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Last lecture – index construction
§ Sort-based indexing

§ Naïve in-memory inversion
§ Blocked Sort-Based Indexing

§ Merge sort is effective for disk-based sorting (avoid seeks!)

§ Single-Pass In-Memory Indexing
§ No global dictionary

§ Generate separate dictionary for each block

§ Don’t sort postings
§ Accumulate postings in postings lists as they occur

§ Distributed indexing using MapReduce
§ Dynamic indexing: Multiple indices, logarithmic merge
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Today

§ Collection statistics in more detail (with RCV1)
§ How big will the dictionary and postings be?

§ Dictionary compression
§ Postings compression

Ch. 5
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Why compression (in general)?
§ Use less disk space

§ Saves a little money

§ Keep more stuff in memory
§ Increases speed

§ Increase speed of data transfer from disk to memory
§ [read compressed data | decompress] is faster than     

[read uncompressed data]
§ Premise: Decompression algorithms are fast

§ True of the decompression algorithms we use

Ch. 5
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Why compression for inverted indexes?
§ Dictionary

§ Make it small enough to keep in main memory
§ Make it so small that you can keep some postings lists in 

main memory too
§ Postings file(s)

§ Reduce disk space needed
§ Decrease time needed to read postings lists from disk
§ Large search engines keep a significant part of the postings 

in memory.
§ Compression lets you keep more in memory

§ We will devise various IR-specific compression schemes

Ch. 5
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Recall Reuters RCV1
§ symbol statistic value
§ N documents 800,000
§ L avg. # tokens per doc 200
§ M terms (= word types) ~400,000
§ avg. # bytes per token 6

(incl. spaces/punct.)

§ avg. # bytes per token 4.5
(without spaces/punct.)

§ avg. # bytes per term 7.5
§ non-positional postings 100,000,000

Sec. 5.1
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Index parameters vs. what we index 
(details IIR Table 5.1, p.80)

size of word types (terms) non-positional
postings

positional postings

dictionary non-positional index positional index

Size 
(K)

∆% cumul 
%

Size (K) ∆ 
%

cumul 
%

Size (K) ∆ 
%

cumul 
%

Unfiltered 484 109,971 197,879
No numbers 474 -2 -2 100,680 -8 -8 179,158 -9 -9
Case folding 392 -17 -19 96,969 -3 -12 179,158 0 -9
30 stopwords 391 -0 -19 83,390 -14 -24 121,858 -31 -38
150 stopwords 391 -0 -19 67,002 -30 -39 94,517 -47 -52
stemming 322 -17 -33 63,812 -4 -42 94,517 0 -52

Exercise: give intuitions for all the ‘0’ entries. Why do some 
zero entries correspond to big deltas in other columns? 

Sec. 5.1
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Lossless vs. lossy compression
§ Lossless compression: All information is preserved.

§ What we mostly do in IR.

§ Lossy compression: Discard some information
§ Several of the preprocessing steps can be viewed as 

lossy compression: case folding, stop words, 
stemming, number elimination.

§ Chap/Lecture 7: Prune postings entries that are 
unlikely to turn up in the top k list for any query.
§ Almost no loss quality for top k list.

Sec. 5.1
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Vocabulary vs. collection size
§ How big is the term vocabulary?

§ That is, how many distinct words are there?

§ Can we assume an upper bound?
§ Not really: At least 7020 = 1037 different words of length 20

§ In practice, the vocabulary will keep growing with the 
collection size
§ Especially with Unicode J

Sec. 5.1
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Vocabulary vs. collection size
§ Heaps’ law: M = kTb

§ M is the size of the vocabulary, T is the number of 
tokens in the collection

§ Typical values: 30 ≤ k ≤ 100 and b ≈ 0.5
§ In a log-log plot of vocabulary size M vs. T, Heaps’ 

law predicts a line with slope about ½
§ It is the simplest possible relationship between the two in 

log-log space
§ An empirical finding (“empirical law”)

Sec. 5.1
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Heaps’ Law
For RCV1, the dashed line

log10M = 0.49 log10T + 1.64
is the best least squares fit.
Thus, M = 101.64T0.49 so k = 
101.64 ≈ 44 and b = 0.49.

