
S2, 2008 COMP9032 Week2 1

Microprocessors & Interfacing

AVR ISA &
AVR Programming (I)

Lecturer : Dr. Annie Guo

S2, 2008 COMP9032 Week2 2

Lecture Overview

• AVR ISA

• AVR Instructions & Programming (I)

– Basic construct implementation

S2, 2008 COMP9032 Week2 3

Atmel AVR

• 8-bit RISC architecture

– Most instructions have 16-bit fixed length

– Most instructions take 1 clock cycle to execute.

• Load-store memory access architecture

– All calculations are on registers

• Internal program memory and data memory

• Wide variety of on-chip peripherals (digital
I/O, ADC, EEPROM, UART, pulse width
modulator (PWM), …).

S2, 2008 COMP9032 Week2 4

AVR Registers

• General purpose registers

– 32 8-bit registers, R0 ~ R31 or r0 ~ r31

– Can be further divided into two groups

• First half group: R0 ~ R15 and second half group: R16 ~
R31

• Some instructions work only on the second half group
R16~R31

– Due to the limitation of instruction encoding bits

» Will be covered later

– E.g. ldi rd, #number ;rd ∈ R16~R31

S2, 2008 COMP9032 Week2 5

AVR Registers (cont.)

• General purpose registers

– The following register pairs can work as address
indexes

• X, R27:R26

• Y, R29:R28

• Z, R31:R30

– The following registers can be applied for specific
use

• R1:R0 store the result of multiplication instruction

• R0 stores the data loaded from the program memory

S2, 2008 COMP9032 Week2 6

AVR Registers (cont.)

• I/O registers
– 64 8-bit registers

• Their names are defined in the m64def.inc file

– Used in input/output instructions
• Mainly storing data/addresses and control signal bits

– Some instructions work only with I/O registers,
others with general purpose registers – don’t
confuse them

• E.g. in rd, port ; port must be an I/O register

– Will be covered in detail later

• Status register (SREG)
– A special I/O register

S2, 2008 COMP9032 Week2 7

The Status Register in AVR

• The Status Register (SREG) contains information
about the result of the most recently executed
arithmetic instruction. This information can be used
for altering program flow in order to perform
conditional operations.

• SREG is updated after any of ALU operations by
hardware.

• SREG is not automatically stored when entering an
interrupt routine and restored when returning from an
interrupt. This must be handled by software.

– Using in/out instruction to store/restore SREG

S2, 2008 COMP9032 Week2 8

The Status Register in AVR (cont.)

• Bit 7 – I: Global Interrupt Enable

– Used to enable and disable interrupts.

– 1: enabled. 0: disabled.

– The I-bit is cleared by hardware after an interrupt
has occurred, and is set by the RETI instruction to
enable subsequent interrupts.

CZNVSHTI

Bit 7 6 5 4 3 2 1 0

S2, 2008 COMP9032 Week2 9

The Status Register in AVR (cont.)

• Bit 6 – T: Bit Copy Storage
– The Bit Copy instructions BLD (Bit LoaD) and BST

(Bit STore) use the T-bit as source or destination
for the operated bit. A bit from a register in the
Register File can be copied into T by the BST
instruction, and a bit in T can be copied into a bit
in a register in the Register File by the BLD
instruction.

CZNVSHTI

Bit 7 6 5 4 3 2 1 0

S2, 2008 COMP9032 Week2 10

The Status Register in AVR (cont.)

• Bit 5 – H: Half Carry Flag

– The Half Carry Flag H indicates a Half Carry
(carry from bit 4) in some arithmetic operations.

– Half Carry is useful in BCD arithmetic.

CZNVSHTI

Bit 7 6 5 4 3 2 1 0

S2, 2008 COMP9032 Week2 11

The Status Register in AVR (cont.)

• Bit 4 – S: Sign Bit

– Exclusive OR between the Negative Flag N and
the Two’s Complement Overflow Flag V (S = N
⊕V).

• Bit 3 – V: Two’s Complement Overflow Flag

– The Two’s Complement Overflow Flag V supports
two’s complement arithmetic.

CZNVSHTI

Bit 7 6 5 4 3 2 1 0

S2, 2008 COMP9032 Week2 12

The Status Register in AVR (cont.)

• Bit 2 – N: Negative Flag

– N is the most significant bit of the result.

• Bit 1 – Z: Zero Flag

– Z indicates a zero result in an arithmetic or logic
operation. 1: zero. 0: Non-zero.

