Intro To The Byzantine Generals Problem Leslie Lamport, Robert Shostak, Marshall Pease

Byzantine Generals Problem

THE UNIVERSITY OF NEW SOUTH WALES

BGP – the Generals

- Loyal Generals
 - Behave according to the algorithm
 - They decide upon the same plan
 - Every loyal general must obtain the same v(1)...v(n)
 - A small number of traitors shouldn't be able to force a bad decision
 - If the ith general is loyal \Rightarrow v(i) must be used by all (loyal) generals
- Traitorous Generals
 - Try to influence the final decision
- Send any info they want

Byzantine Generals Problem (formalism)

- 0 .. N-1 processes in a complete graph
- Process 0 needs to send a value v to all others such that
 - (IC1) If process 0 is non faulty then any non faulty process i receives v
 - (IC2) If processes i and j are non faulty, they receive the same value
- Note: 0 is non faulty, then IC1=>IC2

cse

Impossibility Results – Oral Msg

- Oral message the content is entirely under the control of the sender
- No solution if more than 1/3 of the generals are traitorous

cse

Impossibility Results – Generalization

- No solution with fewer than 3m+1 generals for m traitors
- Proof by contradiction: reduce the problem to the 3 generals problem
 - Assume **3m** (let's call them Albanians) or fewer generals can cope with m traitors
 - Build the solution with Byzantine generals

cse