u-Kernel Construction

9/10/2003

Fundamental Abstractions

\
m Thread
m Address Space
= What /s a thread?

= How to implement?

= What conclusions can we draw from our
analysis with respect to uK construction?

Fundamental Abstractions

A thread is an independent flow of
control inside an address space.
Threads are identified by unique
identifiers and communicate via IPC.
Threads are characterized by a set of
registers, including at least an
instruction pointer, a stack pointer and
a state information. A thread’s state
also includes the address space in
which the thread currently executes.

A “thread of control” has

= register set

= €.g. general registers, IP and SP
= stack
= status

= e.g. FLAGs, privilege,

= OS-specific states (prio, time...)
= address space
= unique id
= communication status

internal
properties

external
properties

Construction Conclusions (1)

+ Thread state must be saved / restored on
thread switch.

+ We need a thread control block (tcb) per
thread.

¢ Tcbs must be kernel objects.

_/ .
_ +Tcbs implement threads.

¢ We need to find
= any thread’s tcb starting from its uid

= the currently executing thread’s tcb
(per processor)

Thread Switch A > B

Processor

user mode A —

tcb B

Thread Switch A > B

Processor

[1]
kernel
tcb B
Thread Switch A > B
Processor
P :
SP
LFLAGS | |
kernel ‘ é
tcb B

Thread Switch A > B

In Summary:

= Thread A is running in user mode

= Thread A has experiences an end-of-time-slice or is preempted by an
interrupt

We enter kernel mode

The microkernel has to save the status of the thread A on A's TCB
The next step is to load the status of thread B from B’s TCB.

Leave kernel mode and thread B is running in user mode.

9/10/2003

Thread Switch A > B

Processor

=

kernel

Thread Switch A > B

Processor

IP

SP
FLAGS

user mode B

tcb B

Processor

L
-

user mode A

9/10/2003

-
)

kernel

e

Processor
/ sP
FLAGS

Processor

kernel

Kernel
Processor /~ code

=
@
=
=]
@

SP
FLAGS

Kernel
Processor /—~ code

kernel

I

IP

FLAGS

tcb B

Kernel

Kernel
Processor / code

kernel

tcb B
Kernel

Construction conclusion

From the view of the designer there are two alternatives.

Single Kernel Stack Per-Thread Kernel Stack
Only one stack is Every thread has a
used all the time. kernel stack.

Per-Thread Kernel Stack

Processes Model

= A thread’s kernel state is implicitly =~ example(argl, arg2) {
encoded in the kernel activation Pl(argl, arg2);
stack if (need_to_block) {

= If the thread must block in- thzead block()/

N N P2 2) ;
kernel, we can simply switch } else ({arg)
from the current stack, to 230) ;

another threads stack until

thread is resumed

Resuming is simply switching

back to the original stack }
Preemption is easy

no conceptual difference

between kernel mode and user
mode

}
/* return control to user */
return SUCCESS;

Continuations

= State required to resume a example(argl, arg2) {
blocked thread is explicitly Pl(argl, arg2);
saved in a TCB if (need_to_block) {

. . save context in TCB;
= A function pointer — == .
thread_block (example_ continue) ;

= Variables /* NOT REACHED */
= Stack can be discarded and } else {
reused to support new P3();
thread }

= Resuming involves thread syscall_return (SUCCESS) ;

discarding current stack, }

restoring the continuation, example continue() {

and continuing recover_context_from TCB;
P2 (recovered arg2) ;
thread_syscall_return (SUCCESS) ;

IPC examples — Per thread stack

Send and Receive system

msg_send_rcv(msg, option, call implemented by a

send _size, rev_size, ...) { non-blocking send part
and a blocking receive
rc = msg_send(msg, option, part.
send size, ...);

if (rc != SUCCESS)
return rc;

rc = msg_rcv(msg, option, rcv_size, ...);
return rc;

Block inside msg_rcv if
no message available

9/10/2003

Single Kernel Stack

“Event” or “Interrupt” Model

= How does use a single kernel stack to support
many threads?
= Issue: How are system calls that block
handled?
= either continuations

- Draves et al. Using Continuations to Implement
Thread Management and Communication in
Operating Systems. Proc. 13th SOSP

= or stateless kerne/ (interrupt model)

= Ford et al. Interface and Execution Models in
the Fluke Kernel. Proc 34 OSDI

Stateless Kernel

= System calls can not block within the kernel
= If syscall must block (resource unavailable)

= Modify user-state such that syscall is restarted when
resources become available

» Stack content is discarded
= Preemption within kernel difficult to achieve.
= Must (partially) roll syscall back to (a) restart point
= Avoid page faults within kernel code

= Syscall arguments in registers

= Page fault during roll-back to restart (due to a page
fault) is fatal.

