
COMP6714: Information Retrieval & Web Search

Introduction to

Information Retrieval

Lecture 7: Scoring and results assembly

1

COMP6714: Information Retrieval & Web Search

Recap: tf-idf weighting

§ The tf-idf weight of a term is the product of its tf
weight and its idf weight.

§ Best known weighting scheme in information retrieval
§ Increases with the number of occurrences within a

document
§ Increases with the rarity of the term in the collection

)df/(log)tflog1(w 10,, tdt N
dt

´+=

Ch. 6

2

COMP6714: Information Retrieval & Web Search

Recap: Queries as vectors
§ Key idea 1: Do the same for queries: represent them

as vectors in the space
§ Key idea 2: Rank documents according to their

proximity to the query in this space
§ proximity = similarity of vectors

Ch. 6

3

COMP6714: Information Retrieval & Web Search

Recap: cosine(query,document)

åå
å

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(!

!

!

!

!!

!!!!

Dot product Unit vectors

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Ch. 6

4

COMP6714: Information Retrieval & Web Search

This lecture

§ Speeding up vector space ranking
§ Putting together a complete search

system
§ Will require learning about a number of

miscellaneous topics and heuristics

Ch. 7

5

Question: Why don’t we just use the query
processing methods for Boolean queries?

COMP6714: Information Retrieval & Web Search

Computing cosine scores

Sec. 6.3.3

6

Term-at-a-time

COMP6714: Information Retrieval & Web Search

Efficient cosine ranking
§ Find the K docs in the collection “nearest” to the

query Þ K largest query-doc cosines.
§ Efficient ranking:

§ Computing a single cosine efficiently.
§ Choosing the K largest cosine values efficiently.

§ Can we do this without computing all N cosines?

Sec. 7.1

7

COMP6714: Information Retrieval & Web Search

Efficient cosine ranking
§ What we’re doing in effect: solving the K-nearest

neighbor problem for a query vector
§ In general, we do not know how to do this efficiently

for high-dimensional spaces
§ But it is solvable for short queries, and standard

indexes support this well

Sec. 7.1

8

Curse of dimensionality

COMP6714: Information Retrieval & Web Search

Special case – unweighted queries
§ No weighting on query terms

§ Assume each query term occurs only once
§ Then for ranking, don’t need to normalize query

vector
§ Slight simplification of algorithm from Lecture 6

Sec. 7.1

9

COMP6714: Information Retrieval & Web Search

Faster cosine: unweighted query

Sec. 7.1

10

COMP6714: Information Retrieval & Web Search

Computing the K largest cosines:
selection vs. sorting
§ Typically we want to retrieve the top K docs (in the

cosine ranking for the query)
§ not to totally order all docs in the collection

§ Can we pick off docs with K highest cosines?
§ Let n of docs with nonzero cosines

§ We seek the K best of these n

Sec. 7.1

11

COMP6714: Information Retrieval & Web Search

Use heap for selecting top K /1
§ Max-heap:

§ Binary tree in which each node’s value > the values of children

§ Takes 2n operations to construct, then each of K “winners”
read off in 2log n steps

§ Total time is O(n + K*log(n)); space complexityis O(n)
§ For n=1M, K=100, this is about 10% of the cost of sorting.

1

.9 .3

.8.3

.1

.1

Sec. 7.1

12

http://en.wikipedia.org/wiki/Binary_heap

COMP6714: Information Retrieval & Web Search

Use heap for selecting top K /2
§ What about using a min-heap?
§ Use the min-heap to maintain the top k scores so far.
§ For each new score, s, scanned:

§ H.push (s)
§ H.pop()

§ Total time is O(n*log(k) + k*log(k)); space complexityis O(k)

.1

.3 .1

.9.8

1

.3

Sec. 7.1

13

http://en.wikipedia.org/wiki/Binary_heap

COMP6714: Information Retrieval & Web Search

Quick Select
§ QuickSelect is similar to QuickSort to find the top-K

elements from an array
§ Takes O(n) time (in expectation)

§ Sorting the top-K items takes O(K*log(K)) time
§ Total time is O(n + K*log(K))

14

http://en.wikipedia.org/wiki/Quickselect

COMP6714: Information Retrieval & Web Search

Query Processing
§ Document-at-a-time

§ Calculates complete scores for documents by processing all
term lists, one document at a time

§ Term-at-a-time
§ Accumulates scores for documents by processing term lists

one at a time

§ Both approaches have optimization techniques that
significantly reduce time required to generate scores
§ Distinguish between safe and heuristic optimizations

