
Note on Cut-Elimination

Chung Tong Lee

September 3, 2007

Abstract

Cut-elimination for first-order logic is shown by proof-theoretic argu-
ment in Tait-style system (copied from [2] with minor notation differences)
and by model-theoretic argument for completeness in Gentzen’s sequent-
based system (adapted from [1]).

1 Introduction

Hilbert-style proof system for first order logic is probably the most concise one.
However, important information is lost during the Modus Ponens inference.
Other equivalent proof systems which preserve information in a better way are
more suitable for computational complexity application.

2 Tait-style System

In the Tait-style calculus, the form of formulas is different from that of classical
logic:

• Connectives for formulas are ∧ , ∨ and ¬ . ∧ and ∨ take their usual
meanings;

• Negations (¬) are allowed only in front of atomic formulas. (Thus, ¬ϕ ,
where ϕ is an arbitrary formula, stands for the equivalent formula with
negations pushed in front of the atomic subformulas.)

• → and ↔ are just abbreviations for the corresponding equivalent formulas
built up with just ∧ and ∨ from (negated) atomic formulas.

One can show, by induction on formula complexity, that there is a Tait-style
equivalence for every well-formed formula in classical first order logic, and vice
versa. ∧ , ∨ and the restricted ¬ form a functionally complete set. Restrictions
on the use of ¬ does not reduce the expressive power. On the other hand, the
complexity of system is reduced.

Definition 1. The length |ϕ| of a formula ϕ is defined inductively as:

• |ϕ| = |¬ϕ| = 0 for atomic ϕ ;

1

• |ϕ ∧ ψ| = |ϕ ∨ ψ| = sup(|ϕ|, |ψ|) + 1 ;

• |∀xϕ(x)| = |∃xϕ(x)| = |ϕ(x)|+ 1 .

Finite sets of formulas are derived in this calculus. Such sets are denoted by
capital Greek letters, .e.g. Γ. The intended meaning of Γ is the disjunction
of all formulas in Γ. The notation Γ,∆ stands for Γ ∪∆ and Γ, ϕ stands for
Γ ∪ {ϕ} . The inference rules of Tait-style system are as follows:

(A) Γ, ϕ,¬ϕ (ϕ is atomic)

(∨) Γ, ϕ0
Γ, ϕ ∨ ϕ1

,
Γ, ϕ1

Γ, ϕ0 ∨ ϕ1

(∀) Γ, ϕ(a)
Γ,∀xϕ(x) (a is not free in any formula in Γ)

(∃) Γ, ϕ(t)
Γ,∃xϕ(x) (t is a term in the underlying language)

(C) Γ, ϕ Γ,¬ϕ
Γ (ϕ is an arbitrary formula)

In general, inference rules are of the form

(∗) Γ, ϕi for all i < k
Γ,Φ

where (0 ≤ k ≤ 2), Φ consists of the principal formulas (p.f.) of (∗); ϕi is the
minor formula (m.f.) in the ith premiss of (∗); Γ are the side formulas (s.f.).

Principal Formula (p.f.) Minor Formula (m.f.)
(A) ϕ,¬ϕ no m.f
(∧) ϕ0 ∧ ϕ1 ϕ0, ϕ1

(∨) ϕ0 ∨ ϕ1 ϕ0, ϕ1

(∀) ∀xϕ(x) ϕ(x)
(∃) ∃xϕ(x) ϕ(t)
(C) no p.f. ϕ,¬ϕ

We write `d Γ if d is a derivation of Γ. If x is one of the free variables in Γ, we
sometimes use the notation d(x) for the derivation and Γ(x) for the conclusion
where it is understood that there may be some other free variables. Derivations
are built up in tree form. Given `di

Γ, ϕi , d is a derivation of Γ,∆ built from
di using the inference(∗) as above. Then:

Definition 2.