IPC examples - Continuations

msg_send_rcv(msg, option,
send_size, rcv_size, ...) {
rc = msg_send(msg, option,
send_size, ...);
if (rc !'= SUCCESS)
return rc;
cur_thread->continuation.msg = msg;
cur_thread->continuation.option = option;
cur_thread->continuation.rcv_size = rcv_size;

rc = msg_rcv(msg, option, recv_size, ...,
msg_rcv_continue) ;
return rc;
}
msg_rcv_continue (cur_thread) {
msg = cur_thread->continuation.msg;
option = cur_thread->continuation.option;
rcv_size = cur_thread->continuation.rcv_size;

rc = msg_rcv(msg, option, rcv_size, ...,
msg_rcv_continue) ;
return rc;

9/10/2003

IPC Examples — stateless kernel

msg_send_rcv (cur_thread) {
rc = msg_send(cur_thread) ;
if (rc !'= SUCCESS)
return rc;
set_pc(cur_thread, msg_rcv_entry);
rc = msg_rcv(cur_thread)
if (rc !'= SUCCESS)
return rc;
return SUCCESS;

Set user-level PC
to restart msg_rcv
only

Per-Thread Kernel Stack

= simple, flexible
= kernel can always use threads, no special techniques
required for keeping state while interrupted / blocked
= \no conceptual difference between kernel mode and user
ode
= a.g. L4

= but larger cache footprint
= difficult to exchange kernel on-the-fly

enter k;mef'('lﬂizg\

eip
eflags

kernel mode

= trap / fault occurs (JNT n/ exception / interrupt)
= push user esp on to kernel stack, load kernel esp

Single Kernel Stack

per Processor, event model

= either continuations
- complex to program
- must be conservative in state saved (any state that might be
needed)
- Mach (Draves), L4Ka::Strawberry

= or stateless kernel
- no kernel threads, kernel not interruptible, difficult to program
- request all potentially required resources prior to execution
blocking syscalls must always be re-startable
Processor-provided stack management can get in the way
- system calls need to be kept simple “atomic”.
kernel can be exchanged on-the-fly
e.g. the fluke kernel from Utah

+

= low cache footprint
= always the same stack is used !

enter kernel (IA32)

CPU

eip
eflags

eax ebx

user mode

= trap / fault occurs (JNT n/ exception / interrupt)

ebp esi e

kernel mode

= trap / fault occurs (ZNT n /[exception / interrupt)
= push user esp on to kernel stack, load kernel esp
= push user eflags, reset flags (I=0, S=0)

entg/kemek(léﬂ)
Ay

eip cs fig esp s

kernel code

kernel mode

= trap / fault occurs (JNT n/ exception / interrupt)
= push user esp on to kernel stack, load kernel esp
= push user eflags, reset flags (I=0, S=0)
= push user eip, load kernel entry eip

hardware
programmed,
single instruction

/eﬁte\r kernel (IA32)
Y

edi...eax |[Xeip o ﬂg esp s

kernel rode

kernel mode

= trap / fault occurs (JNT n/ exception / interrupt)

= push user esp on to kernel stack, load kernel esp hardware
programmed,

= push user eflags, reset flags (I=0, S=0)

= push user eip, load kernel entry eip
= push X : error code (hw, at exception) or kernel-call type
= push registers (optional)

single instruction

Sysenter/Sysexit

= Emulate int instruction (ECX=USP, EDX=UIP)
sub $20, esp
mov ecx, 16(esp)
mov edx, 4(esp)
mov $5, (esp)
= Emulate iret instruction
mov 16(esp), ecx
mov 4(esp), edx
oti ESP

sysexit

9/10/2003

en}ePkemeJ\(IA32)

kernel mode

X ewp cs ﬂg esp

kernel rode

= trap / fault occurs (ZNT n/ exception / interrupt)
= push user esp on to kernel stack, load kernel esp
= push user eflags, reset flags (I=0, S=0)
= push user eip, load kernel entry eip

