Introduction to Information Retrieval

Lecture 7: Scoring and results assembly
Recap: tf-idf weighting

- The tf-idf weight of a term is the product of its tf weight and its idf weight.

\[w_{t,d} = (1 + \log \text{tf}_{t,d}) \times \log_{10}(N / \text{df}_t) \]

- Best known weighting scheme in information retrieval
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection
Recap: Queries as vectors

- **Key idea 1**: Do the same for queries: represent them as vectors in the space
- **Key idea 2**: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
Recap: \(\cos(\vec{q}, \vec{d}) \)

\[
\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{V} q_i d_i}{\sqrt{\sum_{i=1}^{V} q_i^2} \sqrt{\sum_{i=1}^{V} d_i^2}}
\]

\(\cos(\vec{q}, \vec{d}) \) is the cosine similarity of \(\vec{q} \) and \(\vec{d} \) ... or, equivalently, the cosine of the angle between \(\vec{q} \) and \(\vec{d} \).
This lecture

- Speeding up vector space ranking
- **Putting together a complete search system**
 - Will require learning about a number of miscellaneous topics and heuristics

Question: Why don’t we just use the query processing methods for Boolean queries?
Computing cosine scores

\textbf{CosineScore}(q)

1. \texttt{float Scores[N] = 0}
2. \texttt{float Length[N]}
3. \texttt{for each query term t}
4. \texttt{do calculate } w_{t,q} \texttt{ and fetch postings list for t}
5. \hspace{1em} \texttt{for each pair}(d, tf_{t,d}) \texttt{ in postings list}
6. \hspace{2em} \texttt{do } Scores[d] + = w_{t,d} \times w_{t,q}
7. \texttt{Read the array Length}
8. \texttt{for each d}
9. \texttt{do } Scores[d] = Scores[d] / Length[d]
10. \texttt{return Top K components of Scores[]}
Efficient cosine ranking

- Find the K docs in the collection “nearest” to the query $\Rightarrow K$ largest query-doc cosines.

Efficient ranking:
- Computing a single cosine efficiently.
- Choosing the K largest cosine values efficiently.
 - Can we do this without computing all N cosines?
Efficient cosine ranking

- What we’re doing in effect: solving the K-nearest neighbor problem for a query vector
- In general, we do not know how to do this efficiently for high-dimensional spaces
- But it is solvable for short queries, and standard indexes support this well
Special case – unweighted queries

- No weighting on query terms
 - Assume each query term occurs only once
- Then for ranking, don’t need to normalize query vector
 - Slight simplification of algorithm from Lecture 6
Faster cosine: unweighted query

```
FastCosineScore(q)
1  float Scores[N] = 0
2  for each d
3    do Initialize Length[d] to the length of doc d
4  for each query term t
5    do calculate wt,q and fetch postings list for t
6      for each pair(d, tf_t,d) in postings list
7        do add \[wf_{t,d}\] to Scores[d]
8  Read the array Length[d]
9  for each d
10    do Divide Scores[d] by Length[d]
11   return Top K components of Scores[]
```

Figure 7.1 A faster algorithm for vector space scores.
Computing the K largest cosines: selection vs. sorting

- Typically we want to retrieve the top K docs (in the cosine ranking for the query)
 - not to totally order all docs in the collection
- Can we pick off docs with K highest cosines?
- Let n of docs with nonzero cosines
 - We seek the K best of these n
Use heap for selecting top $K/1$

- **Max-heap:**
 - Binary tree in which each node’s value > the values of children
 - Takes $2n$ operations to construct, then each of K “winners” read off in $2\log n$ steps
- Total time is $O(n + K\log(n))$; space complexity is $O(n)$
- For $n=1M$, $K=100$, this is about 10% of the cost of sorting.