[CMS09].begin

COMP6714: Information Retrieval & Web Search

Document-At-A-Time

COMP6714: Information Retrieval & Web Search

Document-At-A-Time

COMP6714: Information Retrieval & Web Search

Term-At-A-Time

3:1

COMP6714: Information Retrieval & Web Search

Term-At-A-Time
// accumulators

// Ad contains partial score

COMP6714: Information Retrieval & Web Search

Optimization Techniques
§ Term-at-a-time uses more memory for accumulators,

but accesses disk more efficiently
§ Two classes of optimization

§ Read less data from inverted lists
§ e.g., skip lists
§ better for simple feature functions

§ Calculate scores for fewer documents
§ e.g., conjunctive processing
§ better for complex feature functions

COMP6714: Information Retrieval & Web Search

Conjunctive Processing
§ Requires the result document containing all the

query terms (i.e., conjunctive Boolean queries)
§ More efficient
§ Can also be more effective for short queries
§ Default for many search engines

§ Can be combined with both DAAT and TAAT (see
pseudocodes next)

21

COMP6714: Information Retrieval & Web Search

Conjunctive
Term-at-a-Time

COMP6714: Information Retrieval & Web Search

Conjunctive
Document-
at-a-Time

COMP6714: Information Retrieval & Web Search

Threshold Methods
§ Threshold methods use number of top-ranked

documents needed (k) to optimize query processing
§ for most applications, k is small

§ For any query, there is a minimum score that each
document needs to reach before it can be shown to
the user
§ score of the kth-highest scoring document
§ gives threshold τ
§ optimization methods estimate τʹ to ignore documents

COMP6714: Information Retrieval & Web Search

Threshold Methods
§ For document-at-a-time processing, use score of

lowest-ranked document so far for τʹ
§ for term-at-a-time, have to use kth-largest score in the

accumulator table

§ MaxScore method compares the maximum score
that remaining documents could have to τʹ
§ safe optimization in that ranking will be the same without

optimization

COMP6714: Information Retrieval & Web Search

MaxScore Example

§ Compute max term scores, μt, of each list and sort
them in decreasing order (fixed during query
processing)

§ Assume k =3, τʹ is lowest score of the current top-k documents
§ If μtree < τ ʹ è any doc that scores higher than τ’ must contains

at least one of the first two keywords (aka required term set)
§ Use postings lists of required term set to “drive” the query processing
§ Will only check some of the white postings in the list of “tree” to

compute score è at least all gray postings are skipped.

xyz

Better than the example in the
textbook. See my Note 2 too.

COMP6714: Information Retrieval & Web Search

MaxScore

27

xyz

COMP6714: Information Retrieval & Web Search

Other Approaches
§ Early termination of query processing

§ ignore high-frequency word lists in term-at-a-time
§ ignore documents at end of lists in doc-at-a-time
§ unsafe optimization

§ List ordering
§ order inverted lists by quality metric (e.g., PageRank) or by

partial score
§ makes unsafe (and fast) optimizations more likely to

produce good documents

[CMS09].end

COMP6714: Information Retrieval & Web Search

Bottlenecks
§ Primary computational bottleneck in scoring: cosine

computation
§ Can we avoid all this computation?
§ Yes, but may sometimes get it wrong

§ a doc not in the top K may creep into the list of K
output docs

§ Is this such a bad thing?

Sec. 7.1.1

29

COMP6714: Information Retrieval & Web Search

Cosine similarity is only a proxy
§ Justifications

§ User has a task and a query formulation
§ Cosine matches docs to query
§ Thus cosine is anyway a proxy for user happiness

§ Approximate query processing
§ If we get a list of K docs “close” to the top K by cosine

measure, should be ok

Sec. 7.1.1

30

COMP6714: Information Retrieval & Web Search

Generic approach
§ Find a set A of contenders, with K < |A| << N

§ A does not necessarily contain the top K, but has
many docs from among the top K

§ Return the top K docs in A
§ Think of A as pruning non-contenders
§ The same approach is also used for other (non-

cosine) scoring functions
§ Will look at several schemes following this approach

Sec. 7.1.1

31

COMP6714: Information Retrieval & Web Search

Index elimination
§ Basic algorithm FastCosineScore of Fig 7.1 only

considers docs containing at least one query term
§ Take this further:

§ Only consider high-idf query terms
§ Only consider docs containing many query terms

Sec. 7.1.2

32

COMP6714: Information Retrieval & Web Search

High-idf query terms only
§ For a query such as catcher in the rye
§ Only accumulate scores from catcher and rye
§ Intuition: in and the contribute little to the scores

and so don’t alter rank-ordering much
§ Benefit:

§ Postings of low-idf terms have many docs ® these (many)
docs get eliminated from set A of contenders

Sec. 7.1.2

33

COMP6714: Information Retrieval & Web Search

Docs containing many query terms
§ Any doc with at least one query term is a candidate

for the top K output list
§ For multi-term queries, only compute scores for docs

containing several of the query terms
§ Say, at least 3 out of 4
§ Imposes a “soft conjunction” on queries seen on web

search engines (early Google)

