
Operating C. Weissman
Systems Editor

HYDRA:The Kernel
of a Multiprocessor
Operating System
W. Wulf, E. Cohen, W. Corwin, A. Jones,
R. Levin, C. Pierson, and F. Pollack
Carnegie-Mellon University

This paper describes the design philosophy of HYDRA
- - the kernel of an operating system for C.mmp, the
Carnegie-Mellon Multi-Mini-Processor. This philosophy
is realized through the introductiot~ of a generalized
notion of "resource," both physical and virtual, called
an "object." Mechanisms are presented for dealing with
objects, including the creation of new types, specification
of new operations applicable to a given type, sharing,
and protection of any reference to a given object against
improper application of any of the operations defined
with respect to that type of object. The mechanisms
provide a coherent basis for extension of the system in
two directions: the introduction of new facilities, and
the creation of highly secure systems.

Key Words and Phrases: operating system, kernel,
nucleus, protection, security

CR Categories: 4.3, 6.2

Copyright © 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (F44620-70-C-
0107) and is monitored by the Air Force Office of Scientific Research
Authors' address: Department of Computer Science, Carnegie-
Mellon University, Schenley Park, Pittsburgh, PA 15213.

337

Introduction

The HYDRA system is the "kernel" base for a collection
of operating systems designed to exploit and explore
the potential inherent in a multiprocessor computer
system. Since the field of parallel processing in general,
and multiprocessing in particular, is not current art,
the design of HYDRA has a dual goal imposed upon it:
(1) to provide, as any operating system must, an en-
vironment for effective utilization of the hardware
resources, and (2) to facilitate the construction of such
environments. In the latter case the goal is to provide a
recta-environment which can serve as the host for
exploration of the space of user-visible operating en-
vironments.

The particular hardware on which HYDRA has been
implemented is C.mmp, a multiprocessor constructed
at Carnegie-Mellon University. Although the details of
the design of C.mmp are not essential to an understand-
ing of the material which follows, the following brief
description has been included to help set the context
(a more detailed description may be found in [9]).
C.mmp permits the connection of 16 processors to 32
million bytes of shared primary memory through a
cross-bar switch. The processors are any of the various
models of PDP-11 l minicomputers. Each processor is
actually an independent computer system with a small
amount of private memory, secondary memories, I/O
devices, etc. Processors may interrupt each other at
any of four priority levels; a central clock serves for
unique-name generation (see below) and also broadcasts
a central time base to all process6rs. Relocation hard-
ware on each processor's bus provides mapping of
virtual addresses on that bus to physical addresses in
shared primary memory.

Design Philosophy

The design philosophy of HYDRA evolved from both
the environment in which the system was to function
and a set of principles held by its designers. The central
goals of the system together with the attitudes expressed
below suggest that, at the heart of the system, one
should build a collection of facilities of "universal
applicability" and "absolute reliability"--a set of
mechanisms from which an arbitrary set of operating
system facilities and policies can be conveniently,
flexibly, efficiently, and reliably constructed. Moreover,
lest the flexibility be constrained at any instant, it
should be possible for an arbitrary number of systems
created from these facilities to co-exist simultaneously.
The collection of such basic facilities has been called
the kernel or nucleus [1] of an operating system. The
more specific considerations are listed below.
1. Multiprocessor environment. Although multiproces-
sors have been discussed for well over a decade and a