[Diagram of a binary heap]

http://en.wikipedia.org/wiki/Binary_heap
Use heap for selecting top $K/2$

- What about using a min-heap?
- Use the min-heap to maintain the top k scores so far.
- For each new score, s, scanned:
 - H.push (s)
 - H.pop()
- Total time is $O(n \cdot \log(k) + k \cdot \log(k))$; space complexity is $O(k)$

http://en.wikipedia.org/wiki/Binary_heap
Quick Select

- QuickSelect is similar to QuickSort to find the top-K elements from an array
 - Takes $O(n)$ time (in expectation)
- Sorting the top-K items takes $O(K \cdot \log(K))$ time
- Total time is $O(n + K \cdot \log(K))$
Query Processing

- **Document-at-a-time**
 - Calculates complete scores for documents by processing all term lists, one document at a time

- **Term-at-a-time**
 - Accumulates scores for documents by processing term lists one at a time

- Both approaches have optimization techniques that significantly reduce time required to generate scores
 - Distinguish between safe and heuristic optimizations
Document-At-A-Time

<table>
<thead>
<tr>
<th></th>
<th>salt</th>
<th>water</th>
<th>tropical</th>
<th>score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:1</td>
<td>2:1</td>
<td>3:1</td>
<td>4:2</td>
</tr>
<tr>
<td>4</td>
<td>1:1</td>
<td>2:1</td>
<td>3:1</td>
<td>4:1</td>
</tr>
<tr>
<td>2</td>
<td>2:1</td>
<td>3:1</td>
<td>1:4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2:2</td>
<td>1:4</td>
<td>2:3</td>
<td></td>
</tr>
</tbody>
</table>

COMP6714: Information Retrieval & Web Search
Document-At-A-Time

\begin{itemize}
\item \textbf{procedure} \textsc{DocumentAtATimeRetrieval}(Q, I, f, g, k)
\item \hspace{1cm} $L \leftarrow \text{Array}()$
\item \hspace{1cm} $R \leftarrow \text{PriorityQueue}(k)$
\item \hspace{1cm} \textbf{for all} terms w_i in Q \textbf{do}
\item \hspace{2cm} $l_i \leftarrow \text{InvertedList}(w_i, I)$
\item \hspace{2cm} $L.\text{add}(l_i)$
\item \hspace{1cm} \textbf{end for}
\item \hspace{1cm} \textbf{for all} documents $d \in I$ \textbf{do}
\item \hspace{2cm} \textbf{for all} inverted lists l_i in L \textbf{do}
\item \hspace{3cm} \textbf{if} l_i points to d \textbf{then}
\item \hspace{4cm} $s_D \leftarrow s_D + g_i(Q)f_i(l_i)$
\item \hspace{4cm} $l_i.\text{movePastDocument}(d)$
\item \hspace{3cm} \textbf{end if}
\item \hspace{2cm} \textbf{end for}
\item \hspace{2cm} $R.\text{add}(s_D, D)$
\item \hspace{1cm} \textbf{end for}
\item \hspace{1cm} \textbf{return} the top k results from R
\item \hspace{1cm} \textbf{end procedure}
\end{itemize}
Term-At-A-Time

salt

partial scores

old partial scores

water

new partial scores

old partial scores

tropical

final scores
Term-At-A-Time

procedure TermAtATimeRetrieval(Q, I, f, g k)
 A ← HashTable()
 L ← Array()
 R ← PriorityQueue(k)
 for all terms \(w_i \) in \(Q \) do
 \(l_i \) ← InvertedList\(w_i, I \)
 \(L.\text{add}(l_i) \)
 end for
 for all lists \(l_i \) ∈ \(L \) do
 while \(l_i \) is not finished do
 \(d \) ← \(l_i.\text{getCurrentDocument()} \)
 \(A_d \) ← \(A_d + g(Q)f(l_i) \)
 \(l_i.\text{moveToNextDocument()} \)
 end while
 end for
 for all accumulators \(A_d \) in \(A \) do
 \(s_D \) ← \(A_d \) \hspace{1cm} \text{Accumulator contains the document score}
 \(R.\text{add}(s_D, D) \)
 end for
 return the top \(k \) results from \(R \)
end procedure
Optimization Techniques

- Term-at-a-time uses more memory for accumulators, but accesses disk more efficiently
- Two classes of optimization
 - Read less data from inverted lists
 - e.g., skip lists
 - better for simple feature functions
 - Calculate scores for fewer documents
 - e.g., conjunctive processing
 - better for complex feature functions
Conjunctive Processing