= push X : error code (hw, at exception) or kemel-call type

hardware
programmed,
single instruction

Sysenter/Sysexit

= Fast kernel entry/exit
= Only between ring 0 and 3
= Avoid memory references
specifying kernel entry point
and saving state
= Use Model Specific Register
(MSR) to specify kernel entry
= Kernel IP, Kernel SP
= Flat 4GB segments
= Saves no state for exit

= Sysenter
= EIP = MSR(Kernel IP)
= ESP = MSR(Kernel SP)
= Eflags.I = 0, FLAGS.S = 0

Sysexit

= ESP = ECX
= EIP = EDX
= Eflags.S =3

User-level has to provide IP
and S|

b conventlon — registers
(ECX, EDX?)
Flags undef ned

Kernel has to re-enable
interrupts

System call (IA32)

int 0x32

popa

o I
o ma

o eﬂ_

o gt renm

Kernel-stack state
Uniprocessor:

= Any kstack # myself is current !
= (my kstack below [esp] is also current when in kernel mode.)

edi... eax X eip cs fig esp ss

P
8

Kernel-stack state
Uniprocessor:
= Any kstack # myself is current !
= (my kstack below [esp] is also current when in kemel mode.)
= X permits to differentiate between stack layouts:
= interrupt, exception, some system calls
= ipc
= V86 mode

edi... eax 4 eip cs figesp ss ds es fs gs

5 eip cs fig esp ss

edi... eax 3 eip cs fig esp ss

Remember:

e We need to find

» the currently executing thread’s tcb

ign tebs: mov esp, ebp

and -sizeof tcb, ebp

9/10/2003

Kernel-stack state
Uniprocessor:
= Any kstack # myself is current !

= (my kstack below [esp] is also current when in kernel mode.)
= X permits to differentiate between stack layouts:
= interrupt, exception, some system calls
= ipc
= V86 mode

edi... eax 4 eip cs figesp ss ds es fs gs

5 eip cs flg esp ss

edi... eax 3 |eip cs flg esp ss

Remember:

e We need to find

= the currently executing thread’s tcb

align tcbs on a power of 2:

Thread switch (IA32)

push X
Thread A pusha

mov esp, ebp
and -sizeof tcb, ebp

dest tch address -> edi

Thread B

. mov esp, [ebp].thr_esp
int 32 mov [edi].thr_esp, esp

mov esp, eax

and -sizeof tch, eax

add sizeof tch, eax .

mov eax, [esp0_ptr] int 32

popa

add $4, e

iret

9/10/2003

Switch threads (IA32)

Switch threads (IA32)

= int 0x32, push registers of the green thread

Switch threads (IA32)

tch edi..eax X eip e figesp ss

= int 0x32, push registers of the green thread
= switch kernel stacks (store and load esp)

Switch threads (IA32)

tch
esp
eip

eflags

eax ebx
ecx edx
ebp esi edi

= int 0x32, push registers of the green thread
= switch kernel stacks (store and load esp
= set esp0 to new kernel stack

= pop orange registers, return to new user threa

Switch threads (IA32)

edi..eax X eip cs figesp ss
esp
eip
eflags

ecx edx

ebp esi ed

= int 0x32, push registers of the green thread
= switch kernel stacks (store and load esp)
= set esp0 to new kernel stack

Sysenter/Sysexit

= Emulate int instruction (ECX=USP, EDX=UIP)
mov esp0, esp ———
sub $20, esp
mov ecx, 16(esp)
mov edx, 4(esp)
mov $5, (esp)

= Emulate iret instruction
mov 16(esp), ecx
mov 4(esp), edx
sti
sysexit

Case study: IA-64

Thread Switching and
Kernel Entry

9/10/2003

Thread Switching Overhead

= All registers must be saved on context
switches

= More than 3.2KB of register contents

= Certain optimizations made possible by
hardware

IA-64 User Accessible Registers

General Registers Floating-point Registers

o fro 500
an 410
an fr2

Thread Switching Overhead

Genert Registers = gr, fixed to zero
» = On thread switch:

" } = Static registers must
be saved explicitly
= Stacked registers
handled by register
stack engine (RSE)
93, = 9ryy7.
= "Only” 2.5KB of register
contents left

Thread Switching Overhead

ronsponereoses w11 and fry fixed

o =8 = Remaining floating-
point registers can be
handled lazily

= "Only” ~0.5KB of
register contents left

Thread Switch Example

[pistachio/kernel/include/glue/v4-ia64/tcb.h]

Exception Handling

Genera Regiters = Bank 1 used normally

@
o

b = Automatic switch to bank 0

. on exceptions
Banked Registers .
= Frees up registers for
storing context
= Can switch manually

Exception Handling

Generat Registrs Backng Store = Run on bank 1
| = Exception
= Switches to bank 0
= Store other registers
= Switch to bank 1
= Store remaining registers

Must not receive interrupts
or raise exceptions while
storing exception context

9/10/2003

Exception Handling

= Run on bank 1

o = Exception
" = Switches to bank 0
= Store other registers

General Registers Backing Store

Kernel Entry

= Kernel entry by exception is slow
= Must flush instruction pipeline
= JA-64 provides an epc instruction
= Raises privileges to kernel mode
= Continues execution on next instruction

= Can only be executed in special regions of
virtual memory

Mips R4600

= 32 Registers
= no hardware stack support
= Special registers
= exception IP, status, etc.
= single registers, unstacked!
= Soft TLB !I!

e

10

9/10/2003

Exceptions on MIPS

= On an exception (syscall,
interrupt, ...)
= Loads Exc PC with
faulting intruction
= Sets status register
» Kernel mode, interrupts
disabled, in exception.
= Jumps to
Ox(ffffffff80000180

To switch to kernel modé—=—

= Save relevant user state

= Set up a safe kernel
execution environment

= Switch to kernel stack

= Able to handle kernel
exceptions

= Potentially enable
interrupts

Problems

= No stack pointer???
= Defined by convention sp
(r29)
= Load/Store Architecture: no
registers to work with???
= By convention kO, k1
(r31, r30) for kernel use
only

enter kernel:
(Mips)
and ki1, 10, st ksu_mask

IFNZ k1

mov ki, CO_status mov 2, sp

and k0,k1, exc_code_mask

sub k0, syscall code mov sp, kernel_stack_bottom(k0)

IFNZ KO FI

mov k0, kernel_base
-r» jmp other_exception mov 1, CO_exception_ip

mov [sp-8], t2

mov t0,k1 add t1,t1,4

sl k1,5 [*clearIE, EXL, ERL, KSU */ mov [sp-16], t1

sl k1,5 mov [sp-24], t0

mov CO_status, k1 IFZ AT, zero

sub sp,24
jmp k_ipc

FI

TCB structure

MyselfLocal —— —
State ———
Resources
KernelStackPtr
Scheduling
ReadyList
TimesliceLength
RemainingTimeslice
TotalQuantum I
Priority
WakeupList

Space ——8M8@
PDirCache

Construction Conclusions (1)

= Thread state must be saved / restored on thread
switch.

= We need a thread control block (TCB) per thread.
= TCBs must be kernel objects.

= Tcbs implement threads.

= We need to find
= any thread’s tcb starting from its wid

= the currently executing thread’s TCB
(per processor)

11

Thread ID

= thread number
to find the tcb

= thread version number
to make thread ids “unique” in time

9/10/2003

Thread ID > TCB (a)

= Indirect via
table

version

mov thread_id, %eax

mov %eax, %ebx

and mask thread_no, %eax

mov tch_pointer_array[%eax*4], %eax

cmp OFS_TCB_MYSELF(%eax), %ebx
jnz invalid_thread_id

Thread ID - TCB (b)

version

version

= direct address

mov thread_id, %eax

mov %eax, %ebx

and mask thread_no, %eax
add offset tch_array, %eax

cmp %ebx, OFS_TCB_MYSELF(%eax)
jnz invalid_thread_id

Thread ID translation

= Via table = Via MMU
= no MMU = MMU
= table access per TCB = no table access
= TLB entry for table = TLB entry per TCB

» TCB pointer array = virtual resource 7CB
requires 1M virtual array required, 256K
memory for 256K potential threads need
potential threads 128M virtual space for

TCBs

Trick: Allocate physical parts of table
on demand,
dependent on the max
number of allocated tcb
map all remaining parts to a
0-filled page

dyn all

="

» 7CB pointer array
requires 1M virtual
memory for 256K
potential threads

any access to
corresponding threads
will result in “invalid
thread id”
however: requires 4K pages in
this table
TLB working set grows:
4 entries to cover 4000
threads.
Nevertheless much better
than 1 TLB for 8 threads
like in direct address.