§ Easy to implement in postings traversal

Sec. 7.1.2

34

COMP6714: Information Retrieval & Web Search

3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2

35

Can generalize to WAND method (safe)

COMP6714: Information Retrieval & Web Search

Champion lists
§ Precompute for each dictionary term t, the r docs of

highest weight in t’s postings
§ Call this the champion list for t
§ (aka fancy list or top docs for t)

§ Note that r has to be chosen at index build time
§ Thus, it’s possible that r < K

§ At query time, only compute scores for docs in A =
∪t∈Q ChampionList(t)
§ Pick the K top-scoring docs from amongst these

Sec. 7.1.3

36

Inspired by “fancy lists” of Google:
http://infolab.stanford.edu/~backrub/google.html

COMP6714: Information Retrieval & Web Search

Exercises
§ How do Champion Lists relate to Index Elimination?

Can they be used together?
§ How can Champion Lists be implemented in an

inverted index?
§ Note that the champion list has nothing to do with small

docIDs

Sec. 7.1.3

37

COMP6714: Information Retrieval & Web Search

Quantitative

Static quality scores
§ We want top-ranking documents to be both relevant

and authoritative
§ Relevance is being modeled by cosine scores
§ Authority is typically a query-independent property

of a document
§ Examples of authority signals

§ Wikipedia among websites
§ Articles in certain newspapers
§ A paper with many citations
§ Many diggs, Y!buzzes or del.icio.us marks
§ (Pagerank)

Sec. 7.1.4

38

COMP6714: Information Retrieval & Web Search

Modeling authority
§ Assign to each document a query-independent

quality score in [0,1] to each document d
§ Denote this by g(d)

§ Thus, a quantity like the number of citations is scaled
into [0,1]
§ Exercise: suggest a formula for this.

Sec. 7.1.4

39

COMP6714: Information Retrieval & Web Search

Net score
§ Consider a simple total score combining cosine

relevance and authority
§ net-score(q,d) = g(d) + cosine(q,d)

§ Can use some other linear combination than an equal
weighting

§ Indeed, any function of the two “signals” of user happiness
– more later

§ Now we seek the top K docs by net score

Sec. 7.1.4

40

COMP6714: Information Retrieval & Web Search

Top K by net score – fast methods
§ First idea: Order all postings by g(d)
§ Key: this is a common ordering for all postings
§ Thus, can concurrently traverse query terms’

postings for
§ Postings intersection
§ Cosine score computation

§ Exercise: write pseudocode for cosine score
computation if postings are ordered by g(d)

Sec. 7.1.4

41

COMP6714: Information Retrieval & Web Search

Why order postings by g(d)?
§ Under g(d)-ordering, top-scoring docs likely to

appear early in postings traversal
§ In time-bound applications (say, we have to return

whatever search results we can in 50 ms), this allows
us to stop postings traversal early
§ Short of computing scores for all docs in postings

Sec. 7.1.4

42

COMP6714: Information Retrieval & Web Search

Champion lists in g(d)-ordering
§ Can combine champion lists with g(d)-ordering
§ Maintain for each term a champion list of the r docs

with highest g(d) + tf-idftd
§ Seek top-K results from only the docs in these

champion lists

Sec. 7.1.4

43

COMP6714: Information Retrieval & Web Search

High and low lists
§ For each term, we maintain two postings lists called

high and low
§ Think of high as the champion list

§ When traversing postings on a query, only traverse all
the high lists first
§ If we get more than K docs, select the top K and stop

§ Only union the high lists

§ Else proceed to get docs from the low lists

§ Can be used even for simple cosine scores, without
global quality g(d)

§ A means for segmenting index into two tiers

Sec. 7.1.4

44

COMP6714: Information Retrieval & Web Search

Impact-ordered postings
§ We only want to compute scores for docs for which

wft,d is high enough
§ We sort each postings list by wft,d
§ Now: not all postings in a common order!
§ How do we compute scores in order to pick off top K?

§ Two ideas follow

Sec. 7.1.5

45

COMP6714: Information Retrieval & Web Search

1. Early termination
§ When traversing t’s postings, stop early after either

§ a fixed number of r docs
§ wft,d drops below some threshold

§ Take the union of the resulting sets of docs
§ One from the postings of each query term

§ Compute only the scores for docs in this union

Sec. 7.1.5

46

COMP6714: Information Retrieval & Web Search

2. idf-ordered terms
§ When considering the postings of query terms
§ Look at them in order of decreasing idf

§ High idf terms likely to contribute most to score

§ As we update score contribution from each query
term
§ Stop if doc scores relatively unchanged

§ Can apply to cosine or some other net scores

Sec. 7.1.5

47

COMP6714: Information Retrieval & Web Search

Cluster pruning: preprocessing

§ Pick ÖN docs at random: call these leaders
§ For every other doc, pre-compute nearest

leader
§ Docs attached to a leader: its followers;
§ Likely: each leader has ~ ÖN followers.