- Requires the result document containing all the query terms (i.e., conjunctive Boolean queries)
 - More efficient
 - Can also be more effective for short queries
 - Default for many search engines

- Can be combined with both DAAT and TAAT (see pseudocodes next)
1: procedure TERMATAATIMERTRIEVAL(Q, I, f, g, k)
2: $A \leftarrow \text{Map}()$
3: $L \leftarrow \text{Array}()$
4: $R \leftarrow \text{PriorityQueue}(k)$
5: for all terms w_i in Q do
6: $l_i \leftarrow \text{InvertedList}(w_i, I)$
7: $L.$add(l_i)
8: end for
9: for all lists $l_i \in L$ do
10: $d_0 \leftarrow -1$
11: while l_i is not finished do
12: if $i = 0$ then
13: $d \leftarrow l_i.$getCurrentDocument()
14: $A_d \leftarrow A_d + g_i(Q)f(l_i)$
15: $l_i.$moveToNextDocument()
16: else
17: $d \leftarrow l_i.$getCurrentDocument()
18: $d' \leftarrow A.$getNextAccumulator(d)
19: $A.$removeAccumulatorsBetween(d_0, d')
20: if $d = d'$ then
21: $A_d \leftarrow A_d + g_i(Q)f(l_i)$
22: $l_i.$moveToNextDocument()
23: else
24: $l_i.$skipForwardToDocument(d')
25: end if
26: $d_0 \leftarrow d'$
27: end while
28: end for
29: for all accumulators A_d in A do
30: $s_d \leftarrow A_d$ \hspace{1cm}\triangleright Accumulator contains the document score
31: end for
32: $R.$add(s_d, d)
33: end for
34: return the top k results from R
35: end procedure

Fig. 5.20. A term-at-a-time retrieval algorithm with conjunctive processing
1: \begin{algorithmic}
2: \STATE procedure DocumentAtATimeRetrieval(Q, I, f, g, k)
3: \STATE \hspace{1em} \textbf{let} \textit{L} \leftarrow \text{Array()}
4: \STATE \hspace{1em} \textbf{let} \textit{R} \leftarrow \text{PriorityQueue(k)}
5: \STATE \hspace{1em} \textbf{for all} \textit{terms} \textit{w}_i \textbf{in} \textit{Q} \textbf{do}
6: \STATE \hspace{2em} \textit{l}_i \leftarrow \text{InvertedList}(w_i, I)
7: \STATE \hspace{2em} \textit{L}.add(\textit{l}_i)
8: \STATE \hspace{1em} \textbf{end for}
9: \STATE \hspace{1em} \textit{d} \leftarrow -1
10: \STATE \hspace{1em} \textbf{while} \text{all lists in} \textit{L} \text{are not finished} \textbf{do}
11: \STATE \hspace{2em} \textit{s}_d \leftarrow 0
12: \STATE \hspace{2em} \textbf{for all} \textit{inverted lists} \textit{l}_i \textbf{in} \textit{L} \textbf{do}
13: \STATE \hspace{3em} \textbf{if} \textit{l}_i\text{.getCurrentDocument()} > \textit{d} \textbf{then}
14: \STATE \hspace{4em} \textit{d} \leftarrow \textit{l}_i\text{.getCurrentDocument()}
15: \STATE \hspace{3em} \textbf{end if}
16: \STATE \hspace{2em} \textbf{end for}
17: \STATE \hspace{2em} \textbf{for all} \textit{inverted lists} \textit{l}_i \textbf{in} \textit{L} \textbf{do}
18: \STATE \hspace{3em} \textit{l}_i\text{.skipForwardToDocument(}d\text{)}
19: \STATE \hspace{3em} \textbf{if} \textit{l}_i\text{.getCurrentDocument()} = \textit{d} \textbf{then}
20: \STATE \hspace{4em} \textit{s}_d \leftarrow \textit{s}_d + g_i(Q)f_i(l_i) \hspace{1em} \triangleright \text{Update the document score}
21: \STATE \hspace{4em} \textit{l}_i\text{.movePastDocument(}d\text{)}
22: \STATE \hspace{3em} \textbf{else}
23: \STATE \hspace{4em} \textit{d} \leftarrow -1
24: \STATE \hspace{4em} \textbf{break}
25: \STATE \hspace{4em} \textbf{end if}
26: \STATE \hspace{3em} \textbf{end for}
27: \STATE \hspace{2em} \textbf{if} \textit{d} > -1 \textbf{then} \textit{R}.add(\textit{s}_d, \textit{d})
28: \STATE \hspace{1em} \textbf{end if}
29: \STATE \hspace{1em} \textbf{end while}
30: \STATE \hspace{1em} \textbf{return} \text{the top} \textit{k} \text{results from} \textit{R}
31: \end{algorithmic}

