spelling errors are real words Kukich 1992

Solving real-world spelling errors

- For each word in sentence
 - Generate candidate set
 - the word itself
 - all single-letter edits that are English words
 - words that are homophones
- Choose best candidates
 - Noisy channel model
 - Task-specific classifier

Noisy channel for real-word spell correction

- Given a sentence w₁, w₂, w₃,..., w_n
- Generate a set of candidates for each word w_i
 - Candidate(w₁) = {w₁, w'₁, w''₁, w'''₁,...}
 - Candidate(w₂) = {w₂, w'₂, w''₂, w''₂,...}
 - Candidate $(w_n) = \{w_n, w'_n, w''_n, w''_n, \dots\}$
- Choose the sequence W that maximizes P(W)

Noisy channel for real-word spell correction

Noisy channel for real-word spell correction

Simplification: One error per sentence

- Out of all possible sentences with one word replaced
 - w_1, w''_2, w_3, w_4 two off thew
 - w_1, w_2, w_3, w_4 two of the
 - $\mathbf{w''}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4$ too of thew
- Choose the sequence W that maximizes P(W)

Where to get the probabilities

- Language model
 - Unigram
 - Bigram
 - Etc
- Channel model
 - Same as for non-word spelling correction
 - Plus need probability for no error, P(w|w)

Probability of no error

- What is the channel probability for a correctly typed word?
- P("the" | "the")
- Obviously this depends on the application
 - .90 (1 error in 10 words)
 - .95 (1 error in 20 words)
 - .99 (1 error in 100 words)
 - .995 (1 error in 200 words)

Peter Norvig's "thew" example

Х	W	x w	P(x w)	P(w)	10 ⁹ P(x w)P(w)
thew	the	ew e	0.000007	0.02	144
thew	thew		0.95	0.0000009	90
thew	thaw	e a	0.001	0.000007	0.7
thew	threw	h hr	0.00008	0.000004	0.03
thew	thwe	ew we	0.00003	0.0000004	0.0001