1 Manufactured by Digital Equipment Corpormion.

Communications June 1974
of Volume 17
the ACM Number 6

few have been built, both the potentials and problems
of these systems are dimly perceived. The design of
hYDRA was constrained to be sufficiently conservative
to insure its construction and utility in a reasonable
time frame, yet flexible enough to permit experimental
exploration within the design space bounded by its
hardware capabilities.
2. Separation of mechanism and policy. Among the
major causes of our inability to experiment with, and
adapt, existing operating systems is their failure to
properly separate mechanisms from policies. (Hansen
[1] has presented cogent arguments for this separation.)
Such separation contributes to the flexibility of the
system, for it leaves the complex decisions in the hands
of the person who should make them-- the higher-level
system designer.
3. Integration of the design with implementation meth-
odology. It has been observed that the structure of ex-
tant operating systems bears a remarkable resemblance
to that of the organization which created them. This
observation is one of a set which asserts the (practical)
impossibility of separating the design from the meth-
odology to be used in implementing-the design. The
authors' predisposition for implementation methodol-
ogy is a hybrid of structured programming as advocated
by Dijkstra and others [2] and the modularization
philosophy of Parnas [8].
4. Rejection of strict hierarchical layering. The notion
of a strict hierarchically layered system has become
popular since first described by Dijkstra for the THE
system [3]. While we believe that the system as viewed
by any single user should be hierarchically structured,
we reject the notion as a global design criterion. We
believe that if the entire system is so structured, the
design will severely limit the flexibility available to the
high-level user and will strangle experimentation; in
particular, there is no reason to believe that the same
hierarchical relation should exist for control as for
resource allocation, or as for protection, etc.
5. Protection. Flexibility and protection are closely
related, but not inversely proportional. We believe that
protection is not merely a restrictive device imposed by
"the system" to insure the integrity of user operations,
but is a key tool in the proper design of operating sys-
tems. It is essential for protection to exist in a uniform
manner through the system, and not to be applied only
to specific entities (e.g. flies). The idea of capabilities
(in the sense of Dennis [5]) is most important in the
laVORA design; the kernel provides a protection facility
for all entities in the system. This protection includes
not only the traditional read, write, execute capabilities,
but arbitrary protection conditions whose meaning is
determined by higher-level software.
6. Reliability. The existence of multiple copies of most
critical hardware resources in C.mmp suggests the
possibility of highly reliable operation. Our desire is to
provide commensurate reliability in the software. Re-
liability not only requires that the system be correct,

338

but that it be able to detect and recover from errors that
do exist--as the result of hardware malfunction, for
example.

Defining a kernel with all the attributes given above
is difficult, and perhaps impractical at the current state
of the art. It is, nevertheless, the approach taken in the
HYDRA system. Although we make no claim either that
the set of facilities provided by the HYDRA kernel is
minimal (the most primitive "adequate" set) or that it is
maximally desirable, we do believe the set provides
primitives which are both necessary and adequate for
the construction of a large and ihteresting class of
operating environments. It is our view that the set of
functions provided by HYDRA will enable the user of
C.mmp to create his own operating environment with-
out being confined to predetermined command and file
systems, execution scenarios, resource allocation policies,
etc.

Given the general decision to adopt the "kernel
system" approach, the question remains as to what
belongs in a kernel and, perhaps more important, what
does not. Nonspecific answers to this question are im-
plicit in the attitudes enumerated earlier; e.g. a set of
mechanisms may be appropriate in a kernel, but policy
decisions certainly are not. For other, more specific,
answers we must step outside these attitudes alone and
consider the nature of the entity to be built using the
facilities of a kernel.

If a kernel is to provide facilities for building an
operating system and we wish to know what these
facilities should be, then it is relevant to ask what an
operating system /s or does. Two views are commonly
held: (I) an operating system defines an "abstract
machine" by providing facilities, or resources, which are
more convenient than those provided by the "bare"
hardware; and (2) an operating system allocates (hard-
ware) resources in such a way as to most effectively
utilize them. Of course these views are, respectively,
the bird's-eye and worm's eye views of what is a single
entity with multiple goals. Nevertheless, the important
observation for our purposes is the emphasis placed,
in both views, on the central role of resources--both
physical and abstract.

The mechanisms provided by the HYDRA kernel are
all intended to support the abstracted notion of a
resource (incarnations of a resource are called objects).
These mechanisms provide for the creation and represen-
tation of new types of resources, as well as operations
defined on them, protected access to instances of one or
more resources within controlled execution domains,
and controlled passing of both control and resources
between execution domains. The key aspects of these
facilities are the generalized notion of resource, the
definition of an execution domain, and the protection
mechanism which allows or prevents access to resources
within a domain. The remainder of this paper focuses on
these issues, thus deemphasizing several of the other
issues raised earlier.

Communications June 1974
of Volume 17
the ACM Number 6

Overview of the HYDRA Environment

Before proceeding to a detailed description of the
mechanisms, it will be convenient to present a somewhat
incomplete and simplistic view of the execution en-
vironment created by the HYDRA kernel. The material
presented in this section will be elaborated further in
the following sections; however, the overview will at-
tempt to provide the context necessary to understand
the more detailed information.