Good empirical fit for 
Reuters RCV1 !

For first 1,000,020 tokens,
law predicts 38,323 terms;
actually, 38,365 terms

Fig 5.1 p81

Sec. 5.1
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Exercises
§ What is the effect of including spelling errors, vs. 

automatically correcting spelling errors on Heaps’ 
law?

§ Compute the vocabulary size M for this scenario:
§ Looking at a collection of web pages, you find that there 

are 3000 different terms in the first 10,000 tokens and 
30,000 different terms in the first 1,000,000 tokens.

§ Assume a search engine indexes a total of 20,000,000,000 
(2 × 1010) pages, containing 200 tokens on average

§ What is the size of the vocabulary of the indexed collection 
as predicted by Heaps’ law?

Sec. 5.1
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Zipf’s law

§ Heaps’ law gives the vocabulary size in collections.
§ We also study the relative frequencies of terms.
§ In natural language, there are a few very frequent 

terms and very many very rare terms.
§ Zipf’s law: The ith most frequent term has frequency 

proportional to 1/i .
§ cfi ∝ 1/i = K/i where K is a normalizing constant
§ cfi is collection frequency: the number of 

occurrences of the term ti in the collection.

Sec. 5.1
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Zipf consequences
§ If the most frequent term (the) occurs cf1 times 

§ then the second most frequent term (of) occurs cf1/2 times
§ the third most frequent term (and) occurs cf1/3 times … 

§ Equivalent: cfi = K/i where K is a normalizing factor, 
so
§ log cfi = log K - log i
§ Linear relationship between log cfi and log i

§ Another power law relationship

Sec. 5.1

14



COMP6714: Information Retrieval & Web Search

Zipf’s law for Reuters RCV1

15

Sec. 5.1
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Compression
§ Now, we will consider compressing the space 

for the dictionary and postings
§ Basic Boolean index only
§ No study of positional indexes, etc.
§ We will consider compression schemes

Ch. 5

16



COMP6714: Information Retrieval & Web Search

DICTIONARY COMPRESSION

Sec. 5.2
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Why compress the dictionary?
§ Search begins with the dictionary
§ We want to keep it in memory
§ Memory footprint competition with other 

applications
§ Embedded/mobile devices may have very little 

memory
§ Even if the dictionary isn’t in memory, we want it to 

be small for a fast search startup time
§ So, compressing the dictionary is important

Sec. 5.2
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Dictionary storage - first cut
§ Array of fixed-width entries

§ ~400,000 terms; 28 bytes/term = 11.2 MB.

Terms Freq. Postings ptr. 

a 656,265  

aachen 65  

…. ….  

zulu 221  
 

 

Dictionary search
structure

20 bytes 4 bytes each

Sec. 5.2
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Fixed-width terms are wasteful
§ Most of the bytes in the Term column are wasted –

we allot 20 bytes for 1 letter terms.
§ And we still can’t handle supercalifragilisticexpialidocious or 

hydrochlorofluorocarbons.

§ Written English averages ~4.5 characters/word.
§ Exercise: Why is/isn’t this the number to use for estimating 

the dictionary size?

§ Ave. dictionary word in English: ~8 characters
§ How do we use ~8 characters per dictionary term?

§ Short words dominate token counts but not type 
average.

Sec. 5.2
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Compressing the term list: 
Dictionary-as-a-String

….systilesyzygeticsyzygialsyzygyszaibelyiteszczecinszomo….

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   
 

 

Total string length =
400K x 8B = 3.2MB

Pointers resolve 3.2M
positions: log23.2M =

22bits = 3bytes

nStore dictionary as a (long) string of characters:
nPointer to next word shows end of current word
nHope to save up to 60% of dictionary space.