CZNVSHTI

Bit 7 6 5 4 3 2 1 0

S2, 2008 COMP9032 Week2 13

The Status Register in AVR (cont.)

• Bit 0 – C: Carry Flag

– Its meaning depends on the operation.

• For addition X+Y, it is the carry from the most significant bit

• For subtraction x-y, where x and y are unsigned integers, it
indicates whether x<y or not. If x<y, C=1; otherwise, C=0.

CZNVSHTI

Bit 7 6 5 4 3 2 1 0

S2, 2008 COMP9032 Week2 14

AVR Address Spaces

• Three address spaces

– Data memory

• Storing data to be processed

– Program memory

• Storing program code and some constants

– EEPROM memory

• Large permanent data storage

S2, 2008 COMP9032 Week2 15

Data Memory Space

• Covers
– Register file

• I.e. registers in the register
file also have memory
address

– I/O registers
• I.e. I/O registers have two

versions of addresses
– I/O addresses

– Memory addresses

– SRAM data memory
• The highest memory

location is defined as
RAMEND

32 General purpose
Working Registers

0x0000

0x1F

64 Input/Output
Registers

Internal SRAM
(128~4K bytes)

External SRAM

0x20

0x5F

End Address

Data Memory

0x60

8 bits

S2, 2008 COMP9032 Week2 16

Program Memory Space

• Covers

– 16 bit Flash Memory

• Read only

– Instructions are
retained when power
off

– Can be accessed with
special instructions

• LPM

• SPM

16 Bits

0x0000

Program Memory

Program Flash Memory

(1K bytes~128K bytes)

End Address

S2, 2008 COMP9032 Week2 17

EEPROM Memory Space

• Covers
– 8-bit EEPROM

memory
• Use to permanently

store large set of data

– Can be accessed
using load and store
instructions with
special control bit
settings

• Not covered in this
course

8 bits

0x0000

End address

Data EEPROM Memory

EEPROM Memory
(64~4K bytes)

S2, 2008 COMP9032 Week2 18

AVR Instruction Format

• For AVR, almost all instructions are 16 bits
long

– For example,

• add Rd, Rr

• sub Rd, Rr

• mul Rd, Rr

• brge k

• Few instructions are 32 bits long

– For example

• lds Rd, k (0 ≤ k ≤ 65535)

– loads 1 byte from the SRAM to a register.

S2, 2008 COMP9032 Week2 19

Examples (1)
- 16 bits long

• Clear register instruction

Syntax: clr Rd

Operand: 0 ≤ d ≤ 31

Operation: Rd ← 0

• Instruction format

– OpCode uses 6 bits (bit 10 to bit 15).

– The operand uses the remaining 10 bits (only 5 bits, bit 0 to
bit 4, are actually needed).

• Execution time

1 clock cycle

0 0 1 0 0 1 d d d d d dd d d d

015

S2, 2008 COMP9032 Week2 20

Examples (2)
- 32 bit long

• Unconditional branch

Syntax: jmp k

Operand: 0 ≤ k < 4M

Operation: PC ← K

• Instruction format

• Execution time

3 clock cycles

1 0 0 1 0 1 0 k 1 1 0 kk k k k

k k k k k k k k k k k kk k k k

15 0

31 16

S2, 2008 COMP9032 Week2 21

Examples (3)
- with variable cycles

• Conditional branch

Syntax: breq k

Operand: -64 ≤ k < +63

Operation: If Rd=Rr(Z=1) then PC ← PC+k+1, else
PC ß PC+1

• Instruction format

• Execution time

1 clock cycle if condition is false

2 clock cycles if condition is true

1 1 1 1 0 0 k k k 0 0 1k k k k

S2, 2008 COMP9032 Week2 22

AVR Instructions

• AVR has the following classes of instructions:

– Arithmetic and Logic

– Data transfer

– Program control

– Bit and Others

• Bit and Bit test

• MCU Control

• An overview of the instructions are given in
the next slides.