In order to understand the execution environment
which the kernel provides, one must clearly understand
the interrelationships of three object types: procedure,
LNS, and process. These primitive objects are provided
by the kernel specifically for the purpose of creating
and manipulating an execution environment.

The procedure object is simply an abstraction of the
intuitive notion of procedure or subroutine; z that is, a
procedure has some "code" and some "data" asso-
ciated with it, it may accept parameters, and it may re-
turn values. HYDRA procedures go beyond this simple
model by including protection facilities, as we shall see
shortly. The act of creating a procedure object is
analogous to the task of writing an Algol procedure;
one produces a body of code, associates the code with a
name, declares the data which the code requires, and
specifies the nature of the parameters and return values
which are involved. In more abstract terms, one creates
a sequence of instructions and describes the environment
in which they will ultimately execute; in HYDRA this
abstraction is made precise. Let us consider the environ-
ment description first.

A procedure object contains a list of references to
other objects which must be accessed during the execu-
tion of the procedure's code. This is, in fact, a list of
capabilities [7] and, therefore, defines not only which
objects the procedure may reference, but also what ac-
tions it may perform on those objects. The capabilities
which a procedure requires may be divided into two
groups: those which are caller independent and those
which are caller dependent. These groups naturally
correspond to those objects which the procedure always
accesses (at least potentially) and those objects which
are considered parameters. Obviously, the former of
these groups can be precisely specified at the time the
procedure is created, while the latter can only be
characterized since the actual objects passed as param-
eters are unknown until execution time. Thus, the en-
vironment defined by a procedure object contains some
"holes" or "parameter positions" which are only par-
tially specified at creation time. These holes are filled
in for each execution of the procedure, using capabilities

2 It should be noted however, that the cost of entering a
HYDRA procedure is considerably greater than, say, a Fortran
subroutine. We do not expect that simple subroutines, such as SIN,
would use the HYDRA mechanism until better hardware is pro-
vided. The reader should visualize a procedure as replacing rela-
tively large code units and/or at points where protection environ-
ments must change.

provided by the caller. We will return to a discussion of
the mechanism by which a procedure characterizes its
parameters, but first we must examine the LNS.

A procedure is a static entity; an LNS (local name
space) is the record of the execution environment of a
procedure when that procedure is invoked (called).
There is a unique LNS for each invocation, which dis-
appears after the procedure terminates. The LNS for a
particular invocation is the result of combining the
caller-independent capabilities (listed in the procedure
object) with caller-dependent actual parameters (only
characterized in the procedure object) to form a single
list of capabilities. The LNS defines the totality of cap-
abilities available to a procedure during the execution
resulting from a particular invocation. Note that the
LNS, while heavily dependent upon the corresponding
procedure for its initialization, is a wholly independent
object thereafter, and alterations of the LNS d o not
affect the procedure object; this implies, among other
things, that procedures are reentrant and potentially re-
cursive.

Up to this point the term "capability" has been used
in a somewhat loose and intuitive sense; subsequently
it will be used in a technical sense. A capability con-
sists of a reference to an object together with a collec-
tion of "access rights" to that object. Possession of a
capability is taken as prima facie evidence that the
possessor may access the object in the ways, and in
only the ways, described by the capability. Capabilities
themselves are manipulated only by the kernel; hence
it is impossible to "forge" a capability.

A procedure object may contain templates in addi-
tion to the usual collection of caller-independent cap-
abilities. Templates characterize the actual parameters
expected by the procedure. When the procedure is
called, the slots in the LNS which correspond to param-
eter templates in the procedure object are filled with
"normal" capabilities derived from the actual param-
eters supplied by the caller. This "derivation" is, in
fact, the heart of the protection-checking mechanism,
and the template defines the checking to be performed.
If the caller's rights are adequate, a capability is con-
structed in the (new) LNS which references the object
passed by the caller and which contains rights formed
by merging the caller's rights with the rights specified
in the template. This implies that a callee may have
greater freedom to operate on an object than the caller
who passed it as a parameter, but the caller can in no
way obtain that freedom for himself. We shall see that
this potential expansion of rights across environment
domains is a key factor in achieving the flexibility goals
of the kernel and in allowing us to reject enforced
hierarchical structures without introducing chaos.