Sec. 5.2
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Space for dictionary as a string
§ 4 bytes per term for Freq.
§ 4 bytes per term for pointer to Postings.
§ 3 bytes per term pointer
§ Avg. 8 bytes per term in term string
§ 400K terms x 19 è 7.6 MB (against 11.2MB for fixed 

width)

Now avg. 11
bytes/term,
not 20.

Sec. 5.2
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Blocking
§ Store pointers to every kth term string.

§ Example below: k=4.

§ Need to store term lengths (1 extra byte)

….7systile9syzygetic8syzygial6syzygy11szaibelyite8szczecin9szomo….

Freq. Postings ptr. Term ptr. 

33   

29   

44   

126   

7   
 

 

Save 9 bytes
on 3
pointers.

Lose 4 bytes on
term lengths.

Sec. 5.2
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Net
§ Example for block size k = 4
§ Where we used 3 bytes/pointer without blocking

§ 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Shaved another ~0.5MB. This reduces the size of the 
dictionary from 7.6 MB to 7.1 MB.
We can save more with larger k.

Why not go with larger k?

Sec. 5.2
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Exercise
§ Estimate the space usage (and savings compared to 

7.6 MB) with blocking, for block sizes of k = 4, 8 and
16.

Sec. 5.2
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Dictionary search without blocking

§ Assuming each 
dictionary term equally 
likely in query (not really 
so in practice!), average 
number of comparisons 
= (1+2·2+4·3+4)/8 ~2.6

Sec. 5.2

Exercise: what if the frequencies 
of query terms were non-uniform 
but known, how would you 
structure the dictionary search 
tree?
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Dictionary search with blocking

§ Binary search down to 4-term block;
§ Then linear search through terms in block.

§ Blocks of 4 (binary tree), avg. = 
(1+2·2+2·3+2·4+5)/8 = 3 compares

Sec. 5.2
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Exercise
§ Estimate the impact on search performance (and 

slowdown compared to k=1) with blocking, for block 
sizes of k = 4, 8 and 16.

Sec. 5.2
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Front coding
§ Front-coding:

§ Sorted words commonly have long common prefix – store 
differences only

§ (for last k-1 in a block of k)
8automata8automate9automatic10automation

!8automat*a1!e2!ic3!ion

Encodes automat Extra length
beyond automat.

Begins to resemble general string compression.

Sec. 5.2
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Front Encoding [Witten, Moffat, Bell]

§ Complete front encoding
§ (prefix-len, suffix-len, suffix)

§ Partial 3-in-4 front encoding
§ No encoding/compression for the first string in a block
§ Enables binary search 

30

String Complete Front 
Encoding

Partial 3-in-4 Front 
Encoding

8, automata 4, 4, mata , 8, automata

8, automate 7, 1, e 7, 1, e

9, automatic 7, 2, ic 7, 2, ic

10, automation 8, 2, on 8,   , on

Assume 
previous 
string is 
“auto” 
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RCV1 dictionary compression summary

Technique Size in MB

Fixed width 11.2

Dictionary-as-String with pointers to every term 7.6

Also, blocking k = 4 7.1

Also, Blocking + front coding 5.9

Sec. 5.2
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POSTINGS COMPRESSION

Sec. 5.3
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Postings compression
§ The postings file is much larger than the dictionary, 

factor of at least 10.
§ Key desideratum: store each posting compactly.
§ A posting for our purposes is a docID.
§ For Reuters (800,000 documents), we would use 32 

bits per docID when using 4-byte integers.
§ Alternatively, we can use log2 800,000 ≈ 20 bits per 

docID.
§ Our goal: use a lot less than 20 bits per docID.

Sec. 5.3
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Postings: two conflicting forces
§ A term like arachnocentric occurs in maybe one doc 

out of a million – we would like to store this posting 
using log2 1M ~ 20 bits.