AS Layout 32bits, virt tcb, entire PM

= user regions
other kernel tables

physical memory
kernel code
tcbs

= shared system regions

per-space system regions

12

Limitations 32bits, virt tcb, entire PM

= number of threads
= physical mem size

= L4Ka::Pistachio/ia

Physical-to-virtual Pagetable

= Dynamically remap kernel-needed pages

= Walk physical-to-virtual ptab before accessing
= Costs???

= Cache

= TLB

= Runtime

FPU Context Switching

= Strict switching
Thread switch:
Store current thread’s FPU state
Load new thread’s FPU state

= Extremely expensive

= IA-32's full SSE2 state is 512 Bytes

= IA-64's floating point state is ~1.5KB
= May not even be required

= Threads do not always use FPU

9/10/2003

Physical Memory

= Kernel uses physical for:
. . —_—
= Application’s Page tables

= Kernel memory -
o R

= Kernel debugger

= Issue occurs only when
kernel accesses physical
memory
= Limit valid physical range
to remap size (256M)
= Or...

Kernel Debugger (not performance critical)

= Walk page table in software
= Remap on demand (4MB)
= Optimization: check if already mapped

Lazy FPU switching

Kernel FPU

= Lock FPU on thread switch

= Unlock at first use — exception
handled by kernel
Unlock FPU
If fpu owner != current
Save current state to fpu owner
Load new state from current
fpu_owner := current

locked

13

IPC

Functionality & Interface

9/10/2003

What IPC primitives do we need to

communicate?

= Send to .
(a specified thread)

= Receive from -
(a specified thread)

Two threads can
communicate
Can create specific protocols
without fear of interference
from other threads
Other threads block until it's
their turn
Problem:
= How to communicate
with a thread unknown a
priori
(e.g., a server’s clients)

What IPC primitives do we need to

communicate?

= Send to

(a specified thread)
= Receive from

(a specified thread)
= Receive

(from any thread)

Scenario:

= A client thread sends a
message to a server
expecting a response.
The server replies
expecting the client
thread to be ready to
receive.
Issue: The client might be
preempted between the
send to and receive from.

What IPC primitives do we need to

communicate?

= Send to "
(a specified thread)
= Receive from
(a specified thread)
= Receive
(from any thread)
= Call
(send to, receive from specified
thread)
= Send to & Receive
(send to, receive from any thread}——
= Send to, Receive from

(send to, receive from specified
different threads)

Are other combinations
appropriate?

Atomic operation to ensure
that server's (callee's) reply
cannot arrive before client
(caller) is ready to receive

Atomic operation for
optimization reasons.
Typically used by servers to
reply and wait for the next
request (from anyone).

What message types are

appropriate?

= Register

= Short messages we hope to make fast by avoiding
memory access to transfer the message during IPC

= Dj

= Guaranteed to avoid user-level page faults during IPC

What message types are

appropriate?

= Register

[Version 4, Version X.2]

= Short messages we hope to make fast by avoiding
memory access to transfer the message during IPC
= Guaranteed to avoid user-level page faults during IPC

n Stri NgS (optional)

I dl vt

= Messages that map pages from sender to receiver

14

IPC - API

= Operations
= Send to
= Receive from
= Receive
= Call
= Send to & Receive
= Send to, Receive from

= Message Types
= Registers
= Strings
= Map pages

9/10/2003

Problem

= How to we deal with threads that are:

= Uncooperative
= Malfunctioning
= Malicious

= That might result in an IPC operation never

completing?