Before proceeding, let us review the major actions of
the CALL mechanism. An executing body of code first
notifies the kernel that it wishes to call a procedure.
The kernel examines the actual parameter capabilities
supplied by the caller and determines whether all pro-

339 Communications June 1974
of Volume 17
the ACM Number 6

tection requirements are met. If so, the kernel creates a
new LNS which defines the new environment; the caller's
LNS is superceded by this new LNS for the duration of
the called procedure's execution. The body of code
associated with the callee receives control from the
kernel and begins executing. When it completes its
function, it will return control to its caller by way of
the kernel. The kernel will delete the callee's LNS and
restore that of the caller, thus returning to the previous
environment.

Up to this point, nothing we have described suggests
any exploitation of the parallel processing capabilities
of C.mmp. The actions involved in calling and returning
from procedures are strictly sequential in nature, being
in essence formalizations of traditional subroutine be-
havior. We come now to the unit of asynchronous
processing in HYDRA--the process. A process in the
technical sense defined by HYDRA corresponds closely
to one's intuitive notion of a process. Viewed from the
outside, it is the smallest entity which can be inde-
pendently scheduled for execution. Viewed from the
inside, it constitutes a precise record of the changes of
environment induced by a sequence of calls. In other
words, a process is a stack of LNS'S which represents the
cumulative state of a single sequential task. HYDRA
implements interprocess communication and synchro-
nization by providing elementary message buffering
primitives and Dijkstra-style semaphore operations.
These facilities have been treated in [4] and elsewhere
and will not be discussed here.

The Protection Mechanism

The protection mechanism is at the heart of the
HYDRA design. In describing the mechanism it is im-
portant at the outset to distinguish between protection
and security and to determine what is to be protected
and against what.

In our view, protection is a mechanism; security is a
policy. A system utilizing such a mechanism may be
more or less secure depending upon policies governing
the use of the mechanism (for example, passwords
and the like are policy issues) and upon the reliability
of the programs which manipulate the protected en-
tities. Thus the design goal of the HYDRA protection
mechanism is to provide a set of concepts and facilities
on which a highly secure system may be built, but not
to inherently provide that security. A particular con-
sequence of this philosophy has been to discard the
notion of "ownership." While ownership is a useful,
perhaps even an important, concept for certain "secur-
ity" strategies, to include the concept at the most prim-
itive levels would be to exclude the construction of cer-
tain other classes of truly secure systems.

Our rejection of hierarchical system structures, and
especially ones which employ a single hierarchical rela-
tion for all aspects of system interaction, is also, in

part, a consequence of the distinction between protection
and security. A failure to distinguish these issues coupled
with a strict hierarchical structure leads inevitably to a
succession of increasingly privileged system components,
and ultimately to a "mos t privileged" one, which gain
their privilege exclusively by virtue of their position in
the hierarchy. Technologists like hierarchical struc-
t u r e s - t h e y are elegant; but experience from the real
world shows they are not viable security structures. The
problem, then, which HYDRA attempts to face squarely,
is to maintain order in a nonhierarchical environment.

The obvious candidate for (the unit of) protection
is the object since this is the abstracted notion of an
arbitrary resource. Similarly, the HYDRA procedure is
considered to be the abstraction of an operation. Thus
HYDRA provides a protection mechanism for the applica-
tion of operations (procedures) to instances of resources
(objects). All of the familiar security for files (e.g. read,
write, delete), memory (e.g. read, write, execute), etc.,
can be conveniently modeled in this way. In addition a
large additional class of secure systems can be built.

Everything of interest in the HYDRA view is the ab-
stracted notion of a resource, called an object, or a
reference to an object, called a capability. Each object
has a unique name, a type part, and a representation
(consisting of a capability part, and a data part).

The unique name of an object distinguishes the
object not only from all other extant objects, but f rom
all objects which have existed or will exist. Knowledge
of the unique name of an object does not grant access
to the object since objects may only be referenced
through capabilities (which are not manipulable except
by the kernel).

The type part of an object serves to identify the
object with that class of objects whose type parts have
an identical value. The type part contains, in fact, the
unique name of a distinguished object which serves as
the representative of such a class. (By convention the
type of these representatives is the name of a special
distinguished object whose name is TYPE and which
names itself in its type field.) Since there is a potentially
infinite supply of unique names, there is a potentially
infinite number of object types as well. A new class of
objects may be created simply by creating a single ob-
ject to serve as its distinguished representative.

