
9/10/2003

1

µ-Kernel Construction

Fundamental Abstractions

Thread
Address Space

What is a thread?
How to implement?

What conclusions can we draw from our
analysis with respect to µK construction?

Fundamental Abstractions

A thread is an independent flow of
control inside an address space.
Threads are identified by unique
identifiers and communicate via IPC.
Threads are characterized by a set of
registers, including at least an
instruction pointer, a stack pointer and
a state information. A thread’s state
also includes the address space in
which the thread currently executes.

A “thread of control” has

register set
e.g. general registers, IP and SP

stack
status

e.g. FLAGs, privilege,
OS-specific states (prio, time…)

address space
unique id
communication status

internal
properties

external
properties

IP
SP

FLAGS

Construction Conclusions (1)

♦ Thread state must be saved / restored on
thread switch.

♦ We need a thread control block (tcb) per
thread.

♦ Tcbs must be kernel objects.

♦Tcbs implement threads.

♦ We need to find
any thread’s tcb starting from its uid
the currently executing thread’s tcb
(per processor)

(at least partially, we found some
good reasons to implement parts of
the TCB in user memory.)

Processor

tcb B

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

IP
SP

FLAGS

user mode Auser mode A

Thread Switch A B

9/10/2003

2

Processor

tcb B

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

IP
SP

FLAGS

user mode Auser mode A
kernelkernel

Thread Switch A B
Processor

tcb B

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

IP
SP

FLAGS

user mode Auser mode A
kernelkernel

Thread Switch A B

Processor

tcb B

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

IP
SP

FLAGS

user mode Auser mode A
kernelkernel

Thread Switch A B
Processor

tcb B

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

IP
SP

FLAGS

user mode Auser mode A
kernelkernel

user mode Buser mode B

Thread Switch A B

Thread Switch A B

In Summary:

Thread A is running in user mode
Thread A has experiences an end-of-time-slice or is preempted by an
interrupt
We enter kernel mode
The microkernel has to save the status of the thread A on A’s TCB
The next step is to load the status of thread B from B’s TCB.
Leave kernel mode and thread B is running in user mode.

Processor

tcb A

IP
SP

FLAGSIP
SP

FLAGS

user mode Auser mode A

9/10/2003

3

Processor

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

user mode Auser mode A
kernelkernel

IP
SP

FLAGS ? Processor

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

user mode Auser mode A
kernelkernel

IP
SP

FLAGS

Kernel
code

Kernel
stack

Processor

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

user mode Auser mode A
kernelkernel

IP
SP

FLAGS

Kernel
code

Kernel
stack

Processor

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

user mode Auser mode A
kernelkernel

IP
SP

FLAGS

Kernel
code

Kernel
stack A

tcb B

IP
SP

FLAGS

Kernel
stack B

Processor

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

user mode Auser mode A
kernelkernel

IP
SP

FLAGS

Kernel
code

Kernel
stack A

tcb B

IP
SP

FLAGS

Kernel
stack B

Construction conclusion

From the view of the designer there are two alternatives.

Single Kernel Stack Per-Thread Kernel Stack

Only one stack is
used all the time.

Every thread has a
kernel stack.

9/10/2003

4

Per-Thread Kernel Stack
Processes Model

A thread’s kernel state is implicitly
encoded in the kernel activation
stack

If the thread must block in-
kernel, we can simply switch
from the current stack, to
another threads stack until
thread is resumed
Resuming is simply switching
back to the original stack
Preemption is easy
no conceptual difference
between kernel mode and user
mode

example(arg1, arg2) {
P1(arg1, arg2);
if (need_to_block) {

thread_block();
P2(arg2);

} else {
P3();

}
/* return control to user */
return SUCCESS;

}

Single Kernel Stack
“Event” or “Interrupt” Model

How does use a single kernel stack to support
many threads?

Issue: How are system calls that block
handled?

⇒ either continuations
– Draves et al. Using Continuations to Implement

Thread Management and Communication in
Operating Systems. Proc. 13th SOSP

⇒ or stateless kernel (interrupt model)
Ford et al. Interface and Execution Models in
the Fluke Kernel. Proc 3rd OSDI

Continuations

State required to resume a
blocked thread is explicitly
saved in a TCB

A function pointer
Variables

Stack can be discarded and
reused to support new
thread
Resuming involves
discarding current stack,
restoring the continuation,
and continuing

example(arg1, arg2) {
P1(arg1, arg2);
if (need_to_block) {

save_context_in_TCB;
thread_block(example_continue);
/* NOT REACHED */

} else {
P3();

}
thread_syscall_return(SUCCESS);

}
example_continue() {

recover_context_from_TCB;
P2(recovered arg2);
thread_syscall_return(SUCCESS);

}

Stateless Kernel

System calls can not block within the kernel
If syscall must block (resource unavailable)

Modify user-state such that syscall is restarted when
resources become available
Stack content is discarded

Preemption within kernel difficult to achieve.
⇒ Must (partially) roll syscall back to (a) restart point

Avoid page faults within kernel code
⇒ Syscall arguments in registers

Page fault during roll-back to restart (due to a page
fault) is fatal.

IPC examples – Per thread stack
msg_send_rcv(msg, option,

send_size, rcv_size, ...) {

rc = msg_send(msg, option,
send_size, ...);

if (rc != SUCCESS)
return rc;

rc = msg_rcv(msg, option, rcv_size, ...);
return rc;

}

Block inside msg_rcv if
no message available

Send and Receive system
call implemented by a
non-blocking send part
and a blocking receive
part.

IPC examples - Continuations
msg_send_rcv(msg, option,

send_size, rcv_size, ...) {
rc = msg_send(msg, option,

send_size, ...);
if (rc != SUCCESS)

return rc;
cur_thread->continuation.msg = msg;
cur_thread->continuation.option = option;
cur_thread->continuation.rcv_size = rcv_size;

...
rc = msg_rcv(msg, option, rcv_size, ...,

msg_rcv_continue);
return rc;

}
msg_rcv_continue(cur_thread) {

msg = cur_thread->continuation.msg;
option = cur_thread->continuation.option;
rcv_size = cur_thread->continuation.rcv_size;

...
rc = msg_rcv(msg, option, rcv_size, ...,

msg_rcv_continue);
return rc;

}

9/10/2003

5

IPC Examples – stateless kernel
msg_send_rcv(cur_thread) {

rc = msg_send(cur_thread);
if (rc != SUCCESS)

return rc;
set_pc(cur_thread, msg_rcv_entry);
rc = msg_rcv(cur_thread);
if (rc != SUCCESS)

return rc;
return SUCCESS;

}

Set user-level PC
to restart msg_rcv

only

Single Kernel Stack
per Processor, event model

either continuations
– complex to program
– must be conservative in state saved (any state that might be

needed)
– Mach (Draves), L4Ka::Strawberry

or stateless kernel
– no kernel threads, kernel not interruptible, difficult to program
– request all potentially required resources prior to execution
– blocking syscalls must always be re-startable
– Processor-provided stack management can get in the way
– system calls need to be kept simple “atomic”.
+ kernel can be exchanged on-the-fly

e.g. the fluke kernel from Utah

low cache footprint
always the same stack is used !