1. (∗) is called the last inference of d ;

2. The di are called direct subderivations of d ;

3. The length |d| of d is given by |d| = sup(|di|+ 1) , in particular, |d| = 0
when d does not have any subderivation.;

2

4. The cut-rank ρ(d) of d is given by

ρ(d) =

{
sup (|ϕ0|+ 1, sup(ρ(di))) if (∗) is (C)
sup(ρ(di)) otherwise

.

and ρ(d) = 0 when d is cut-free.

3 Cut-elimination in Tait-style System

Let d,Γ be obtained from a derivation d by adding Γ to the side formulas of
all inference rules in d with appropriate changes of bound variables, we have:

Lemma 1. Weakening Lemma
If `d ∆ , then `d,Γ Γ,∆ with |d,Γ| = |d| and ρ(d,Γ) = ρ(d)

Let d(t) denote the result of substituting a term t for all free occurrences of x
in d(x), (with some changes of bound variables if necessary). Then we obviously
have:

Lemma 2. Substitution Lemma
If `d(x) Γ(x) , then `d(t) Γ(t) with |d(t)| = |d| and ρ(d) = ρ(d(t)) .

Lemma 3. Inversion Lemmas

∨-inversion If `d Γ, ϕ0 ∨ ϕ1 , then there is a derivation d′ , s.t. `d′ Γ, ϕ0, ϕ1

with |d′| ≤ |d| and ρ(d′) ≤ ρ(d) .

∧-inversion If `d Γ, ϕ0 ∧ ϕ1 , then there are derivations, denoted by di , s.t.
`di Γ, ϕi with |di| ≤ |d| and ρ(di) ≤ ρ(d) for i = 0, 1 ;

∀-inversion If `d Γ,∀xϕ(x) , then there is a derivation d′ s.t. `d0 Γ, ϕ(x)
with |d′| ≤ |d| and ρ(d′) ≤ ρ(d) .

Proof. The proofs of these lemmas are almost identical. All can be shown by
induction on |d| and we will demonstrate the last case.

Base Case - |d| = 0 : The only inference in d is (A) and Γ must contain
some atomic formula ψ and its negation ¬ψ . Hence Γ, ϕ(x) is also an
instance of (A).

Induction Step :

Case 1 - ∀xϕ(x) is not the p.f. of the last inference of d :
Then last inference is of the form

Λ,∀xϕ(x), ψi for all i < k

Λ,∀xϕ(x),Ψ

with m.f ψi , p.f. Ψ and s.f. Λ, and Γ = Λ,Ψ. Let us denote di the
direct subderivations of d . By hypothesis, there are derivations d′i
s.t. `d′i Λ, ϕ(x), ψi with |d′i| ≤ |di| < |d| and ρ(di) ≤ ρ(di) ≤ ρ(d).
The required derivation d′ can be constructed using d′i as direct
subderivations.

3

Case 2 - ∀xϕ(x) is the p.f. of the last inference of d :
With weakening, we can assume the last inference is of the form

Γ,∀xϕ(x), ϕ(x)
Γ,∀xϕ(x)

The length of the subderivation of Γ,∀xϕ(x), ϕ(x) is strictly smaller
|d| and by hypothesis, we have the required d′ .

Note: Application of inference is valid regardless if the p.f. is already one of
the s.f (by weakening). The conclusions are the same because they are finite
sets.

Lemma 4. Reduction Lemma
Let `d0 Γ, ϕ and `d1 ∆,¬ϕ and ρ(d0), ρ(d1) ≤ |ϕ| . Then there is a derivation
d s.t. `d Γ,∆ with |d| ≤ |d0|+ |d1| and ρ(d) ≤ |ϕ| .

Of course we could derive Γ,∆ by an application of the cut-rule, but the re-
sulting derivation would then have cut-rank |ϕ|+ 1.

Proof. We proceed by induction on |d0|+ |d1| :

Case 1 Either ϕ is not a p.f. in the last inference of d0 or else ¬ϕ is not a
p.f. in the last inference of d1 . By symmetry, we can assume the former.
Then the last inference of d0 is of the form

Λ, ϕ, ψi for all i < k

Λ, ϕ,Ψ

with Γ = Λ,Ψ. By hypothesis, there are d′i s.t. `d′i Λ,∆, ψi with |d′i| <
|d0| + |d1| and ρ(d′i) ≤ |ϕ| . Using d′i as direct subderivations, we can
construct the required derivation d .