§ A term like the occurs in virtually every doc, so 20 
bits/posting is too expensive.
§ Prefer 0/1 bitmap vector in this case 

Sec. 5.3
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Postings file entry
§ We store the list of docs containing a term in 

increasing order of docID.
§ computer: 33,47,154,159,202 …

§ Consequence: it suffices to store gaps.
§ 33,14,107,5,43 …

§ Hope: most gaps can be encoded/stored with far 
fewer than 20 bits.

Sec. 5.3
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Three postings entries

Sec. 5.3
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Variable length encoding
§ Aim:

§ For arachnocentric, we will use ~20 bits/gap entry.
§ For the, we will use ~1 bit/gap entry.

§ If the average gap for a term is G, we want to use 
~log2G bits/gap entry.

§ Key challenge: encode every integer (gap) with about 
as few bits as needed for that integer.

§ This requires a variable length encoding
§ Variable length codes achieve this by using short 

codes for small numbers

Sec. 5.3
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Variable Byte (VB) codes
§ For a gap value G, we want to use close to the fewest 

bytes needed to hold log2 G bits
§ Begin with one byte to store G and dedicate 1 bit in it 

to be a continuation bit c
§ If G ≤127, binary-encode it in the 7 available bits and 

set c =1
§ Else encode G’s lower-order 7 bits and then use 

additional bytes to encode the higher order bits 
using the same algorithm

§ At the end set the continuation bit of the last byte to 
1 (c =1) – and for the other bytes c = 0.

Sec. 5.3
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Example

docIDs 824 829 215406
gaps 5 214577
VB code 00000110

10111000
10000101 00001101 

00011000 
10110001

Postings stored as the byte concatenation
000001101011100010000101000011010000110010110001

Key property: VB-encoded postings are
uniquely prefix-decodable.

For a small gap (5), VB
uses a whole byte.

Sec. 5.3
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Hex(824)=0x0338
Hex(214577)=0x00034631

0x0338 = ( 0000   0011   0011   1000 ) 
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Other variable unit codes
§ Instead of bytes, we can also use a different “unit of 

alignment”: 32 bits (words), 16 bits, 4 bits (nibbles).
§ Variable byte alignment wastes space if you have 

many small gaps – nibbles do better in such cases.
§ Variable byte codes:

§ Used by many commercial/research systems
§ Good low-tech blend of variable-length coding and 

sensitivity to computer memory alignment matches (vs. 
bit-level codes, which we look at next).

§ There is also recent work on word-aligned codes that 
pack a variable number of gaps into one word (e.g., 
simple9)

Sec. 5.3
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Simple9
§ Encodes as many gaps as possible in one DWORD 
§ 4 bit selector + 28 bit data bits

§ Encodes 9 possible ways to “use” the data bits

Sec. 5.3

44

Selector # of gaps encoded Len of each gap 
encoded

Wasted bits

0000 28 1 0

0001 14 2 0

0010 9 3 1

0011 7 4 0

0100 5 5 3

0101 4 7 0

0110 3 9 1

0111 2 14 0

1000 1 28 0
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Unary code
§ Represent n as n 1s with a final 0.
§ Unary code for 3 is 1110.
§ Unary code for 40 is

11111111111111111111111111111111111111110 .
§ Unary code for 80 is:

111111111111111111111111111111111111111111
111111111111111111111111111111111111110

§ This doesn’t look promising, but….
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Bit-Aligned Codes
§ Breaks between encoded numbers can occur after 

any bit position
§ Unary code

§ Encode k by k 1s followed by 0
§ 0 at end makes code unambiguous
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Unary and Binary Codes

§ Unary is very efficient for small numbers such as 0 
and 1, but quickly becomes very expensive
§ 1023 can be represented in 10 binary bits, but requires 

1024 bits in unary

§ Binary is more efficient for large numbers, but it may 
be ambiguous
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Elias-γ Code
§ To encode a number k, compute