Objects become inaccessible only when there are no
references to them. It is possible to generate self-
referential structures; and although a general garbage-
collection deletion mechanism is required, these struc-
tures are rare. Hence a reference count is maintained
in each object, and objects are deleted a when this count
becomes zero.

The representation portion of an object con t a in s
whatever information is relevant to the representation
of the resource which the object denotes. This informa-
tion may be of two types: data (which is normally un-

a The deletion mechanism is not essential to an understanding
of HYDRA, therefore this function of the kernel will not be dis-
cussed further.

340 Communications June 1974
of Volume 17
the ACM Number 6

interpreted by the kernel), and references to other
objects. These two kinds of information are stored in
the data and capability parts of the object respectively.
Given the appropriate access rights, a program may
manipulate the data part of an object freely. Even with
the most liberal access rights, however, the capability
part of an object may be manipulated only by invocation
of kernel functions.

The fact that every object in HYDRA may contain
capabilities referencing other objects is a significant de-
parture from other capability-based systems [5, 7],
and is a major factor in satisfying the flexibility goal of
the design. It permits new object types to be represented
wholly or partially in terms of existing types while
preserving the protection philosophy through each level
of representation. An understanding of the use of the
capability-part of an object to represent new objects is
essential to an understanding of the HYDRA philosophy;
we will return to it after discussing capabilities, pro-
cedures, and the CALL mechanism further.

As mentioned several times previously, in addition
to supporting objects, HYDRA supports references to
objects (called capabilities). Capabilities are, however,
more than simple pointers. Together with the actual/
formal parameter "derivation" of the CALL mechanism
(for crossing execution domains), capabilities are the
key to the protection mechanism. As such, capabilities
may only exist in the capability part of an object and
may be directly manipulated only by the kernel.

Each capability includes information detailing the
operations which may be performed on the object
referenced by the capability. Whenever an operation is
attempted on an object, the requestor supplies a cap-
ability referencing that object. The kernel examines the
rights list and prevents the operation when a protection
failure occurs (i.e. when the requestor does not have
the appropriate rights). It is important to understand
that the rights checking operation does not require
interpretation of the list; the kernel can determine when
a protection failure has occurred without assigning
meaning to the individual rights bits.

Not all rights are type-dependent; there exist opera-
tions worthy of protection which are well-defined for
any object. These are precisely the operations which the
kernel provides for controlled manipulation of objects
and capabilities. Accordingly, we partition the rights
list of a capability into two mutually exclusive sets--the
type-independent rights (called kernel rights), and the
type-dependent rights (called auxiliary rights). A "right"
in either set grants permission to pass the capability as a
parameter to any procedure in a particular class. The
kernel defines these classes for type-independent rights,
and the creator of the type defines them for auxiliary
rights.

The notions of object and capability now permit us
to be more specific about one of the object types men-
tioned earlier--the LNS. At any instant, the execution
environment (domain) of a program is defined by an

341

LNS object associated with it. The capability part of the
LNS contains references to objects which may be ac-
cessed by that program at that instant. (In addition, of
course, the program may be able to access objects ref-
erenced by the objects referenced in its LNS, and so on.)
The LNS provides a mapping function between local
names in a program (i.e. small integers naming "slots"
in the LNS) and globally unique objects. More than this,
however, the rights lists in each capability define the
permissible access rights of this program at this instant.

Thus far we have described two essential elements of
the protection mechanism, objects and capabilities.
The third and final element is the rule governing the
passing from one execution domain to another and how
protection changes a t this interface. The execution
domain is, at any instant, defined by the current LNS,
and an LNS is uniquely associated with an invocation of
a procedure; thus, execution domains change precisely
when a procedure is entered or exited. The kernel
provides two primitive functions, CALL and RETURN
which allow a procedure to invoke a new procedure or
to return to the current procedure's caller.

The essential function of the CALL mechanism is to
instantiate a procedure: to create an LNS for its execu-
tion domain, and to transfer control to the code body.
The essential aspect of the CALL mechanism for the
present, however, is its parameter passing/checking
mechanism, or "derivation" alluded to previously. Since
a procedure is an object, it has a capability part; this
capability part serves as the prototype for the pro-
cedure's LNS when it is instantiated (i.e. the procedure is
CALLed). Thus the capability part of a procedure con-
tains capabilities which reference the caller-independent
capabilities of any invocation of the procedure.