S2, 2008 COMP9032 Week2 23

AL Instructions

• Arithmetic

– addition

• E.g. ADD Rd, Rr

– Subtraction

• E.g. SUB Rd, Rr

– Increment/decrement

• E.g INC Rd

– Multiplication

• E.g. MUL Rd, Rr

• Logic
• E.g. AND Rd, Rr

• Shift
• E.g. LSL Rd

S2, 2008 COMP9032 Week2 24

Transfer Instructions

• GP register
• E.g. MOV Rd, Rr

• I/O registers
• E.g. IN Rd, PORTA

OUT PORTB, Rr

• Stack
• PUSH Rr

• POP Rd

• Immediate values
• E.g. LDI Rd, K8

• Memory

– Data memory

• E.g. LD Rd, X ST X, Rr

– Program memory

• E.g. LPM

– EEPROM memory

• Not covered in this course

S2, 2008 COMP9032 Week2 25

Program Control Instructions

• Branch
– Conditional

• Jump to address
– BREQ des

» test ALU flag and jump
to specified address if
the test was true

• skip
– SBIC k

» test a bit in a register
or an IO register and
skip the next
instruction if the test
was true.

– Unconditional
• Jump to the specified

address
– RJMP des

• Call subroutine
• E.g. RCALL k

• Return from subroutine
• E.g. RET

S2, 2008 COMP9032 Week2 26

Bit & Other Instructions

• Bit

– Set bit

• E.g. SBI PORTA, b

– Clear bit

• E.g CBI PORTA, b

– Bit copy

• E.g. BST Rd, b

• Others
• NOP

• BREAK

• SLEEP

• WDR

S2, 2008 COMP9032 Week2 27

AVR Instructions (cont.)

• Not all instructions are implemented in all
AVR controllers.

• Refer to the data sheet of a specific
microcontroller

• Refer to online AVR instruction document for
the detail description of each instruction

S2, 2008 COMP9032 Week2 28

AVR Addressing Modes

• Immediate

• Register direct

• Memory related addressing mode
– Data memory

• Direct

• Indirect

• Indirect with Displacement

• Indirect with Pre-decrement

• Indirect with Post-increment

– Program memory

– EPROM memory
• Not covered in this course

S2, 2008 COMP9032 Week2 29

Immediate Addressing

• The operands come from the instructions

• For example

– Bitwise logic AND operation

• Clear upper nibble of register r16

andi r16, $0F

S2, 2008 COMP9032 Week2 30

Register Direct Addressing

• The operands come from general purpose
registers

• For example

– r16 ß r16 AND r0

• Clear upper nibble of register r16 if r0=0x0F

and r16, r0

S2, 2008 COMP9032 Week2 31

Register Direct Addressing

• The operands come from I/O registers

• For example

in r25, PINA
-- r25 ß PIN A

S2, 2008 COMP9032 Week2 32

Data Memory Addressing

S2, 2008 COMP9032 Week2 33

Data Direct Addressing

• The data memory address is given directly
from the instruction

• For example

lds r5, $F123
-- r5 ß Mem($F123), or r5 ß ($F123)

S2, 2008 COMP9032 Week2 34

Indirect Addressing

• The address of memory data is from an
address pointer (X, Y, Z)

• For example

ld r11, X
-- r11 ß Mem(X), or r11 ß (X)

S2, 2008 COMP9032 Week2 35

Indirect Addressing with
Displacement

• The address of memory data is from (Y,Z)+q

• For example

std Y+10, r14
-- (Y+10) ß r14

S2, 2008 COMP9032 Week2 36

Indirect Addressing with Pre-
decrement

• The address of memory data is from an address
pointer (X, Y, Z) and the value of the pointer is auto-
decreased before each memory access.

• For example
std -Y, r14

-- Yß Y-1, (Y) ß r14

S2, 2008 COMP9032 Week2 37

Indirect Addressing with Post-
increment

• The address of memory data is from an address
pointer (X, Y, Z) and the value of the pointer is auto-
increased after each memory access.

• For example
std Y+, r14

-- (Y) ß r14, Y ß Y+1

S2, 2008 COMP9032 Week2 38

Program Memory Addressing

S2, 2008 COMP9032 Week2 39

Direct Program Addressing

• The instruction address is from instruction

• For example

jmp k
-- (PC) ß k

S2, 2008 COMP9032 Week2 40

Relative Program Addressing

• The instruction address is PC+k+1

• For example

rjmp k
-- (PC) ß (PC)+k+1

S2, 2008 COMP9032 Week2 41

Indirect Memory Addressing

• The instruction address is implicitly stored in
Z register

icall
-- PC(15:0) ß (Z), PC(21:16) ß 0

S2, 2008 COMP9032 Week2 42

Program Memory Constant
Addressing

• The address of the constant is stored in Z
register

– The address is a byte address.