§ kd is number of binary digits, encoded in unary

unary

binary

48
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Elias-δ Code
§ Elias-γ code uses no more bits than unary, many 

fewer for k > 2
§ 1023 takes 19 bits instead of 1024 bits using unary

§ In general, takes 2⎣log2k⎦+1 bits
§ To improve coding of large numbers, use Elias-δ code

§ Instead of encoding kd in unary, we encode kd + 1 using 
Elias-γ

§ Takes approximately 2 log2 log2 k + log2 k bits

49



COMP6714: Information Retrieval & Web Search

Elias-δ Code
§ Split (kd+ 1) into:

§ encode kdd in unary, kdr in binary, and kr in binary
kdr = (kd + 1)� 2blog2(kd+1)c
kdd = blog2(kd + 1)c
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Gamma code properties
§ G is encoded using 2 ⎣log G⎦ + 1 bits

§ Length of offset is ⎣log G⎦ bits
§ Length of length is ⎣log G⎦ + 1 bits

§ All gamma codes have an odd number of bits
§ Almost within a factor of 2 of best possible, log2 G

§ Gamma code is uniquely prefix-decodable, like VB
§ Gamma code can be used for any distribution
§ Gamma code is parameter-free

Sec. 5.3
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Gamma seldom used in practice
§ Machines have word boundaries – 8, 16, 32, 64 bits

§ Operations that cross word boundaries are slower

§ Compressing and manipulating at the granularity of 
bits can be slow

§ Variable byte encoding is aligned and thus potentially 
more efficient

§ Regardless of efficiency, variable byte is conceptually 
simpler at little additional space cost

Sec. 5.3
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Shannon Limit
§ Is it possible to derive codes that are optimal (under 

certain assumptions)?
§ What is the optimal average code length for a code 

that encodes each integer (gap lengths) 
independently?

§ Lower bounds on average code length: Shannon 
entropy
§ H(X) = - Σx=1

n Pr[X=x] log Pr[X=x]

§ Asymptotically optimal codes (finite alphabets): 
arithmetic coding, Huffman codes

Sec. 5.3
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RCV1 compression
Data structure Size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
with blocking, k = 4 7.1
with blocking & front coding 5.9
collection (text, xml markup etc) 3,600.0
collection (text) 960.0
Term-doc incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, g-encoded 101.0

Sec. 5.3
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Google’s Indexing Choice
§ Index shards partition by doc, multiple replicates
§ Disk-resident index

§ Use outer parts of the disk
§ Use different compression methods for different fields: 

Ricek (a special kind of Golomb code) for gaps, and Gamma 
for positions. 

§ In-memory index
§ All positions; No docid

§ Keep track of document boundaries

§ Group-variant encoding
§ Fast to decode

Sec. 5.3

56Source: Jeff Dean’s WSDM 2009 Keynote

http://research.google.com/people/jeff/WSDM09-keynote.pdf
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Other details
§ Gap = docidn- docidn-1 - 1
§ Freq = freq – 1
§ Pos_Gap = posn- posn-1 - 1

§ C.f., Jiangong Zhang, Xiaohui Long and Torsten Suel: 
Performance of Compressed Inverted List Caching in 
Search Engines. WWW 2008. 

Sec. 5.3
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Index compression summary
§ We can now create an index for highly efficient 

Boolean retrieval that is very space efficient
§ Only 4% of the total size of the collection
§ Only 10-15% of the total size of the text in the 

collection
§ However, we’ve ignored positional information
§ Hence, space savings are less for indexes used in 

practice
§ But techniques substantially the same.

Sec. 5.3
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Resources for today’s lecture
§ IIR 5
§ MG 3.3, 3.4.
§ F. Scholer, H.E. Williams and J. Zobel. 2002. 

Compression of Inverted Indexes For Fast Query 
Evaluation. Proc. ACM-SIGIR 2002.
§ Variable byte codes

§ V. N. Anh and A. Moffat. 2005. Inverted Index 
Compression Using Word-Aligned Binary Codes. 
Information Retrieval 8: 151–166.  
§ Word aligned codes

Ch. 5
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