Per-Thread Kernel Stack

simple, flexible
kernel can always use threads, no special techniques
required for keeping state while interrupted / blocked
no conceptual difference between kernel mode and user
mode
e.g. L4

but larger cache footprint
difficult to exchange kernel on-the-fly

Conclusion:
Either no
persistent tcbs or
tcbs must hold
virtual addresses

Conclusion:
We have to look
for a solution that
minimizes the
kernel stack size!

enter kernel (IA32)

trap / fault occurs (INT n / exception / interrupt)

user stack

tcb Aesp
eip

eflags kernel code

eax ebx
ecx edx

ebp esi edi

CPU

user mode

esp0esp0

points to the running
threads kernel stack

enter kernel (IA32)

user stack

tcb A

esp0esp0

ssespesp
eip

eflags kernel code

eax ebx
ecx edx

ebp esi edi

kernel mode

CPU

trap / fault occurs (INT n / exception / interrupt)
push user esp on to kernel stack, load kernel esp

enter kernel (IA32)

user stack

tcb A

esp0esp0

ssespflgesp
eip

eflags kernel code

eax ebx
ecx edx

ebp esi edi

trap / fault occurs (INT n / exception / interrupt)
push user esp on to kernel stack, load kernel esp
push user eflags, reset flags (I=0, S=0)

kernel mode

CPU

9/10/2003

6

enter kernel (IA32)

user stack

tcb A

esp0esp0

ssespflgcseipesp
eip

eflags kernel code

eax ebx
ecx edx

ebp esi edi

trap / fault occurs (INT n / exception / interrupt)
push user esp on to kernel stack, load kernel esp
push user eflags, reset flags (I=0, S=0)
push user eip, load kernel entry eip

hardware
programmed,
single instruction

kernel mode

CPU
enter kernel (IA32)

user stack

tcb A

esp0esp0

ssespflgcseipesp
eip

eflags
eax ebx
ecx edx

ebp esi edi

kernel code

X

trap / fault occurs (INT n / exception / interrupt)
push user esp on to kernel stack, load kernel esp
push user eflags, reset flags (I=0, S=0)
push user eip, load kernel entry eip

push X : error code (hw, at exception) or kernel-call type

hardware
programmed,
single instruction

kernel mode

CPU

enter kernel (IA32)

user stack

tcb A

esp0esp0

ssespflgcseipesp
eip

eflags
eax ebx
ecx edx

ebp esi edi

kernel code

edi … eax X

trap / fault occurs (INT n / exception / interrupt)
push user esp on to kernel stack, load kernel esp
push user eflags, reset flags (I=0, S=0)
push user eip, load kernel entry eip

push X : error code (hw, at exception) or kernel-call type
push registers (optional)

hardware
programmed,
single instruction

kernel mode

CPU
Sysenter/Sysexit

Fast kernel entry/exit
Only between ring 0 and 3
Avoid memory references
specifying kernel entry point
and saving state

Use Model Specific Register
(MSR) to specify kernel entry

Kernel IP, Kernel SP
Flat 4GB segments
Saves no state for exit

Sysenter
EIP = MSR(Kernel IP)
ESP = MSR(Kernel SP)
Eflags.I = 0, FLAGS.S = 0

Sysexit
ESP = ECX
EIP = EDX
Eflags.S = 3

User-level has to provide IP
and SP
by convention – registers
(ECX, EDX?)
Flags undefined

Kernel has to re-enable
interrupts

Sysenter/Sysexit

Emulate int instruction (ECX=USP, EDX=UIP)
sub $20, esp
mov ecx, 16(esp)
mov edx, 4(esp)
mov $5, (esp)

Emulate iret instruction
mov 16(esp), ecx
mov 4(esp), edx
sti
sysexit

tcb ssespflgcseip5

ESP

System call (IA32)

int 0x32
Error code e.g. 3
means page fault

Push all, the register
content to the stack

Pop all , see below

Interrupt return

esp = esp + 4
the old esp

push X
pusha
…
…
popa
add $4, esp
iret

9/10/2003

7

Kernel-stack state
Uniprocessor:

Any kstack ≠ myself is current !
(my kstack below [esp] is also current when in kernel mode.)

tcb ssespflgcseipedi … eax x

One thread is running
and all the others are
in their kernel-state
and can analyze their
stacks. All processes
except the running are
in kernel mode.

Kernel-stack state
Uniprocessor:

Any kstack ≠ myself is current !
(my kstack below [esp] is also current when in kernel mode.)

X permits to differentiate between stack layouts:

interrupt, exception, some system calls
ipc
V86 mode

tcb ssespflgcseipedi … eax 3

tcb ssespflgcseip5

tcb ssespflgcseipedi … eax 4 ds es fs gs

Kernel-stack state
Uniprocessor:

Any kstack ≠ myself is current !
(my kstack below [esp] is also current when in kernel mode.)

X permits to differentiate between stack layouts:

interrupt, exception, some system calls
ipc
V86 mode

tcb ssespflgcseipedi … eax 4

tcb ssespflgcseip5

tcb ssespflgcseipedi … eax 3

ds es fs gs

Remember:

• We need to find
any thread’s tcb starting from its uid
the currently executing thread’s tcb

align tcbs on a power of 2:

tcb

esp0esp0

esp

Kernel esp

Remember:

• We need to find
any thread’s tcb starting from its uid
the currently executing thread’s tcb

align tcbs:

tcb

esp0esp0

esp

mov esp, ebp
and -sizeof tcb, ebp

To find out the
starting address
from the tcb.