IPC - API

= Timeouts (2, vxo

= snd timeout, rcv timeout

IPC - API

= Timeouts w2, vxo

= snd timeout, rcv timeout
= snd-pf timeout
specified by sender

= Attack through
receiver’s pager:

PE

=

IPC - API

= Timeouts (2, vxo

= snd timeout, rcv timeout
= snd-pf /
specified by receiver

= Attack through
sender’s pager:

PE

Timeout Issues

= What timeout values
are typical or
necessary?

= How do we encode
timeouts to minimize
space needed to specify
all four values.

= Timeout values
= Infinite
= Client waiting for a
server
= 0 (zero)

= Server responding to
a client

= Polling
= Specific time
= 1lus - 19 h (log)

15

9/10/2003

To Compact the Timeout Encoding
= Assume short timeout need mn. [V -

to finer granularity than long

timeouts = Assume page fault timeout
=« Timeouts can always be granularity can be much less
combined to achieve long than send/receive granularity
fine-grain timeouts
o ife=0
send/receive timeout = { 4>¢m if e> 0
0 ifm=0,e=0

n. R EMEM .

= Page fault timeout has

no mantissa
0 ifp=0
page fault timeout =< 4152 if0 < p< 15
0 if p=15

Timeout Range of Values (seconds) v 2,

Vv X.0]
e m=1 m=255
0
268.435456 6845104128 :
67.108864 17112.76032
16.777216 4278.19008 ~4.4min granularity
2 4194304 106954752
1.048576 267.38688
0.262144 66.84672
0.065536 16.71168
8 0.016384 417792
9 0.004096 1.04448
10 0.001024 026112
0.000256 0.06528
G 0.000064 001632
0.000016 0.00408
14 0.000004 000102 /"~
1 0.000001 0.000255 1ps granularity

IPC - API

= Timeouts w2, vxo

= snd timeout, rcv timeout
= snd-pf / rcv-pf timeout

n. JE PO

= timeout values
0
infinite
1us ... 19 h (log)

= Compact 32-bit encoding

Timeout Problem

= Worst case IPC transfer time is high given a
reasonable single page-fault timeout
= Potential worst-case is a page fault per memory
access
» IPC time = Send timeout + 77 x page fault timeout

= Worst-case for a careless implementation is
unbound

= If pager can respond with null mapping that does not
resolve the fault

IPC - API

= Timeouts wx2,va)

= snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

time

- send message - receive message
wait forsend > xteny wait for reply iy

snd to

L—n

min (xfer to,)

rev to B

16

IPC - API

= Timeouts vxz v4

= snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

= relative timeout values

0 ——
infinite im0 |
1us ... 610 h (log) Tl m] 2°m ps

Timeout Range of Values (seconds) [v4,

VX.2]
0.000001 0.001023
0.000002
0.000008
0.000032
0.000128
0.000512
0.002048 2.095104
0.008192 8.380416
0.032768 33.521664
0.131072 134.086656
0.524288 536.346624
2.097152 2145.386496
8.388608 8581.545984

33.554432 34326.18394
134.217728 137304.7357
536.870912 549218.943

2147.483648

2196875.772 /

Ideally Encoded in Registers

= Parameters in registers whenever possible
= Make frequent/simple operations simple and fast

Sender Registers

Receiver Registers

9/10/2003

IPC - API

= Timeouts wxz va)

= snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

= relative timeout values

0 ——
infinite [ial 0w |
1us ... 610 h (log) e mm] 2°m s

= absolute timeout values Menld me]

10 e
—
[clock e] 0]

I dock+ 2% T muy | J

To Encode for IPC

Send to Number of map pages
Receive from Page range for each map page
Receive Receive window for mappings
Call IPC result code

Send to & Receive

Send to, Receive from
Destination thread ID

Source thread ID

Send registers

Receive registers

Number of send strings

Send string start for each string
Send string size for each string
Number of receive strings
Receive string start for each string
Receive string size for each string

Send timeout

Receive timeout

Send Xfer timeout

Receive Xfer timeout

Receive from thread ID

Specify deceiting IPC

Thread ID to deceit as

Intended receiver of deceited IPC

Thread B

Call-reply example Thread A

IPC reply &Afait

17

Send and Receive Encoding

= 0 (Nil ID) is a reserved thread ID
= Define -1 as a wildcard thread ID

= Nil ID means no send

cox [racave spedier] .