Case 2 Both ϕ and ¬ϕ are the p.f. of the last inference of respective deriva-
tions.

Case 2.1 ϕ is atomic.
Then the last inference is (A) and hence Γ,∆ is also an instance of (A).

Case 2.2 ϕ is ϕ0 ∨ ϕ1

By weakening with ϕ , the last inference of d0, ϕ is of the form

Γ, ϕ, ϕi
Γ, ϕ

and by hypothesis, there is a d′0 s.t. `d′0 Γ,∆, ϕi with |d′0| < |d0|+|d1| and
ρ(d′0) ≤ |ϕ| . Now consider ¬ϕ is ¬ϕ0 ∧ ¬ϕ1 . By inversion, there are two
derivations, denoted by d′1i

for i = 0, 1, s.t. `d′1i
∆,¬ϕi . Applying (C)

with d′0 on d′1i
,Γ yields the required derivation d with ρ(d) = sup(|ϕi|+

1, sup(ρ(d0), ρ(d1))). As |ϕi| < |ϕ| and ρ(d0), ρ(d1) ≤ |ϕ| , ρ(d) ≤ |ϕ| .

4

Case 2.3 ϕ is ∃xψ(x)
Again, there is derivation d0, ϕ s.t. its last inference is of the form

Γ, ϕ, ψ(t)
Γ, ϕ

and by hypothesis, there is d′0 s.t. `d′0 Γ,∆, ψ(t). Now consider ¬ϕ is
∀xψ(x) and by inversion and substitution where is a d′1(t) s.t. ` ∆,¬ψ(t).
Again by weakening and cut using ψ(t) as m.f. we get the required deriva-
tion d .

Theorem 5. Cut-Elimination Theorem
If `d Γ and ρ(d) > 0 , then there is a derivation d′ s.t. ρ(d′) < ρ(d) and
|d′| ≤ 2|d|.

Proof. The proof is by induction on |d| . We may assume that the last inference
of d is a cut

Γ, ϕ Γ,¬ϕ
Γ

with |ϕ|+1 = ρ(d), for otherwise the result follows by the induction hypothesis
(making use of the fact that our rules all have finitely many premisses). So
assume this. Let `d0 Γ, ϕ and `d1 Γ,¬ϕ . By hypothesis, there are derivations
d′0 and d′1 s.t. `d′0 Γ, ϕ and `d′1 Γ,¬ϕ and ρ(d′i) ≤ |ϕ|, |d′i| ≤ |di| for i =
0, 1. The result then follows, by the Reduction Lemma, since |d′0| + |d′1| ≤
2sup(|d0|,|d1|)+1 = 2|d| .

Let 2x0 = x, 2xy+1 = 22x
y

Corollary 6. If `d Γ , then there is a cut-free derivation d∗ s.t. `d∗ Γ and
|d∗| ≤ 2|d|ρ(d) .

4 Sequent Calculus

Gentzen’s sequent style calculus is another commonly used system for first-order
logic. The basic unit is a sequent of the form Γ −→ ∆ where Γ (the antecedent)
and ∆ (the succedent) are finite sets (possibly empty) of formulas.The intended
meaning of a sequent Γ −→ ∆ is∧

γ∈Γ

γ →
∨
δ∈∆

δ

where → is the usual symbol for logical implication. Thus −→ ϕ means ϕ and
ϕ −→ means ¬ϕ . The empty sequent means contradiction.