Thread switch (IA32)

push X
pusha
mov esp, ebp
and -sizeof tcb, ebp

dest tcb address -> edi

mov esp, [ebp].thr_esp
mov [edi].thr_esp, esp

mov esp, eax
and -sizeof tcb, eax
add sizeof tcb, eax
mov eax, [esp0_ptr]

popa
add $4, esp
iret

switch current
kernel stack pointer

Thread B

Thread A

switch esp0
so that next
enter kernel
uses new
kernel stack

int 32

int 32

9/10/2003

8

Switch threads (IA32)

user stack

tcb

esp0esp0

esp
eip

eflags
eax ebx
ecx edx

ebp esi edi

tcb

user stack

ssespflgcseipXedi … eaxCPU

user stack

esp
eip

eflags
eax ebx
ecx edx

ebp esi edi

int 0x32, push registers of the green thread

Switch threads (IA32)

tcb

esp0esp0

tcb
ssespflgcseipXedi … eax

ssespflgcseipXedi … eax

user stack

CPU

user stack

esp
eip

eflags
eax ebx
ecx edx

ebp esi edi

int 0x32, push registers of the green thread
switch kernel stacks (store and load esp)

Switch threads (IA32)

tcb

esp0esp0

tcb
ssespflgcseipXedi … eax

ssespflgcseipXedi … eax

user stack

CPU

user stack

esp
eip

eflags
eax ebx
ecx edx

ebp esi edi

int 0x32, push registers of the green thread
switch kernel stacks (store and load esp)
set esp0 to new kernel stack

Switch threads (IA32)

tcb

esp0esp0

tcb
ssespflgcseipXedi … eax

ssespflgcseipXedi … eax

user stack

CPU

user stack

esp
eip

eflags
eax ebx
ecx edx

ebp esi edi

int 0x32, push registers of the green thread
switch kernel stacks (store and load esp)
set esp0 to new kernel stack
pop orange registers, return to new user thread

Switch threads (IA32)

tcb

esp0esp0

tcb
ssespflgcseipXedi … eax

user stack

CPU

SYSENTER
SYSEXIT

???

Sysenter/Sysexit

Emulate int instruction (ECX=USP, EDX=UIP)
mov esp0, esp
sub $20, esp
mov ecx, 16(esp)
mov edx, 4(esp)
mov $5, (esp)

Emulate iret instruction
mov 16(esp), ecx
mov 4(esp), edx
sti
sysexit

tcb ssespflgcseip5

Trick:
MSR points to esp0

mov (esp), esp

9/10/2003

9

Case study: IA-64

Thread Switching and
Kernel Entry

IA-64 User Accessible Registers

063

0gr0

gr1

gr2

gr127

General Registers

fr0

fr1

fr2

81 0

+0.0
+1.0

fr127

Floating-point Registers

1pr0

pr1

pr2

pr63

Predicates
063

br0

br1

br2

br7

Branch Registers
063

Application Registers

KR0ar0

KR7ar7

RSCar16

BSPar17

BSPSTOREar18

RNATar19

FCRar21

EFLAGar24

CSDar25

SSDar26

CFLGar27

FSRar28

FIRar29

FDRar30

CCVar32

UNATar36

FPSRar40

ITCar44

PFSar64

LCar65

ECar66

ar127

063

Instruction Pointer

IP

05

User Mask

063

Current Frame Marker

CFM

Thread Switching Overhead

063

0gr0

gr1

gr2

gr127

General Registers

fr0

fr1

fr2

81 0

+0.0
+1.0

fr127

Floating-point Registers

1pr0

pr1

pr2

pr63

Predicates
063

br0

br1

br2

br7

Branch Registers
063

Application Registers

KR0ar0

KR7ar7

RSCar16

BSPar17

BSPSTOREar18

RNATar19

FCRar21

EFLAGar24

CSDar25

SSDar26

CFLGar27

FSRar28

FIRar29

FDRar30

CCVar32

UNATar36

FPSRar40

ITCar44

PFSar64

LCar65

ECar66

ar127

063

Instruction Pointer

IP

05

User Mask

063

Current Frame Marker

CFM

All registers must be saved on context
switches

More than 3.2KB3.2KB of register contents

Certain optimizations made possible by
hardware

Thread Switching Overhead

063

0gr0

gr1

gr2

gr127

General Registers

fr0

fr1

fr2

81 0

+0.0
+1.0

fr127

Floating-point Registers

1pr0

pr1

pr2

pr63

Predicates
063

br0

br1

br2

br7

Branch Registers
063

Application Registers

KR0ar0

KR7ar7

RSCar16

BSPar17

BSPSTOREar18

RNATar19

FCRar21

EFLAGar24

CSDar25

SSDar26

CFLGar27

FSRar28

FIRar29

FDRar30

CCVar32

UNATar36

FPSRar40

ITCar44

PFSar64

LCar65

ECar66

ar127

063

Instruction Pointer

IP

05

User Mask

063

Current Frame Marker

CFM

Static Registers
gr0 – gr31

Stacked Registers
gr32 – gr127

gr0 fixed to zero
On thread switch:

Static registers must
be saved explicitly
Stacked registers
handled by register
stack engine (RSE)

“Only” 2.5KB2.5KB of register
contents left

Thread Switching Overhead

063

0gr0

gr1

gr2

gr127

General Registers

fr0

fr1

fr2

81 0

+0.0
+1.0

fr127

Floating-point Registers

1pr0

pr1

pr2

pr63

Predicates
063

br0

br1

br2

br7

Branch Registers
063

Application Registers

KR0ar0

KR7ar7

RSCar16

BSPar17

BSPSTOREar18

RNATar19

FCRar21

EFLAGar24

CSDar25

SSDar26

CFLGar27

FSRar28

FIRar29

FDRar30

CCVar32

UNATar36

FPSRar40

ITCar44

PFSar64

LCar65

ECar66

ar127

063

Instruction Pointer

IP

05

User Mask

063

Current Frame Marker

CFM

fr0 and fr1 fixed
Remaining floating-
point registers can be
handled lazily

“Only” ~0.5KB~0.5KB of
register contents left

Thread Switch Example
[pistachio/kernel/include/glue/v4-ia64/tcb.h]