= Nil ID means no receive
operation

= Wildcard means receive
from any thread

To Encode for IPC

Send to Number of map pages

Receive from Page range for each map page
Receive Receive window for mappings
Call IPC result code

Send timeout

Receive timeout

Send Xfer timeout

Receive Xfer timeout

Receive from thread ID

Specify deceiting IPC

Thread ID to deceit as

Intended receiver of deceited IPC

Send to & Receive

Send to, Receive from
Destination thread ID

Source thread ID

Send registers

Receive registers

Number of send strings

Send string start for each string
Send string size for each string
Number of receive strings
Receive string start for each string
Receive string size for each string

To Encode for IPC

Number of map pages

Page range for each map page
Receive window for mappings
IPC result code

Send timeout

Receive timeout

Send Xfer timeout

Receive Xfer timeout

Receive from thread ID
Specify deceiting IPC

Thread ID to deceit as
Intended receiver of deceited IPC

Send registers

Receive registers

Number of send strings

Send string start for each string
Send string size for each string
Number of receive strings
Receive string start for each string
Receive string size for each string

9/10/2003

Why use a single call instead of
many?

= The implementation of the individual send and
receive is very similar to the combined send and
receive
= We can use the same code
» We reduce cache footprint of the code
« We make applications more likely to be in cache

Message Transfer

= Assume that 64 extra registers are available
= Name them MR, ... MR, (message registers 0 ... 63)
= All message registers are transferred during IPC

Message construction

= Messages are stored in
registers (MR, ... MRg;)
= First register (MRr,) acts as

message tag
= Subsequent registers
contain:
= Untyped words (u), and
= Typed words (t) l\
(e.g., map item, string item)
u

MR, label t

Message Tag

18

9/10/2003

Message construction

= Messages are stored in
registers (MR, ... MRg3)

= Subsequent registers

= First register (MR,) acts as g,
MRy
= Untyped words (u), and wr,
= Typed words (t) MR, |
(e.g., map item, string item) e, |
MR, [Tabel]
Message
Map and Grant items
= Two words:
= Send base (e e I ...
= Fpage MR
= Lower bits of send ba
indicate!

String items

(stRg poRter T R,k
New string specifier
mayof curse contain T s T
substrings
: s E— .
e e
strings require a new - T R
string specifier H H
— ..

String Item

Al substrings are of o e
same size e

“hh” indicates
cacheability hints
for the string

Message construction

e
[
[
[fabel]

= Typed items occupy one or

more words
= Three currently defined MR,
items: MR,
o MRg
= Map item (2 words) R
= Grant item (2 words) MKj

= String item (2+ words) MR

= Typed items can have MR,
arbitrary order R,

MR,

Message

String items

= Max size 4MB (per string)

= Compound strings
supported

= Allows scatter-gather

= Incorporates cacheability
hints

= Reduce cache pollution
for long copy operations [SmmesnE] vk,

String Item

“hh” indicates
cacheability hints
for the string

To Encode for IPC

Number of map pages

Page range for each map page
Receive window for mappings
IPC result code

Send timeout

Receive timeout

Send Xfer timeout

Receive Xfer timeout

Receive from thread ID
Specify deceiting IPC

Thread ID to deceit as
Intended receiver of deceited IPC

Receive registers
Number of send strings

Send string start for each string
Send string size for each string
Number of receive strings

Receive string start for each string
Receive string size for each string

19

9/10/2003

Timeouts

= Send and receive timeouts are the important ones
= Xfer timeouts only needed during string transfer
= Store Xfer timeouts in predefined memory location

EAX destination

ECX timeouts
EDX receive specifier ¥

= Timeouts values are only
16 bits

= Store send and receive
timeout in single register

To Encode for IPC

Receive window for mappings
IPC result code

Send timeout

Receive timeout

Send Xfer timeout

Receive Xfer timeout

Receive from thread ID

Specify deceiting IPC

Thread ID to deceit as

Intended receiver of deceited IPC

Number of receive strings
Receive string start for each string
Receive string size for each string

String Receival

= Assume that 34 extra registers are available
= Name them B8R, ... BR,, (buffer registers 0 ... 33)