Fig. 5.21. A document-at-a-time retrieval algorithm with conjunctive processing
Threshold Methods

- Threshold methods use number of top-ranked documents needed \((k)\) to optimize query processing
 - for most applications, \(k\) is small
- For any query, there is a *minimum score* that each document needs to reach before it can be shown to the user
 - score of the \(k\)th-highest scoring document
 - gives *threshold* \(\tau\)
 - optimization methods estimate \(\tau'\) to ignore documents
Threshold Methods

- For document-at-a-time processing, use score of lowest-ranked document so far for τ'
 - for term-at-a-time, have to use k_{th}-largest score in the accumulator table
- *MaxScore* method compares the maximum score that remaining documents could have to τ'
 - *safe* optimization in that ranking will be the same without optimization
MaxScore Example

- Compute max term scores, μ_t, of each list and sort them in decreasing order (fixed during query processing)

- Assume $k = 3$, τ' is lowest score of the current top-k documents

- If $\mu_{\text{tree}} < \tau'$ ➔ any doc that scores higher than τ' must contains at least one of the first two keywords (aka required term set)
 - Use postings lists of required term set to “drive” the query processing
 - Will only check some of the white postings in the list of “tree” to compute score ➔ at least all gray postings are skipped.

Better than the example in the textbook. See my Note 2 too.
MaxScore

xyz

eucalyptus

tree
Other Approaches

- Early termination of query processing
 - ignore high-frequency word lists in term-at-a-time
 - ignore documents at end of lists in doc-at-a-time
 - *unsafe* optimization

- List ordering
 - order inverted lists by quality metric (e.g., PageRank) or by partial score
 - makes unsafe (and fast) optimizations more likely to produce good documents
Bottlenecks

- Primary computational bottleneck in scoring: cosine computation
- Can we avoid all this computation?
- Yes, but may sometimes get it wrong
 - a doc *not* in the top K may creep into the list of K output docs
 - Is this such a bad thing?
Cosine similarity is only a proxy

- **Justifications**
 - User has a task and a query formulation
 - Cosine matches docs to query
 - Thus cosine is anyway a proxy for user happiness

- **Approximate query processing**
 - If we get a list of K docs “close” to the top K by cosine measure, should be ok
Generic approach

- Find a set A of *contenders*, with $K < |A| << N$
 - A does not necessarily contain the top K, but has many docs from among the top K
 - Return the top K docs in A
- Think of A as *pruning* non-contenders
- The same approach is also used for other (non-cosine) scoring functions
- Will look at several schemes following this approach
Index elimination

- Basic algorithm FastCosineScore of Fig 7.1 only considers docs containing at least one query term
- Take this further:
 - Only consider high-idf query terms
 - Only consider docs containing many query terms
High-idf query terms only

- For a query such as *catcher in the rye*
- Only accumulate scores from *catcher* and *rye*
- Intuition: *in* and *the* contribute little to the scores and so don’t alter rank-ordering much
- Benefit:
 - Postings of low-idf terms have many docs → these (many) docs get eliminated from set A of contenders
Docs containing many query terms

- Any doc with at least one query term is a candidate for the top K output list
- For multi-term queries, only compute scores for docs containing several of the query terms
 - Say, at least 3 out of 4
 - Imposes a “soft conjunction” on queries seen on web search engines (early Google)
- Easy to implement in postings traversal
3 of 4 query terms

- **Antony**: 3, 4, 8, 16, 32, 64, 128
- **Brutus**: 2, 4, 8, 16, 32, 64, 128
- **Caesar**: 1, 2, 3, 5, 8, 13, 21, 34
- **Calpurnia**: 13, 16, 32

Scores only computed for docs 8, 16, and 32.