• For example:
lpm

-- r0 ß (Z)

S2, 2008 COMP9032 Week2 43

Program Memory Addressing with
Post-increment

• For example

lpm r16, Z+
-- r16 ß (Z), Zß Z+1

S2, 2008 COMP9032 Week2 44

AVR Programming

• Refer to the online AVR Instruction Set
documentation for the complete list of AVR
instructions

– http://www.cse.unsw.edu.au/~cs9032/refs/AVR-
Instruction-Set.pdf

• The rest of the lecture covers

– Programming to implement some basic constructs
with examples

S2, 2008 COMP9032 Week2 45

Arithmetic Calculation (1/4)
- example

• Expressions

– where all data including products from
multiplications are 8-bit unsigned numbers; and x,
y, z are stored in registers r2, r3, and r4,
respectively.

2xxyx2z −−−−−−−−====

S2, 2008 COMP9032 Week2 46

What instructions do you need?

• sub

• mul

• ldi

• mov

S2, 2008 COMP9032 Week2 47

Subtract without Carry

• Syntax: sub Rd, Rr

• Operands: Rd, Rr ∈{r0, r1, …, r31}

• Operation: Rd←Rd–Rr

• Flags affected: H, S, V, N, Z, C

• Words: 1

• Cycles: 1

S2, 2008 COMP9032 Week2 48

Multiply Unsigned

• Syntax: mul Rd, Rr

• Operands: Rd, Rr ∈{r0, r1, …, r31}

• Operation: r1:r0←Rr*Rd

– (unsigned←unsigned * unsigned)

• Flags affected: Z, C

– C is set if bit 15 of the result is set; cleared

otherwise.

• Words: 1

• Cycles: 2

S2, 2008 COMP9032 Week2 49

Load Immediate

• Syntax: ldi Rd, k

• Operands: Rd∈{r16, …, r31}, 0 ≤ k ≤
255

• Operation: Rd←k

• Flag affected: None

• Words: 1

• Cycles: 1

• Encoding: 1110 kkkk dddd kkkk

• Example:
ldi r16, $42 ; Load $42 to r16

S2, 2008 COMP9032 Week2 50

Copy Register

• Syntax: mov Rd, Rr

• Operands: Rd, Rr ∈{r0,r1,…,r31}

• Operation: Rd←Rr

• Flag affected: None

• Words: 1

• Cycles: 1

S2, 2008 COMP9032 Week2 51

Arithmetic Calculation (2/4)

• AVR code for

– where all data including products from multiplications are 8-
bit unsigned numbers; and x, y, z are stored in registers r2,
r3, and r4, respectively.

– 8 instructions and 11 cycles

2xxyx2z −−−−−−−−====

ldi r16, 2 ; r16 ß 2
mul r16, r2 ; r1:r0 ß 2x
mov r5, r0 ; r5 ß 2x
mul r2, r3 ; r1:r0 ß xy
sub r5, r0 ; r5 < 2x-xy
mul r2, r2 ; r1:r0 ß x2

sub r5, r0 ; r5 ß 2x-xy- x2

mov r4, r5 ; r4 ß z

S2, 2008 COMP9032 Week2 52

Arithmetic Calculation (3/4)

• Expressions

– where all data including products from
multiplications are 8-bit unsigned numbers; and x,
y, z are stored in registers r2, r3, and r4,
respectively.

2xxyx2z −−−−−−−−====

))yx(2(xz ++++−−−−====

S2, 2008 COMP9032 Week2 53

What instructions do you need?

• sub

• mul

• ldi

• mov

• add

S2, 2008 COMP9032 Week2 54

Add without Carry

• Syntax: add Rd, Rr

• Operands: Rd, Rr ∈{r0, r1, …, r31}

• Operation: Rd←Rd + Rr

• Flags affected: H, S, V, N, Z, C

• Words: 1

• Cycles: 1

S2, 2008 COMP9032 Week2 55

Arithmetic Calculation (4/4)

• AVR code for

– where all data including products from multiplications are 8-
bit unsigned numbers; and x, y, z are stored in registers r2,
r3, and r4, respectively.

– 6 instructions and 7 cycles

2xxyx2z −−−−−−−−====

))yx(2(xz ++++−−−−====

mov r5, r2 ; r5 ß x
add r5, r3 ; r5 ß x+y
ldi r16, 2 ; r16 ß 2
sub r16, r5 ; r16 < 2-(x+y)
mul r2, r16 ; r1:r0 ß x(2-(x+y))
mov r4, r0 ; r4 ß z

S2, 2008 COMP9032 Week2 56

Control Structure (1/2)
- example

• IF-THEN-ELSE control structure

– Numbers x, z are 8-bit signed integers and stored in
registers. You need to decide which registers to use.