= Buffer registers specify
= Receive strings
= Receive window for mappings

Receiving messages

= Receiver buffers are
specified in registers (BR, ...
BR;;)

= First BR (BR,) contains
“Acceptor”
= May specify receive
window (if not nil-fpage)
= May indicate presence of
receive strings/buffers

(if s-bit set) oR,

Acceptor

Receiving messages

If C-bit in string item is cleared,
it indicates that no more
receive buffers are present

[stingponter e,
A receive buffer can of course
be 3 compound sring _

If C-bit in string item is set, it E.I [Stingiength [Bl; - 1]07] er,
indicates presence of more BR,
m [T

Acceptor

The s-bit set indicates presence
of string items acting as receive
buffers

To Encode for IPC

Receive window for mappings
IPC result code

Receive from thread ID

Specify deceiting IPC

Thread ID to deceit as

Intended receiver of deceited IPC

Number of receive strings
Receive string start for each string
Receive string size for each string

20

9/10/2003

IPC Result

= Error conditions e, | Tabel [fags] t [u

are exceptional Message Tag
= L.e., not common case
= No need to optimize for error handling
= Bit in received message tag indicate error
= Fast check
= Exact error code store in predefined memory location

IPC Result

= IPC errors flagged in MR,
= Senders thread ID stored in register

EAX destination from
ECX timeouts
EDX receive specifier

To Encode for IPC

= IPCresult code

= Receive from thread ID
= Specify deceiting IPC

= Thread ID to deceit as

= Intended receiver of deceited IPC

IPC Redirection

= Redirection/deceiting IPC
flagged by bit in the
message tag
= Fast check

= When redirection bit set

= Thread ID to deceit as and intended receiver ID
stored in predefined memory locations

MR, label t u

Message Tag

To Encode for IPC

= Specify deceiting IPC
= Thread ID to deceit as
= Intended receiver of deceited IPC

Virtual Registers

21

What are Virtual Registers?

)) P d b
« Virtual registers are backed | _ENe Y urcs
by either on context switch
= Physical registers, or MRy |
. _ Virtual Registers | MRy |
Non-pageable memory %ﬁ
MR P
= UTCBs hold the memory MRy ,_‘__15 i
backed registers ol o
=« UTCBs are thread local TR v’
= UTCB can not be paged o
= No page faults MR,
« Registers always MRy
accessible

Preserved by
kernel during .
context switch Physical Registers

Switching UTCBs (1A-32)

= Locating UTCB must be
fast
(avoid using system call) Gs{

= Use separate segment
for UTCB pointer

mov %gs:0, %edi

= Switch pointer on
context switches

Message Registers and UTCB

= Some MRs are mapped to physical registers
= Kernel will need UTCB pointer anyway — pass it

EAX destination _
ECX timeouts

EDX receive specifier

EBX MR,

EBP MR,

ESI MR,

EDI UTCB

Other Virtual Register Motivation

= Portability
= Common IPC API on different architectures
= Performance

= Historically register only IPC was fast but
limited to 2-3 registers on IA-32, memory
based IPC was significantly slower but of
arbitrary size

= Needed something in between

Switching UTCBs (1A-32)

= Locating UTCB must be
fast
(avoid using system call) Gs{

= Use separate segment
for UTCB pointer

mov %gs:0, %edi

= Switch pointer on 508 : B

context switches

Free Up Registers for Temporary
Values

= Kernel need registers for temporary values
= MR, and MR, are the only registers that the kernel may not

need
EAX destination _
ECX timeouts
EDX M
EBX ‘/ MR 1 ‘>
N MR, 4
EsI \-MRD-/
EDI UTCB

9/10/2003

22

9/10/2003

Free Up Registers for Temporary
Values
= Sysexit instruction requires:

= ECX = user IP
= EDX = user SP

EAX destination
ECX timeouts
EDX receive specifier
EBX ~

EBP ~

=] MR,

EDI uTcB

IPC Register Encoding

= Parameters in registers whenever possible
= Make frequent/simple operations simple and fast

Sender Registers Receiver Registers
EAX destination
ECX timeouts
EDX receive specifier
EBX ~
EBP ~
ESI MRD
EDI UTCB

What About IA-64?

- All other registers
are undefined

o

2
2
=
s

23