There are left- and right-introduction rules corresponds to each symbol for con-
nectives and quantifiers. Any functionally complete set of connectives can be
used and we choose {¬,∨,∧} (similar to Tait-style system). The quantifiers, of
course, are the usual ones. The inference rules are as follows:

5

Rules Left Right

¬-introduction Γ −→ ∆, ϕ
¬ϕ,Γ −→ ∆

ϕ,Γ −→ ∆
Γ −→ ∆,¬ϕ

∧-introduction ϕ,ψ,Γ −→ ∆
ϕ ∧ ψ,Γ −→ ∆

Γ −→ ∆, ϕ Γ −→ ∆, ψ
Γ −→ ∆, ϕ ∧ ψ

∨-introduction ϕ,Γ −→ ∆ ψ,Γ −→ ∆
ϕ ∨ ψ,Γ −→ ∆

Γ −→ ∆, ϕ, ψ
Γ −→ ∆, ϕ ∨ ψ

∀-introduction ϕ(t),Γ −→ ∆
∀xϕ(x),Γ −→ ∆

Γ −→ ∆, ϕ(b)
Γ −→ ∆,∀xϕ(x)

∃-introduction ϕ(b),Γ −→ ∆
∃xϕ(x),Γ −→ ∆

Γ −→ ∆, ϕ(t)
Γ −→ ∆,∃xϕ(x)

where t is any term not involving any bound variables and b is the eigenvariable
which must not occur in the conclusion.

Other inference rules correspond to

• the logical axiom ϕ ∨ ¬ϕ ,

• properties of finite sets and,

• weakening lemma and (C) in Tait-style calculus.

Rules Left Right

Logical ϕ −→ ϕ

Exchange Γ0, ϕ, ψ,Γ1 −→ ∆
Γ0, ψ, ϕ,Γ1 −→ ∆

Γ −→ ∆0, ϕ, ψ,∆1
Γ −→ ∆0, ψ, ϕ,∆1

Contraction Γ, ϕ, ϕ −→ ∆
Γ, ϕ −→ ∆

Γ −→ ∆, ϕ, ϕ
Γ −→ ∆, ϕ

Weakening Γ,−→ ∆
Γ, ϕ −→ ∆

Γ −→ ∆
Γ −→ ∆, ϕ

Cut Γ,−→ ∆, ϕ ϕ,Γ −→ ∆
Γ −→ ∆

The system described above is called LK.

Note: The conclusions of an inference rule are logic consequences of their re-
spective premisses except in the case of ∀-right and ∃-left (similar in (∀) of
Tait-style system). Nonetheless, all rules are validity preserving.

6

5 Completeness Lemma

Lemma 7. If Γ −→ ∆ is logically valid, then there is a derivation in LK which
does not use the cut rule

Proof. We present an algorithm to construct a cut-free derivation d for any
sequent Γ −→ ∆. A sequent in our construction is active when it is a leaf and
there is no common formula in its antecedent and succedent. We assume that
the language is countable so we can enumerate all the terms in a list T . The
uncountable case holds but requires different argument. We will restrict our
discussion in the countable case.

We denote by d0 the partial derivation with the target sequent as the only
premiss and by T0 the set of all terms without bound variable in d0 . Further,
we use Λ and Ψ to keep track of universal formulas in antecedent and exis-
tential formulas in succedent for all premisses in this and all subsequent partial
derivations.

At the beginning of stage i + 1, we set Ti+1 to be empty. We modify di by
replacing any active sequent with a derivation of appropriate introduction rule
in reverse. Reverse applications of quantifier-related rules need some attention.
We demonstrate the ∃ cases and the ∀ cases are similar:

If the active sequent is of the form Γ′,∃xϕ(x),Γ′′ −→ ∆′ , we replace it with
the derivation

Γ′, ϕ(b),Γ′′ −→ ∆′

Γ′,∃xϕ(x),Γ′′ −→ ∆′

where b is a new variable. We add all the terms which involve b and contain
no bound variable to Ti+1 , including b itself.

If the active sequent is of the form Γ′ −→ ∆′,∃xϕ(x),∆′′ , we replace it with
the derivation

Γ′ −→ ∆′, ϕ(t0), . . . , ϕ(tk),∆′′

Γ′ −→ ∆′,∃xϕ(x),∆′′

where tj ∈ Ti for 0 ≤ j ≤ k . The double lines indicate a successive applications
of ∃-right and contraction rules for ∃xϕ(x). We add ∃xϕ(x) to Ψ. We also
add all the terms in ϕ(ti) to Ti+1 , provided that they are not in Tj for all
j < i+ 1 and they do not involve any bound variable.