• Instructions interested

– Compare

– Conditional branch

– Unconditional jump

if(x<0)
z=1;

else
z=-1;

S2, 2008 COMP9032 Week2 57

Compare

• Syntax: cp Rd, Rr

• Operands: Rd ∈{r0, r1, …, r31}

• Operation: Rd–Rr (Rd is not changed)

• Flags affected: H, S, V, N, Z, C

• Words: 1

• Cycles: 1

• Example:

cp r4, r5 ; Compare r4 with r5

brne noteq ; Branch if r4 ≠ r5

...

noteq: nop ; Branch destination (do nothing)

S2, 2008 COMP9032 Week2 58

Compare with Immediate

• Syntax: cpi Rd, k

• Operands: Rd ∈{r16, r17, …, r31} and 0≤

k ≤ 255

• Operation: Rd – k (Rd is not changed)

• Flags affected: H, S, V, N, Z, C

• Words: 1

• Cycles: 1

S2, 2008 COMP9032 Week2 59

Conditional Branch

• Syntax: brge k

• Operands: -64 ≤ k < 64

• Operation: If Rd≥Rr (N⊕V=0) then PC←PC+k+1,

else PC ß PC+1 if condition is false

• Flag affected: None

• Words: 1

• Cycles: 1 if condition is false; 2 if condition is
true

S2, 2008 COMP9032 Week2 60

Relative Jump

• Syntax: rjmp k

• Operands: -2K ≤ k < 2K

• Operation: PC←PC+k+1

• Flag affected: None

• Words: 1

• Cycles: 2

S2, 2008 COMP9032 Week2 61

Control (2/2)

• IF-THEN-ELSE control structure

– Numbers x, z are 8-bit signed integers and stored
in registers. You need to decide which registers to
use.
.def a=r16
.def b=r17

cpi a, 0 ;a-0

brge ELSE ;if a≥≥≥≥0, to to ELSE
ldi b, 1 ;b=1
rjmp END ;end of IF statement

ELSE: ldi b, -1 ;b=-1
END: …

if(a<0)
b=1;

else
b=-1;

S2, 2008 COMP9032 Week2 62

Loop (1/2)

• WHILE loop

– Numbers i, sum are 8-bit unsigned integers and
stored in registers. You need to decide which
registers to use.

sum =0;
i=1;
while (i<=n){

sum += i*i;
i++;

}

S2, 2008 COMP9032 Week2 63

Loop (2/2)

• WHILE loop

.def i = r16

.def n = r17

.def sum = r18

ldi i, 1 ;initialize

clr sum
loop:

cp n, i
brlo end
mul i, i

add sum, r0
inc i
rjmp loop

end:

rjmp end

S2, 2008 COMP9032 Week2 64

Homework

1. Refer to the AVR Instruction Set
documentation (available at
http://www.cse.unsw.edu.au/~COMP9032/re
fs/AVR-Instruction-Set.pdf).

Study the following instructions:

– Arithmetic and logic instructions

• add, adc, adiw, sub, subi, sbc, sbci, subiw, mul, muls,
mulsu

• and, andi, or, ori, eor

• com, neg

S2, 2008 COMP9032 Week2 65

Homework

1. Study the following instructions (cont.)

– Branch instructions

• cp, cpc, cpi

• rjmp

• breq, brne

• brge, brlt

• brsh, brlo

– Data transfer instructions

• mov

• ldi, ld, st

S2, 2008 COMP9032 Week2 66

Homework

2. Implement the following functions with AVR
assembly language

1) 2-byte addition (i.e, addition on 16-bit numbers)

2) 2-byte signed subtraction

3) 2-byte signed multiplication

3. Inverse a string of ten characters that is
stored in the registers r0~r9; and store the
inversed string in registers r10~r19

S2, 2008 COMP9032 Week2 67

Homework

4. Translate the following if-then-else statement,
where x is an 8-bit unsigned integer.

if(x<0)
z=1;

else
z=255;

S2, 2008 COMP9032 Week2 68

Reading Material

• AVR Instruction Set online documentation

– Instruction Set Nomenclature

– I/O Registers

– The Program and Data Addressing

– Arithmetic instructions, program control
instructions