In addition, the capability part of a procedure may
contain parameter templates for capabilities which will
be passed as actual parameters when the procedure is
CALLed. The template contains a type attribute, which
specifies the required type of the corresponding actual
parameter. (One can also have a template which accepts
any type.) If a type mismatch occurs, the call is not
permitted and an error code is returned to the caller.
If the types agree, the rights are then checked, using a
special field present only in templates called the "check-
rights field." The rights contained in the actual param-
eter capability must include the rights specified in the
check-rights field of the template; otherwise, a protec-
tion failure occurs and the call is not permitted. If the
caller's rights are adequate, a capability is constructed
in the (new) LNS which references the object passed by
the caller, but which contains a rights list specified by
the template. (A template has a "regular" rights field
distinct from the check-rights which specifies the rights
which the callee (i.e. the procedure) will need to operate
on the actual parameter.) This implies that a callee
may have greater freedom to operate on an object than
the caller who passed it as a parameter, but the caller
can in no way obtain that freedom for himself (since the

Communications June 1974
of Volume 17
the ACM Number 6

.additional rights are present only in the callee's LNS--
the caller's LNS is unchanged). Also, by appropriate use
of the check-rights and type fields in a template, the
creator of a procedure can implement rather general
type-dependent protection checking. (This follows from
the observation that the check-rights field is not in-
terpreted by the kernel; the interpretation of the auxiliary
rights is up to the user.)

Path Names and the Walk Right

We have avoided enumerating the specific primitives
provided by HYDRA; this is intentional since we are
more concerned with philosophy than with implementa-
tion. However, a few primitives must be discussed in
order to fairly present the philosophy--one is walk.
The walk primitive is a one-level coercion which, given
a capability and a nonnegative integer, produces the
capability which occupies the specified position in the
capability part of the object named by the parameter
capability. The walk primitive, like all kernel primitives,
is an access right protected by the "kernel rights" bits
in a capability.

Because of the walk primitive, the environment of a
procedure does not consist of the objects named by
capabilities in its LNS alone. Rather, it is the closure of
the set of objects reachable along a path (originating in
the LNS) such that every capability along the path
(except possibly the last) grant the walk right. Recog-
nizing this, all of the kernel primitives accept path
names as parameters and the walk right is checked at
each step along the path. The use of path names and
walk rights effect a significant reduction in the number of
capabilities needed in an LNS. Far more important, how-
ever, is that the walk right (or rather the lack of it) is
used to prevent access to the representation of an object.
The amplification walk rights is one of the most common
when entering a procedure which implements operations
on a particular object type.

Systems and Subsystems

The previous sections describe how the kernel sup-
ports the notion of an object, operations on objects, and
protection. It is now time to question to what extent
these mechanisms permit and facilitate the construction
of operating systems; part of the response is implicit
in what has already been described, and part is not.

An "operating system," in the sense of a monolithic
entity which provides various facilities to the user, is
not an appropriate image of a user environment in the
HYDRA context. Rather, a user environment consists of
a collection of resources (objects) of various types and
procedures which operate on them. The environment in
which one user operates may or may not be the same
as that for another user, it may be totally different, or

342

may partially overlap. It is entirely possible, for ex-
ample, that at some point in the evolution of the HYDRA
environment several different "file systems" will have
been devised. Each.such "system" will consist of a
distinct object-type to denote the style of file supported
by that system, and a collection of operations (pro-
cedures) for dealing with that style of file. The various
styles of files, for example, may correspond to different
access methods, different queueing strategies for dealing
with disk, or different security policies. An individual
user may use any one of the systems, or because the
various systems are optimized along distinct dimen-
sions, he may use more than one. Similar comments, of
course, apply to every type of facility provided by an
operating system, e.g. command interpreters, syn-
chronization mechanisms, etc.

The flexibility necessary to obtain this form of ex-
tension results from both the representation of objects
as both data and capabilities, and from the nature of
the protection mechanism. Let us return, for a moment,
to the issue raised earlier concerning the use of the
capability-part of an object in the representation of new
object types. First, an instance of an object may be
created by invoking a kernel primitive create and passing
to it a capability referencing the representative of type
of object one wishes to create. In particular, then, in-
voking create with a capability referencing the dis-
tinguished object named TYPE will create the representa-
tive of a new type class. Subsequent calls on create
passing capabilities referencing this new type represen-
tative will create instances of the new class of objects.