asm volatile (
"r_bsp = r14 \n"
"r_ip = r15 \n"
"r_rp = r16 \n"
"r_cfm = r17 \n"
"r_pfs = r18 \n"
"r_rnat = r19 \n"
"r_unat = r20 \n"
"r_pr = r21 \n"
"r_psr = r22 \n"
"new_stack = r31 \n"
"sp1 = r10 \n"
"sp2 = r11 \n"
" \n"
" // Move context into general registers \n"
" mov r_pfs = ar.pfs \n"
" mov r_rp = rp \n"
" movl r_ip = 2f \n"
" \n"
" // Make sure that stacked reg is not used \n"
" mov new_stack = %[dest_stack] \n"
" \n"
" // Allocate for switch frame \n"
" add sp = -%[sizeof_ctx],sp ;; \n"
" ;; \n"
" mov ar.rsc = 0 \n"
" add sp1 = %[offset_pfs], sp \n"
" add sp2 = %[offset_pfs]+8,sp \n"
" st8 [%[this_stack_ptr]] = sp \n"
" \n"
" // Set thread ids and ksp for new thread \n"
" mov "MKSTR(r_GLOBAL_ID)" = %[dest_gid] \n"
" mov "MKSTR(r_LOCAL_ID) " = %[dest_lid] \n"
" mov "MKSTR(r_KERNEL_SP)" = %[dest_stack_top] \n"
" mov "MKSTR(r_PHYS_TCB_ADDR)" = %[dest_tcb_phys] \n"
" \n"
" // Set region id \n"
" mov rr[r0] = %[dest_rid] \n"
" \n"
" // Make a call so that we can get CFM \n"
" br.call.sptk.many rp = 1f \n"
" \n"
" // Store context into switch frame \n"
"1: alloc r_cfm = ar.pfs, 0, 0, 0, 0 \n"
" ;; \n"
" mov r_bsp = ar.bsp \n"
" flushrs \n"
" ;; \n"
" \n"
" st8 [sp1] = r_pfs, 16 \n"
" st8 [sp2] = r_cfm, 16 \n"
" mov r_unat = ar.unat \n"
" mov r_rnat = ar.rnat \n"
" mov r_pr = pr \n"
" mov r_psr = psr \n"
" ;; \n"
" st8 [sp1] = r_ip, 16 \n"
" st8 [sp2] = r_bsp, 16 \n"
“ ;; \n”

" st8 [sp1] = r_rnat, 16 \n"
" st8 [sp2] = r_unat, 16 \n"
" ;; \n"
" st8 [sp1] = r_pr \n"
" st8 [sp2] = r_psr, 16 \n"
" invala \n"
" loadrs \n"
" ;; \n"
" st8 [sp2] = r_rp \n"
" \n”
" // Get new switch frame \n"
" add sp1 = %[offset_pfs], new_stack \n"
" add sp2 = %[offset_pfs]+8,new_stack \n"
" ;; \n"
" \n"
" // Load context from new frame \n"
" ld8 r_pfs = [sp1], 16 \n"
" ld8 r_cfm = [sp2], 16 \n"
" ;; \n"
" ld8 r_ip = [sp1], 16 \n"
" ld8 r_bsp = [sp2], 16 \n"
" mov ar.pfs = r_cfm \n"
" ;; \n"
" ld8 r_rnat = [sp1], 16 \n"
" ld8 r_unat = [sp2], 16 \n"
" mov ar.bspstore = r_bsp \n"
" ;; \n"
" ld8 r_pr = [sp1] \n"
" ld8 r_psr = [sp2], 16 \n"
" mov ar.rnat = r_rnat \n"
" mov ar.unat = r_unat \n"
" ;; \n"
" ld8 r_rp = [sp2] \n"
" mov rp = r_ip \n"
" add sp = %[sizeof_ctx],new_stack \n"
" mov pr = r_pr, 0x1ffff \n"
" mov psr.l = r_psr \n"
" ;; \n"
" srlz.d \n"
" ;; \n"
" br.ret.sptk.many rp \n"
" \n"
"2: // Restore non-clobberable registers \n"
" mov ar.pfs = r_pfs \n"
" mov rp = r_rp \n"
" mov ar.rsc = 3 \n"
" ;; \n"
:
:
[this_stack_ptr] "r" (&this->stack),
[dest_stack]"r" (dest->stack),
[sizeof_ctx] "i" (sizeof (ia64_switch_context_t)),
[offset_pfs] "i" (offsetof (ia64_switch_context_t, pfs)),
[dest_gid] "r" (dest->get_global_id ().get_raw ()),
[dest_lid] "r" (dest->get_local_id ().get_raw ()),
[dest_stack_top] "r" (dest->get_stack_top ()),
[dest_tcb_phys] "r" (dest->arch.phys_addr),
[dest_rid] "r" ((dest->space->get_region_id () << 8) + (12 << 2))
:
CALLER_SAVED_REGS, CALLEE_SAVED_REGS, "memory");

About 50 instructionsLeave register save/restore
up to compiler

9/10/2003

10

Exception Handling

063

0gr0

gr1

gr2

gr127

General Registers

fr0

fr1

fr2

81 0

+0.0
+1.0

fr127

Floating-point Registers

1pr0

pr1

pr2

pr63

Predicates
063

br0

br1

br2

br7

Branch Registers
063

Application Registers

KR0ar0

KR7ar7

RSCar16

BSPar17

BSPSTOREar18

RNATar19

FCRar21

EFLAGar24

CSDar25

SSDar26

CFLGar27

FSRar28

FIRar29

FDRar30

CCVar32

UNATar36

FPSRar40

ITCar44

PFSar64

LCar65

ECar66

ar127

063

Instruction Pointer

IP

05

User Mask

063

Current Frame Marker

CFM

Bank 1 used normally
Automatic switch to bank 0
on exceptions

Frees up registers for
storing context

Can switch manually

Banked Registers
gr16 – gr31

Exception Handling

063

0gr0

gr1

gr2

gr127

General Registers

0

Backing Store Run on bank 1
Exception

Switches to bank 0
Store other registers

Exception Handling

063

0gr0

gr1

gr2

gr127

General Registers Backing Store Run on bank 1
Exception

Switches to bank 0
Store other registers
Switch to bank 1
Store remaining registers

Must not receive interruptsMust not receive interrupts
or raise exceptions while or raise exceptions while
storing exception contextstoring exception context

Kernel Entry

Kernel entry by exception is slow
Must flush instruction pipeline

IA-64 provides an epcepc instruction
Raises privileges to kernel mode
Continues execution on next instruction
Can only be executed in special regions of
virtual memory

Kernel

User

ipc:

call ipc ipc:

return

epc

call ipc

Mips R4600

32 Registers
no hardware stack support
special registers

exception IP, status, etc.
single registers, unstacked!

Soft TLB !!

r31 k0
r30 k1

r29
r28

r2
r1

r0 = 0

r27
r26
r25
r24
r23
r22
r21
r20
r19
r18
r17
r16
r15
r14
r13
r12
r11
r10
r9
r8
r7
r6
r5

r3
r4

Kernel has to parse
page table.

9/10/2003

11

Exceptions on MIPS

On an exception (syscall,
interrupt, …)

Loads Exc PC with
faulting intruction
Sets status register

Kernel mode, interrupts
disabled, in exception.