Can generalize to WAND method (safe)
Champion lists

- Precompute for each dictionary term t, the r docs of highest weight in t’s postings
 - Call this the champion list for t
 - (aka fancy list or top docs for t)

- Note that r has to be chosen at index build time
 - Thus, it’s possible that $r < K$

- At query time, only compute scores for docs in $A = \bigcup_{t \in Q} \text{ChampionList}(t)$
 - Pick the K top-scoring docs from amongst these

Inspired by “fancy lists” of Google:
http://infolab.stanford.edu/~backrub/google.html
Exercises

- How do Champion Lists relate to Index Elimination? Can they be used together?
- How can Champion Lists be implemented in an inverted index?
 - Note that the champion list has nothing to do with small docIDs
Static quality scores

- We want top-ranking documents to be both relevant and authoritative
- Relevance is being modeled by cosine scores
- Authority is typically a query-independent property of a document
- Examples of authority signals
 - Wikipedia among websites
 - Articles in certain newspapers
 - A paper with many citations
 - Many diggs, Y!buzzes or del.icio.us marks
 - (Pagerank)
Modeling authority

- Assign to each document a *query-independent* quality score in [0,1] to each document \(d\)
 - Denote this by \(g(d)\)
- Thus, a quantity like the number of citations is scaled into [0,1]
 - Exercise: suggest a formula for this.
Net score

- Consider a simple total score combining cosine relevance and authority
 \[\text{net-score}(q,d) = g(d) + \cosine(q,d) \]
 - Can use some other linear combination than an equal weighting
 - Indeed, any function of the two “signals” of user happiness – more later
- Now we seek the top \(K \) docs by net score
Top K by net score – fast methods

- **First idea:** Order all postings by $g(d)$
- **Key:** this is a **common** ordering for all postings
- Thus, can concurrently traverse query terms’ postings for
 - Postings intersection
 - Cosine score computation
- **Exercise:** write pseudocode for cosine score computation if postings are ordered by $g(d)$
Why order postings by $g(d)$?

- Under $g(d)$-ordering, top-scoring docs likely to appear early in postings traversal
- In time-bound applications (say, we have to return whatever search results we can in 50 ms), this allows us to stop postings traversal early
 - Short of computing scores for all docs in postings
Champion lists in $g(d)$-ordering

- Can combine champion lists with $g(d)$-ordering
- Maintain for each term a champion list of the r docs with highest $g(d) + \text{tf-idf}_{td}$
- Seek top-K results from only the docs in these champion lists
For each term, we maintain two postings lists called high and low
- Think of high as the champion list
- When traversing postings on a query, only traverse all the high lists first
 - If we get more than K docs, select the top K and stop
 - Only union the high lists
 - Else proceed to get docs from the low lists
- Can be used even for simple cosine scores, without global quality $g(d)$
- A means for segmenting index into two tiers
Impact-ordered postings

- We only want to compute scores for docs for which $wf_{t,d}$ is high enough
- We sort each postings list by $wf_{t,d}$
- Now: not all postings in a common order!
- How do we compute scores in order to pick off top K?
 - Two ideas follow
1. Early termination

- When traversing t’s postings, stop early after either
 - a fixed number of r docs
 - $wf_{t,d}$ drops below some threshold
- Take the union of the resulting sets of docs
 - One from the postings of each query term
- Compute only the scores for docs in this union
2. idf-ordered terms

- When considering the postings of query terms
- Look at them in order of decreasing idf
 - High idf terms likely to contribute most to score
- As we update score contribution from each query term
 - Stop if doc scores relatively unchanged
- Can apply to cosine or some other net scores
Cluster pruning: preprocessing