The newly added leaves may be active and we repeat the process until none
of them are active or until every formula in active sequent is atomic. We can
finish every stage after a finite number of iterations as every formulas is of finite
length and Ti is finite. Then we add Λ to every antecedent and Ψ to every
succedent in the modified di to get di+1 .

Finally, we check if we should continue next stage.

Case 1 — None of the leaves are active.

7

We need not continue to the next stage. Instead, we modify all the leaves
as followings and get d . The algorithm halts with a success.

An leaf which is not active must be of the form Γ′, ϕ,Γ′′ −→ ∆′, ϕ,∆′′ .
We replace these leaves with

ϕ −→ ϕ

Γ′, ϕ,Γ′′ −→ ∆′, ϕ,∆′′

where the double line means successive applications of weakening and
exchange

Case 2 — at least one leaf is active and both Λ and Ψ are empty.

The algorithm halts with a failure.

Case 3 — at least one leaf is active and Λ or Ψ (or both) is not empty.

Then we pick the first t ∈ T s.t. t 6∈ Tj for j ≤ i + 1 and add it to
Ti+1 and proceed to next stage. This is the only part that may allow the
algorithm to run without a halt. Nonetheless, it allows us to “exhaust”
the countable list T .

If the algorithm halts with a failure or never halts, we can construct a model
M that falsifies Γ −→ ∆. The universe M of the model M contains all free
variables in the above derivation d and all constants of the language. Further,
M is closed under all functions fM which is the interpretation of function
symbol f . The object assignment maps every variable to itself and fM(~t) to
the term f(~t).

Let β be a branch with an active sequent. The interpretation ϕM of a predicate
symbol ϕ is defined by letting ϕM(~t) holds iff ϕ(~t) occurs in the antecedent
of some sequent in the branch β . By induction on formula complexity, one can
show M |=

∧
γ∈Γ′

γ and M 6|=
∨
δ∈∆′

δ for every sequent Γ′ −→ ∆′ in branch β .

Hence M 6|= Γ −→ ∆.

Note that for formulas ∀xϕ(x) in antecedents and ∃xϕ(x) in succedents, the
argument is based on the assumption that T is enumerable.

6 Derivations with Equality Axioms and Non-
logical Axioms

We need more inference rules for both Tait-style and Gentzen’s sequent-style
systems in order to handle derivation with equality and non-logical axioms. The
inferences of this axioms are similar to the (A) in the former system and Logical
in the latter. Details can be found in both [1] and [2]. With axioms other than
the logical ones, we need the cut rule the get the conclusion. For example,
ϕ ∧ ψ ` ϕ . The conclusion is “shorter” than the premiss, but every rule in
Tait-style system increases the length of formulas except (C). Without cut, we
cannot achieve derivational completeness [1].

8

Often, we impose additional restrictions on how the theory and the axioms are
specified in order to restrict the length (complexity) of a cut formula. If a theory
T proves a set Γ, by compactness, there is a finite subset T0 of T s.t. ` Φ0,Γ
where Φ0 = {¬ϕ | ϕ ∈ T0} . After getting the cut-free derivation of Φ0,Γ, we
can apply cut rules successively with cut formula in T0 . By this, complexity of
cut formulas are restricted – they must be an instance of non-logical/equality
axioms.

References

[1] Stephen Cook and Phuong Nguyen. Foundations of proof complexity:
Bounded arithmetic and propositional translations. manuscript in prepa-
ration, http://www.cs.toronto.edu/ sacook/csc2429h/book/.

[2] Helmut Schwichtengerg. Proof theory: Some applications of cut-elimination.
In J. Barwise, editor, Handbook of Mathematical Logic, chapter D.2, pages
867–895. North-Holland, 1977.

9