Jumps to
0xffffffff80000180

r31 k0
r30 k1

r29
r28

r2
r1

r0 = 0

r27
r26
r25
r24
r23
r22
r21
r20
r19
r18
r17
r16
r15
r14
r13
r12
r11
r10
r9
r8
r7
r6
r5

r3
r4

Exc PC
Status To switch to kernel mode

Save relevant user state
Set up a safe kernel
execution environment

Switch to kernel stack
Able to handle kernel
exceptions
Potentially enable
interrupts

r31 k0
r30 k1

r29
r28

r2
r1

r0 = 0

r27
r26
r25
r24
r23
r22
r21
r20
r19
r18
r17
r16
r15
r14
r13
r12
r11
r10
r9
r8
r7
r6
r5

r3
r4

Exc PC
Status

Problems

No stack pointer???
Defined by convention sp
(r29)

Load/Store Architecture: no
registers to work with???

By convention k0, k1
(r31, r30) for kernel use
only

r31 k0
r30 k1

r29
r28

r2
r1

r0 = 0

r27
r26
r25
r24
r23
r22
r21
r20
r19
r18
r17
r16
r15
r14
r13
r12
r11
r10
r9
r8
r7
r6
r5

r3
r4

Exc PC
Status enter kernel:

(Mips)

mov k1, C0_status
and k0,k1, exc_code_mask
sub k0, syscall_code
IFNZ k0

mov k0, kernel_base
jmp other_exception

FI
mov t0, k1
srl k1, 5 /* clear IE, EXL, ERL, KSU */
sll k1, 5
mov C0_status, k1

and k1, t0, st_ksu_mask
IFNZ k1

mov t2, sp

mov sp, kernel_stack_bottom(k0)
FI

mov t1, C0_exception_ip
mov [sp-8], t2
add t1, t1, 4
mov [sp-16], t1
mov [sp-24], t0
IFZ AT, zero

sub sp, 24
jmp k_ipc

FI

Load kernel stack
pointer if trap from
user mode

Push old sp (t2), ip
(t1), and status (t0)

no syscall
trap

TCB structure
MyselfGlobal
MyselfLocal
State
Resources
KernelStackPtr
Scheduling

ReadyList
TimesliceLength
RemainingTimeslice
TotalQuantum
Priority
WakeupList

Space
PDirCache
…
Stack[]

Thread Id

Local Id = UTCB

All threads
ready to execute

Round Robin
Scheduler

Address Space

Optimization
IA32: %CR3

???

???

Construction Conclusions (1)

Thread state must be saved / restored on thread
switch.
We need a thread control block (TCB) per thread.
TCBs must be kernel objects.

Tcbs implement threads.

We need to find

any thread’s tcb starting from its any thread’s tcb starting from its uiduid
the currently executing thread’s TCB
(per processor)

9/10/2003

12

Thread ID

thread number
to find the tcb

thread version number
to make thread ids “unique” in time

Thread ID TCB (a)

Indirect via
table

mov thread_id, %eax
mov %eax, %ebx
and mask thread_no, %eax
mov tcb_pointer_array[%eax*4], %eax

cmp OFS_TCB_MYSELF(%eax), %ebx
jnz invalid_thread_id

thread id

version number

Thread ID TCB (b)

direct address

version

mov thread_id, %eax
mov %eax, %ebx
and mask thread_no, %eax
add offset tcb_array, %eax

cmp %ebx, OFS_TCB_MYSELF(%eax)
jnz invalid_thread_id

thread id

version

number

Thread ID translation

Via table
no MMU
table access per TCB
TLB entry for table

TCB pointer array
requires 1M virtual
memory for 256K
potential threads

Via MMU
MMU
no table access
TLB entry per TCB

virtual resource TCB
array required, 256K
potential threads need
128M virtual space for
TCBs

Trick:

1 Mdyn all

Allocate physical parts of table
on demand,

dependent on the max
number of allocated tcb

map all remaining parts to a
0-filled page

any access to
corresponding threads
will result in “invalid
thread id”

however: requires 4K pages in
this table

TLB working set grows:
4 entries to cover 4000
threads.
Nevertheless much better
than 1 TLB for 8 threads
like in direct address.

o

TCB pointer array
requires 1M virtual
memory for 256K
potential threads

AS Layout 32bits, virt tcb, entire PM

user regions

shared system regions

per-space system regions

other kernel tables
physical memory
kernel code
tcbs

phys mem

9/10/2003

13

Limitations 32bits, virt tcb, entire PM

number of threads
physical mem size

L4Ka::Pistachio/ia32:
262,144 threads262,144 threads
256 M physical memory256 M physical memory

3 G 256 M 256 M512 M

phys mem

Nearly e
very desktop PC

has more than 256 M

Physical Memory

Kernel uses physical for:
Application’s Page tables
Kernel memory
Kernel debugger

Issue occurs only when
kernel accesses physical
memory

Limit valid physical range
to remap size (256M)
or…

• Map and unmap
• copy IPC

• Page tables
• TCBs

• KDB output
• Mem Dump

Physical-to-virtual Pagetable

Dynamically remap kernel-needed pages
Walk physical-to-virtual ptab before accessing
Costs???

Cache
TLB
Runtime

Kernel Debugger (not performance critical)

Walk page table in software
Remap on demand (4MB)
Optimization: check if already mapped

phys mem

FPU Context Switching

Strict switching
Thread switch:

Store current thread’s FPU state
Load new thread’s FPU state

Extremely expensive
IA-32’s full SSE2 state is 512 Bytes
IA-64’s floating point state is ~1.5KB

May not even be required
Threads do not always use FPU

Lazy FPU switching

Lock FPU on thread switch
Unlock at first use – exception
handled by kernel
Unlock FPU
If fpu_owner != current

Save current state to fpu_owner
Load new state from current
fpu_owner := current

FPU

finit
fld

fcos
fst

finit
fld

Kernel

current fpu_owner

locked

pacman()

9/10/2003

14

IPC

Functionality & Interface

What IPC primitives do we need to
communicate?

Send to
(a specified thread)

Receive from
(a specified thread)

Two threads can
communicate
Can create specific protocols
without fear of interference
from other threads
Other threads block until it’s
their turn
Problem:

How to communicate
with a thread unknown a
priori

(e.g., a server’s clients)

What IPC primitives do we need to
communicate?

Send to
(a specified thread)

Receive from
(a specified thread)

Receive
(from any thread)

Scenario:
A client thread sends a
message to a server
expecting a response.
The server replies
expecting the client
thread to be ready to
receive.

Issue: The client might be
preempted between the
send tosend to and receive fromreceive from.

What IPC primitives do we need to
communicate?