Suppose, for example, that at some instant at least
the types 4 FILE, SEMAPHORE, and PROCEDURE exist. We
wish to introduce the notion of a general directory
object, which defines a mapping from print names to
capabilities. One idea is to list the print names in the
data part, and associate each such name with a capability
in the capability part. (Clearly, a more sophisticated
structure could be devised.) To support the mutual ex-
clusion needed to permit shared access to directories,
we also include a capability for a SEMAPHORE in the
DIRECTORY'S capability part. We may now create PRO-
CEDURES which "understand" the representation just
described and which provide typical directory functions.
Notice that we have not restricted the capabilities con-
tained in a D1RECa'ORY to be of the same type; indeed,
the PROCEDURES which maintain directories may spe-
cifically allow directories of FLUES, or PROCEDURES, or of
arbitrarily mixed types. In fact, a directory may contain
capabilities for other directories, which suggests the
potential for general path names in a directory structure,
and inherent search rules. Many variations are possible;
the important idea is that the nature of the directory
"subsystem" is completely user-specified.

4 We have tried to use suggestive names for object and type
names in the examples. In practice, of course, the unique names of
objects have no visible representation; they are 64-bit values.

Communications June 1974
of Volume 17
the ACM Number 6

An E x a m p l e

In this section we present an example which demon-
strates the power of the protection mechanism de-
scribed above to accomplish in a natural way a kind of
protection which can be achieved in existing systems, if
at all, only by rather artificial devices. While the specific
example is itself somewhat artificial, it has very realistic
counterparts.

Consider the case of a research worker who, being a
diligent fellow, wishes to keep himself abreast of the
relevant literature in his field. Also having access to a
computer, this researcher has written some programs
to maintain an annotated bibliography on that com-
puter. The programs permit him to update the bibliog-
raphy either by inserting new entries or changing exist-
ing ones; he may also print the bibliography in total, or
selectively on any one of several criteria; he may also
wish to completely erase an entire bibliography occa-
sionally. In addition, our hero has organized both the
programs and the bibliography structure to be very
efficient. I t 's a nice system of programs, indeed!

Now, in the fullness of time, the researcher decides
that it would be to his advantage to allow his colleagues,
and perhaps his students, to use his programs and his
bibliographies. In addition to creating their own in-
dependent bibliographies, the colleagues may be able
to add new entries to the researcher's own or to add
annotations which (may) provide the researcher with
additional insights. He is concerned, however, about
several aspects of the protection of both his programs
and data.
1. No one, except himself, should be able to erase his
bibliographies.
2. He worked hard on his system of programs, and he
would not like anyone else to copy or modify them. In
any case his supervisor has informed him that since the
programs were developed on the employer 's time, the
employer is considering selling them as a proprietary
package.
3. Some of the references cited in his own bibliography
were written by his colleagues. His annotations are occa-
sionally cryptic, and he would prefer that they were not
read by everyone. He would like to choose selectively
who may read the annotations.
4. The data structures used to contain the bibliography
references are highly optimized and "delicate." He
would like to insure that when an update is done, the
data structures are correctly manipulated.
5. From time to time he changes the programs, either
to correct errors or to add new features. For a period of
time after the changes are made, he would like to allow
only a small, sympathetic subset of his (growing) user
community to use the new versions of his programs.
6. He suspects that after he has allowed others to use
his programs and build their own bibliographies they
will share some of his concerns, e.g. items (1), (3), and
(5), above. In particular, they will not want him to be

343

able to erase or examine their bibliographies, or to
force a new version of the programs upon them.

Several of the concerns of our researchers can, of
course, be handled by most "reasonable" protection
systems; others, however, cannot. The most straight-
forward implementation of the bibliography would be to
store the bibliographic information in a single file; 5
therefore, let us frame the discussion in that context.

Since most file systems only protect read access to
an entire file, there is no way to enforce selective print-
ing, i.e. to distinguish between the accessors who
may print the entire file and those who may not print
the annotations. Similarly, undifferentiated read access
may permit an unscrupulous user to dump an entire
bibliography file, determine its structure, and thus com-
promise the proprietary nature of the programs.