- Pick \sqrt{N} docs at random: call these leaders
- For every other doc, pre-compute nearest leader
 - Docs attached to a leader: its followers;
 - Likely: each leader has $\sim \sqrt{N}$ followers.
Cluster pruning: query processing

- Process a query as follows:
 - Given query Q, find its nearest leader L.
 - Seek K nearest docs from among L’s followers.
Visualization

- **Leader**
- **Follower**

Query
Why use random sampling

- Fast
- Leaders reflect data distribution
General variants

- Have each follower attached to $b_1=3$ (say) nearest leaders.
- From query, find $b_2=4$ (say) nearest leaders and their followers.
- Can recur on leader/follower construction.
Exercises

- To find the nearest leader in step 1, how many cosine computations do we do?
 - Why did we have \sqrt{N} in the first place?
 - Hint: write down the algorithm, model its cost, and minimize the cost.

- What is the effect of the constants b_1, b_2 on the previous slide?

- Devise an example where this is likely to fail — i.e., we miss one of the K nearest docs.
 - Likely under random sampling.
Parametric and zone indexes

- Thus far, a doc has been a sequence of terms

- In fact documents have multiple parts, some with special semantics:
 - Author
 - Title
 - Date of publication
 - Language
 - Format
 - etc.

- These constitute the metadata about a document
Fields

- We sometimes wish to search by these metadata
 - E.g., find docs authored by William Shakespeare in the year 1601, containing *alas poor Yorick*
- Year = 1601 is an example of a **field**
- Also, author last name = shakespeare, etc
- Field or parametric index: postings for each field value
 - Sometimes build range trees (e.g., for dates)
- Field query typically treated as conjunction
 - (doc **must** be authored by shakespeare)
Zone

- **Zone** is a region of the doc that can contain an arbitrary amount of text e.g.,
 - Title
 - Abstract
 - References ...

- Build inverted indexes on zones as well to permit querying

- E.g., “find docs with *merchant* in the title zone and matching the query *gentle rain*”
Example zone indexes

Encode zones in dictionary vs. postings.
Tiered indexes

- Break postings up into a hierarchy of lists
 - Most important
 - ...
 - Least important
- Can be done by $g(d)$ or another measure
- Inverted index thus broken up into tiers of decreasing importance
- At query time use top tier unless it fails to yield K docs
 - If so drop to lower tiers
Example tiered index

Tier 1
- auto → Doc2
- best
- car → Doc1 → Doc3
- insurance → Doc2 → Doc3

Tier 2
- auto
- best → Doc1 → Doc3
- car
- insurance

Tier 3
- auto → Doc1
- best
- car → Doc2
- insurance
Query term proximity

- **Free text queries**: just a set of terms typed into the query box – common on the web
- Users prefer docs in which query terms occur within close proximity of each other
- Let w be the smallest window in a doc containing all query terms, e.g.,
- For the query *strained mercy* the smallest window in the doc *The quality of mercy is not strained* is 4 (words)
- Would like scoring function to take this into account – how?
Query parsers

- Free text query from user may in fact spawn one or more queries to the indexes, e.g. query *rising interest rates*
 - Run the query as a phrase query
 - If <\(K\) docs contain the phrase *rising interest rates*, run the two phrase queries *rising interest* and *interest rates*
 - If we still have <\(K\) docs, run the vector space query *rising interest rates*
 - Rank matching docs by vector space scoring

This sequence is issued by a query parser
Aggregate scores

- We’ve seen that score functions can combine cosine, static quality, proximity, etc.
- How do we know the best combination?
- Some applications – expert-tuned
- Increasingly common: machine-learned
Putting it all together

- Parsing
- Linguistics
- Indexers
- Free text query parser
- Spell correction
- Scoring and ranking
- Scoring parameters
- MLR
- Document cache
- Metadata in zone and field indexes
- Inexact top K retrieval
- Tiered inverted positional index
- k-gram
- User query
- Results page
- Training set
Resources

- IIR 7, 6.1