Send to
(a specified thread)

Receive from
(a specified thread)

Receive
(from any thread)

Call
(send to, receive from specified

thread)

Send to & Receive
(send to, receive from any thread)

Send to, Receive from
(send to, receive from specified

different threads)

Are other combinations
appropriate?

Atomic operation to ensure
that server‘s (callee‘s) reply
cannot arrive before client
(caller) is ready to receive

Atomic operation for
optimization reasons.
Typically used by servers to
reply and wait for the next
request (from anyone).

What message types are
appropriate?

Register
Short messages we hope to make fast by avoiding
memory access to transfer the message during IPC
Guaranteed to avoid user-level page faults during IPC

Direct string (optional)

In-memory message we construct to send

Indirect strings (optional)

In-memory messages sent in place
Map pages (optional)

Messages that map pages from sender to receiver

Can be combined
Can be combined

What message types are
appropriate?

Register
Short messages we hope to make fast by avoiding
memory access to transfer the message during IPC
Guaranteed to avoid user-level page faults during IPC

Direct string (optional)

In-memory message we construct to send

Indirect strings (optional,)

In-memory messages sent in place
Map pages (optional)

Messages that map pages from sender to receiver

Strings (optional)

[Version 4, Version X.2]

9/10/2003

15

IPC - API

Operations
Send to
Receive from
Receive
Call
Send to & Receive
Send to, Receive from

Message Types
Registers
Strings
Map pages

Problem

How to we deal with threads that are:
Uncooperative
Malfunctioning
Malicious

That might result in an IPC operation never
completing?

IPC - API

Timeouts (V2, V X.0)

snd timeout, rcv timeout

IPC - API

Timeouts (V2, V X.0)

snd timeout, rcv timeout
snd-pf timeout

specified by sender

Attack through
receiver’s pager:

PF

Pager

IPC - API

Timeouts (V2, V X.0)

snd timeout, rcv timeout
snd-pf / rcv-pf timeout

specified by receiver

Attack through
sender’s pager:

PF

Pager

Timeout Issues

What timeout values
are typical or
necessary?
How do we encode
timeouts to minimize
space needed to specify
all four values.

Timeout values
Infinite

Client waiting for a
server

0 (zero)
Server responding to
a client
Polling

Specific time
1us – 19 h (log)

9/10/2003

16

Assume short timeout need
to finer granularity than long
timeouts

Timeouts can always be
combined to achieve long
fine-grain timeouts

To Compact the Timeout Encoding

Assume page fault timeout
granularity can be much less
than send/receive granularity

mrcv ercvmsnd esnd

send/receive timeout =

∞ if e = 0
415-em if e > 0

0 if m = 0, e ≠ 0

Page fault timeout has
no mantissa

mrcv ercvmsnd esndpsnd prcv

page fault timeout =

∞ if p = 0

415-p if 0 < p < 15

0 if p = 15

Timeout Range of Values (seconds) [V 2,
V X.0]

e m =1 m =255
0
1 268.435456 68451.04128
2 67.108864 17112.76032
3 16.777216 4278.19008
4 4.194304 1069.54752
5 1.048576 267.38688
6 0.262144 66.84672
7 0.065536 16.71168
8 0.016384 4.17792
9 0.004096 1.04448
10 0.001024 0.26112
11 0.000256 0.06528
12 0.000064 0.01632
13 0.000016 0.00408
14 0.000004 0.00102
15 0.000001 0.000255

∞

1µs – 255µs with
1µs granularity

Up to 19h with
~4.4min granularity

IPC - API

Timeouts (V2, V X.0)

snd timeout, rcv timeout
snd-pf / rcv-pf timeout

timeout values
0
infinite
1us … 19 h (log)

Compact 32-bit encoding

mrcv ercvmsnd esndpsnd prcv

Timeout Problem

Worst case IPC transfer time is high given a
reasonable single page-fault timeout

Potential worst-case is a page fault per memory
access

IPC time = Send timeout + n × page fault timeout

Worst-case for a careless implementation is
unbound

If pager can respond with null mapping that does not
resolve the fault

IPC - API

Timeouts (V X.2, V 4)

snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

snd to
min (xfer to, xfer to)
rcv to

time

wait for send send message
(xfer) wait for reply receive message

(xfer)

9/10/2003

17

IPC - API

Timeouts (V X.2, V 4)

snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

relative timeout values
0
infinite
1us … 610 h (log) 2

em µs

0(16)

0(10)0 1(5)

m(10)0 e(5)

IPC - API

Timeouts (V X.2, V 4)

snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

relative timeout values
0
infinite
1us … 610 h (log) 2

em µs

absolute timeout values m(10)1 e(4) c

clock m(10) 0

e10

clock + 2(e+10) ≠+ 2(e+10) m(10)

0(16)

0(10)0 1(5)

m(10)0 e(5)

=

Timeout Range of Values (seconds) [V 4,
V X.2]

0 0.000001 0.001023
1 0.000002 0.002046
3 0.000008 0.008184
5 0.000032 0.032736
7 0.000128 0.130944
9 0.000512 0.523776
11 0.002048 2.095104
13 0.008192 8.380416
15 0.032768 33.521664
17 0.131072 134.086656
19 0.524288 536.346624
21 2.097152 2145.386496
23 8.388608 8581.545984
25 33.554432 34326.18394
27 134.217728 137304.7357
29 536.870912 549218.943
31 2147.483648 2196875.772

1µs – 1023µs with
1µs granularity

Up to ~610h with
~35min granularity

To Encode for IPC
Send to
Receive from
Receive
Call
Send to & Receive
Send to, Receive from
Destination thread ID
Source thread ID
Send registers
Receive registers
Number of send strings
Send string start for each string
Send string size for each string
Number of receive strings
Receive string start for each string
Receive string size for each string

Number of map pages
Page range for each map page
Receive window for mappings
IPC result code
Send timeout
Receive timeout
Send Xfer timeout
Receive Xfer timeout
Receive from thread ID
Specify deceiting IPC
Thread ID to deceit as
Intended receiver of deceited IPC

Ideally Encoded in Registers

Parameters in registers whenever possible
Make frequent/simple operations simple and fast

EAX

ECX

EDX

EBX

EBP

ESI

EDI

Sender RegistersSender Registers Receiver RegistersReceiver Registers

Call-reply example
Thread B

pre

Thread A

IPC call

pre

IPC reply & wait

post

post

pre

IPC reply & wait

9/10/2003

18

Send and Receive Encoding

00 (Nil ID) is a reserved thread ID
Define --11 as a wildcard thread ID

ECX

EBX

EBP

ESI

EDI

Sender RegistersSender Registers Receiver RegistersReceiver Registers

receive specifier

destinationEAX

EDX

Nil ID means no send
operation

Nil ID means no receive
operation
Wildcard means receive
from any thread

Why use a single call instead of
many?