Sec. 7.1.6

48

Why N1/2 learder?

COMP6714: Information Retrieval & Web Search

Cluster pruning: query processing

§ Process a query as follows:
§ Given query Q, find its nearest leader L.
§ Seek K nearest docs from among L’s

followers.

Sec. 7.1.6

49

COMP6714: Information Retrieval & Web Search

Visualization

Query

Leader Follower

Sec. 7.1.6

50

COMP6714: Information Retrieval & Web Search

Why use random sampling
§ Fast
§ Leaders reflect data distribution

Sec. 7.1.6

51

COMP6714: Information Retrieval & Web Search

General variants
§ Have each follower attached to b1=3 (say) nearest

leaders.
§ From query, find b2=4 (say) nearest leaders and their

followers.
§ Can recur on leader/follower construction.

Sec. 7.1.6

52

COMP6714: Information Retrieval & Web Search

Exercises
§ To find the nearest leader in step 1, how many cosine

computations do we do?
§ Why did we have ÖN in the first place?
§ Hint: write down the algorithm, model its cost, and

minimize the cost.

§ What is the effect of the constants b1, b2 on the
previous slide?

§ Devise an example where this is likely to fail – i.e., we
miss one of the K nearest docs.
§ Likely under random sampling.

Sec. 7.1.6

53

COMP6714: Information Retrieval & Web Search

Parametric and zone indexes
§ Thus far, a doc has been a sequence of terms
§ In fact documents have multiple parts, some with

special semantics:
§ Author
§ Title
§ Date of publication
§ Language
§ Format
§ etc.

§ These constitute the metadata about a document

Sec. 6.1

54

COMP6714: Information Retrieval & Web Search

Fields
§ We sometimes wish to search by these metadata

§ E.g., find docs authored by William Shakespeare in the
year 1601, containing alas poor Yorick

§ Year = 1601 is an example of a field
§ Also, author last name = shakespeare, etc
§ Field or parametric index: postings for each field

value
§ Sometimes build range trees (e.g., for dates)

§ Field query typically treated as conjunction
§ (doc must be authored by shakespeare)

Sec. 6.1

55

COMP6714: Information Retrieval & Web Search

Zone
§ A zone is a region of the doc that can contain an

arbitrary amount of text e.g.,
§ Title
§ Abstract
§ References …

§ Build inverted indexes on zones as well to permit
querying

§ E.g., “find docs with merchant in the title zone and
matching the query gentle rain”

Sec. 6.1

56

COMP6714: Information Retrieval & Web Search

Example zone indexes

Encode zones in dictionary vs. postings.

Sec. 6.1

57

COMP6714: Information Retrieval & Web Search

Tiered indexes
§ Break postings up into a hierarchy of lists

§ Most important
§ …
§ Least important

§ Can be done by g(d) or another measure
§ Inverted index thus broken up into tiers of decreasing

importance
§ At query time use top tier unless it fails to yield K

docs
§ If so drop to lower tiers

Sec. 7.2.1

58

COMP6714: Information Retrieval & Web Search

Example tiered index

Sec. 7.2.1

59

COMP6714: Information Retrieval & Web Search

Query term proximity
§ Free text queries: just a set of terms typed into the

query box – common on the web
§ Users prefer docs in which query terms occur within

close proximity of each other
§ Let w be the smallest window in a doc containing all

query terms, e.g.,
§ For the query strained mercy the smallest window in

the doc The quality of mercy is not strained is 4
(words)

§ Would like scoring function to take this into account
– how?

Sec. 7.2.2

60

COMP6714: Information Retrieval & Web Search

Query parsers
§ Free text query from user may in fact spawn one or

more queries to the indexes, e.g. query rising interest
rates
§ Run the query as a phrase query
§ If <K docs contain the phrase rising interest rates, run the

two phrase queries rising interest and interest rates
§ If we still have <K docs, run the vector space query rising

interest rates
§ Rank matching docs by vector space scoring

§ This sequence is issued by a query parser

Sec. 7.2.3

61

COMP6714: Information Retrieval & Web Search

Aggregate scores
§ We’ve seen that score functions can combine cosine,

static quality, proximity, etc.
§ How do we know the best combination?
§ Some applications – expert-tuned
§ Increasingly common: machine-learned

Sec. 7.2.3

62

COMP6714: Information Retrieval & Web Search

Putting it all together

Sec. 7.2.4

63

COMP6714: Information Retrieval & Web Search

Resources
§ IIR 7, 6.1

64