The implementation of the individual send and
receive is very similar to the combined send and
receive

We can use the same code
We reduce cache footprint of the code
We make applications more likely to be in cache

To Encode for IPC
Send to
Receive from
Receive
Call
Send to & Receive
Send to, Receive from
Destination thread ID
Source thread ID
Send registers
Receive registers
Number of send strings
Send string start for each string
Send string size for each string
Number of receive strings
Receive string start for each string
Receive string size for each string

Number of map pages
Page range for each map page
Receive window for mappings
IPC result code
Send timeout
Receive timeout
Send Xfer timeout
Receive Xfer timeout
Receive from thread ID
Specify deceiting IPC
Thread ID to deceit as
Intended receiver of deceited IPC

Message Transfer

Assume that 64 extra registers are available
Name them MR0 … MR63 (message registers 0 … 63)

All message registers are transferred during IPC

To Encode for IPC
Send to
Receive from
Receive
Call
Send to & Receive
Send to, Receive from
Destination thread ID
Source thread ID
Send registers
Receive registers
Number of send strings
Send string start for each string
Send string size for each string
Number of receive strings
Receive string start for each string
Receive string size for each string

Number of map pages
Page range for each map page
Receive window for mappings
IPC result code
Send timeout
Receive timeout
Send Xfer timeout
Receive Xfer timeout
Receive from thread ID
Specify deceiting IPC
Thread ID to deceit as
Intended receiver of deceited IPC

Message construction

Messages are stored in
registers (MR0 … MR63)
First register (MR0) acts as
message tag
Subsequent registers
contain:

Untyped words (u), and
Typed words (t)
(e.g., map item, string item)

labellabel flagsflags tt uuMR0

Message Tag

Various IPC flags

Number of typed
words

Number of
untyped words

Freely available
(e.g., request type)

9/10/2003

19

Message construction

labellabel flagsflags tt uuMR0

Message

MR8

MR7

MR6

MR5

MR4

5

MR2

MR3

MR1

3

Messages are stored in
registers (MR0 … MR63)
First register (MR0) acts as
message tag
Subsequent registers
contain:

Untyped words (u), and
Typed words (t)
(e.g., map item, string item)

Message construction

Typed items occupy one or
more words
Three currently defined
items:

Map item (2 words)

Grant item (2 words)

String item (2+ words)

Typed items can have
arbitrary order

labellabel flagsflags tt uuMR0

Message

MR2

MR3

MR1

3

MR8

MR7

MR6

MR5

MR4

5

Map Item

String Item

Map and Grant items

Two words:
Send base
Fpage

Lower bits of send base
indicates map or grant item

send basesend base

send fpagesend fpage

00 100C100C
Map Item

send basesend base

send fpagesend fpage

00 101C101C
Grant Item

locationlocation sizesize 0wrx0wrx

Fpage

MRi

MRi+1

MRi

MRi+1

Semantics will be explained during

Semantics will be explained during

memory management lecture

memory management lecture

String items

Max size 4MB (per string)

Compound strings
supported

Allows scatter-gather
Incorporates cacheability
hints

Reduce cache pollution
for long copy operations

string lengthstring length

string pointerstring pointer

String Item
00 00 0hhC0hhC MRi

MRi+1

“hh” indicates
cacheability hints

for the string

String items

string lengthstring length

string pointerstring pointer

String Item
00 00 0hhC0hhC MRi

MRi+1

1

string lengthstring length

string pointerstring pointer

00 00 0hhC0hhC MRi+j+1

MRi+j+2

string pointerstring pointer

k - 1

MRi+j+3string pointerstring pointer

MRi+j+k

“hh” indicates
cacheability hints

for the string

j - 1

string pointerstring pointer

j - 1

MRi+2string pointerstring pointer

MRi+j

k - 1

1
All substrings are of

same size

Different size compound
strings require a new

string specifier

New string specifier
may of course contain

substrings

To Encode for IPC
Send to
Receive from
Receive
Call
Send to & Receive
Send to, Receive from
Destination thread ID
Source thread ID
Send registers
Receive registers
Number of send strings
Send string start for each string
Send string size for each string
Number of receive strings
Receive string start for each string
Receive string size for each string

Number of map pages
Page range for each map page
Receive window for mappings
IPC result code
Send timeout
Receive timeout
Send Xfer timeout
Receive Xfer timeout
Receive from thread ID
Specify deceiting IPC
Thread ID to deceit as
Intended receiver of deceited IPC

9/10/2003

20

Timeouts

EBX

EBP

ESI

EDI

Sender RegistersSender Registers Receiver RegistersReceiver Registers

receive specifier

destinationEAX

EDX
Timeouts values are only
16 bits
Store send and receive
timeout in single register

timeoutsECX

Send and receive timeouts are the important ones
Xfer timeouts only needed during string transfer
Store Xfer timeouts in predefined memory location

To Encode for IPC
Send to
Receive from
Receive
Call
Send to & Receive
Send to, Receive from
Destination thread ID
Source thread ID
Send registers
Receive registers
Number of send strings
Send string start for each string
Send string size for each string
Number of receive strings
Receive string start for each string
Receive string size for each string

Number of map pages
Page range for each map page
Receive window for mappings
IPC result code
Send timeout
Receive timeout
Send Xfer timeout
Receive Xfer timeout
Receive from thread ID
Specify deceiting IPC
Thread ID to deceit as
Intended receiver of deceited IPC

String Receival

Assume that 34 extra registers are available
Name them BR0 … BR33 (buffer registers 0 … 33)

Buffer registers specify
Receive strings
Receive window for mappings

Receiving messages

Receiver buffers are
specified in registers (BR0 …
BR33)

First BR (BR0) contains
“Acceptor”

May specify receive
window (if not nil-fpage)
May indicate presence of
receive strings/buffers
(if s-bit set)

Acceptor
receive windowreceive window 000s000s BR0

Receiving messages

Acceptor
receive windowreceive window 000s000s BR0

string lengthstring length

string pointerstring pointer

00 00 0hhC0hhC BR1

BR2

0001

The s-bit set indicates presence
of string items acting as receive

buffers

string lengthstring length

string pointerstring pointer

00 00 0hhC0hhC BR3

BR4

0hh1

If C-bit in string item is set, it
indicates presence of more

receive buffers

string pointerstring pointer

j - 1

BR5string pointerstring pointer

BR4+j

A receive buffer can of course
be a compound string

If C-bit in string item is cleared,
it indicates that no more

receive buffers are present

0hh0

To Encode for IPC
Send to
Receive from
Receive
Call
Send to & Receive
Send to, Receive from
Destination thread ID
Source thread ID
Send registers
Receive registers
Number of send strings
Send string start for each string
Send string size for each string
Number of receive strings
Receive string start for each string
Receive string size for each string

Number of map pages
Page range for each map page
Receive window for mappings
IPC result code
Send timeout
Receive timeout
Send Xfer timeout
Receive Xfer timeout
Receive from thread ID
Specify deceiting IPC
Thread ID to deceit as
Intended receiver of deceited IPC

9/10/2003

21

IPC Result

Error conditions
are exceptional

I.e., not common case
No need to optimize for error handling

Bit in received message tag indicate error
Fast check

Exact error code store in predefined memory location

labellabel flagsflags tt uuMR0

Message Tag

IPC Result

EBX

EBP

ESI

EDI

Sender RegistersSender Registers Receiver RegistersReceiver Registers

receive specifier

destinationEAX

EDX

timeoutsECX

IPC errors flagged in MR0

Senders thread ID stored in register

from

To Encode for IPC
Send to
Receive from
Receive
Call
Send to & Receive
Send to, Receive from
Destination thread ID
Source thread ID
Send registers
Receive registers
Number of send strings
Send string start for each string
Send string size for each string
Number of receive strings
Receive string start for each string
Receive string size for each string

Number of map pages
Page range for each map page
Receive window for mappings
IPC result code
Send timeout
Receive timeout
Send Xfer timeout
Receive Xfer timeout
Receive from thread ID
Specify deceiting IPC
Thread ID to deceit as
Intended receiver of deceited IPC

IPC Redirection

Redirection/deceiting IPC
flagged by bit in the
message tag

Fast check
When redirection bit set

Thread ID to deceit as and intended receiver ID
stored in predefined memory locations

labellabel flagsflags tt uuMR0

Message Tag

To Encode for IPC
Send to
Receive from
Receive
Call
Send to & Receive
Send to, Receive from
Destination thread ID
Source thread ID
Send registers
Receive registers
Number of send strings
Send string start for each string
Send string size for each string
Number of receive strings
Receive string start for each string
Receive string size for each string

Number of map pages
Page range for each map page
Receive window for mappings
IPC result code
Send timeout
Receive timeout
Send Xfer timeout
Receive Xfer timeout
Receive from thread ID
Specify deceiting IPC
Thread ID to deceit as
Intended receiver of deceited IPC

Virtual Registers

What about message and buffer registers?
Most architectures do not have 64+34
spare registers

What about predefined memory locations?
Must be thread local

Define as Virtual Registers

Define as Virtual Registers

Define as Virtual Registers

Define as Virtual Registers

9/10/2003

22

Preserved by
kernel during
context switch

What are Virtual Registers?

Virtual registers are backed
by either

Physical registers, or
Non-pageable memory

UTCBs hold the memory
backed registers

UTCBs are thread local
UTCB can not be paged

No page faults
Registers always
accessible EBXEBX

EBPEBP

ESIESI

Physical Registers

UTCB
Preserved by

switching UTCB
on context switch

MR4

MR3

MR63

MR62

MR61

Virtual Registers

MR63MR63

MR62MR62

MR61MR61

MR4MR4

MR3MR3

MR2MR2

MR1MR1

MR0MR0

Other Virtual Register Motivation

Portability
Common IPC API on different architectures

Performance
Historically register only IPC was fast but
limited to 2-3 registers on IA-32, memory
based IPC was significantly slower but of
arbitrary size
Needed something in between

Switching UTCBs (IA-32)

Locating UTCB must be
fast

(avoid using system call)

Use separate segment
for UTCB pointer

mov %gs:0, %edi

Switch pointer on
context switches

AACS, DS BB

GS

Switching UTCBs (IA-32)

Locating UTCB must be
fast

(avoid using system call)

Use separate segment
for UTCB pointer

mov %gs:0, %edi

Switch pointer on
context switches

AACS, DS BB

GS

Message Registers and UTCB

EDI

Sender RegistersSender Registers Receiver RegistersReceiver Registers

receive specifier

destinationEAX

EDX

timeoutsECX

Some MRs are mapped to physical registers
Kernel will need UTCB pointer anyway – pass it

from

MR1

MR2

MR0

EBX

EBP

ESI

MR1

MR2

MR0

UTCBEDI UTCB

Free Up Registers for Temporary
Values

Sender RegistersSender Registers Receiver RegistersReceiver Registers

destination
timeouts

receive specifier
MR1

MR2

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from

MR1

MR2

MR0

UTCBEDI UTCB

Kernel need registers for temporary values
MR1 and MR2 are the only registers that the kernel may not
need

9/10/2003

23

Free Up Registers for Temporary
Values

Sender RegistersSender Registers Receiver RegistersReceiver Registers

destination
timeouts

receive specifier
~
~

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from

MR1

MR2

MR0

UTCBEDI UTCB

Sysexit instruction requires:
ECX = user IP
EDX = user SP

IPC Register Encoding

Parameters in registers whenever possible
Make frequent/simple operations simple and fast

destination
timeouts

receive specifier
~
~

MR0

EAX

ECX

EDX

EBX

EBP

ESI

from
~
~

MR1

MR2

MR0

Sender RegistersSender Registers Receiver RegistersReceiver Registers

UTCBEDI UTCB

What About IA-64?

063

0gr0

gr1

gr2

gr127

General Registers

fr0

fr1

fr2

81 0

+0.0
+1.0

fr127

Floating-point Registers

1pr0

pr1

pr2

pr63

Predicates
063

br0

br1

br2

br7

Branch Registers
063

Application Registers

KR0ar0

KR7ar7

RSCar16

BSPar17

BSPSTOREar18

RNATar19

FCRar21

EFLAGar24

CSDar25

SSDar26

CFLGar27

FSRar28

FIRar29

FDRar30

CCVar32

UNATar36

FPSRar40

ITCar44

PFSar64

LCar65

ECar66

ar127

063

Instruction Pointer

IP

05

User Mask

063

Current Frame Marker

CFM

totogr14

gr15

gr16

timeoutstimeouts

FromSpecifierFromSpecifier

gr9 fromfrom

ar.k6 UTCBUTCB

MR0
MR0gr32

gr33

gr34

MR1
MR1

MR2
MR2

gr35 MR3
MR3

gr36 MR4
MR4

gr37 MR5
MR5

gr38 MR6
MR6

gr39 MR7
MR7

All other registersAll other registers
are undefinedare undefined