Undifferentiated write access implies analogous
problems. Clearly, the operation of updating the file
implies writing on it; in fact it may conceivably imply a
massive reorganization in order to maintain the "op-
t imal" data structure.

The concept of "ownership," and its corollary
privileges, present in many extant systems may imply
that the user of this system cannot protect himself
(unless he takes special, explicit precautions) from ex-
amination of his bibliographies by the author of the
system and/or from unexpected alteration of the sys-
tem. In particular he may not be able to protect him-
self from alteration in ways which penetrate the security
of his bibliographies.

Now let us consider the "na tura l" implementation
of the bibliography system in HYDRA and how this im-
plementation overcomes the problems mentioned above.

Clearly a bibliography is a new type of virtual
resource. Therefore, we would create a new object type;
call it BIBLIO. In fact, of course, we will want to use exist-
ing file mechanisms to represent bibliographies. In all
likelihood an instance of a bibliography object will have
an empty data part and its capability part will merely
consist of a single capability which references an

ordinary file object.
Even though the representation of a bibliography is

a file, file operations are not applicable to bibliography
objects; they are applicable only to file objects; we can

create new operations (procedures), however, which are
applicable to bibliography objects, for example:

U(~,pl,... ,p,) Update
P(~,pl,...,pm) Print
PWOA(~,p~,...,pm) Print WithOut Annotations
E(~) Erase

In each of these, ¢~ must be a capability which ref-
erences a bibliography object and the pi's further specify
the nature of the update, print, etc., to be done. (Notice

Some, but not all, of the problems raised can be solved by an
esoteric multi-file structure for the bibliography; however, since
these solutions violate the "naturalness" criterion, they will not be
mentioned.

Communications June 1974
of Volume 17
the ACM Number 6

that even though P and PWOA are distinct procedures,
in the sense of being distinct objects, they need not
necessarily have distinct code bodies; that is, the cap-
ability part of each of these procedure objects, their
prototype LNS'S, may reference some or all of the same
page objects.)

For simplicity, let us assume that each of the pro-
cedures above is uniquely associated with a single bit
in the "auxiliary rights" field of a capability which
references a bibliography object; denote these bits by
the lowercase version of the procedure name, i.e. u,
p, etc. Thus in order to validly execute "CALL U(¢~,...)"
it is first necessary that ~3 be a reference to a bibliography
object, and second that the "u" bit of ¢~ be set.

Figure 1 illustrates (incompletely) a situation in-
volving several "users" and several bibliographies which
might exist at some instant. Rectangular boxes denote
objects. Directed arrows illustrate capability references,
and the lowercase letters along these arrows signify
which of the auxiliary rights bits are set in these cap-
abilities.

The following kinds of information may be gleaned
by inspection of Figure 1.
1. User #1 may access all of the procedures U, P,
PWOA, and E. He may also access bibliography objects
B1 and B2. He may perform any of the operations
U, P, PWOA, and E on B1, but he may only perform U
and PWOA on B2.
2. User #2 may also access all of the procedures and,
in addition, may access three bibliography objects:
B2, B3, and B4. He may only perform PWOA on B2,
but may perform U, P, or E on B3 and B4.
3. User #3 may only access three of the procedures; he
does not have a reference to E. He may access three
bibliography objects--Bl , B4, and B5, and may, in
principle, perform U or P on B4, and U, P, or E on
B5, and P on B1. Notice, however, that the right, in
principle, to perform E on B5 is useless to him since he
does not have a reference to capability E.

It should now be clear that each of the protection
concerns expressed by our friend the researcher is neatly
handled by this scheme. For example,
1. Since the operation of printing is the protected
"r ight" in the system rather than the act of reading, it is
possible to distinguish between printing the entire
bibliography and printing it without annotations. More-
over, since the concept of " read" is not defined with
respect to bibliographies at all, it is simply impossible for
someone to examine the representation of a bibliog-
raphy object and determine its structure; the proprietary
nature of the system is therefore insured.
2. Similarly, since the operation of updating a bibliog-
raphy is distinct from that of writing the file which
represents it, the internal integrity of the data structure
is guaranteed (at least if the procedure U works cor-
rectly).

We would like to make two more points with respect
to the example before leaving it. The conventional

Fig, 1. Bibliography example.
PROCEDURES USERS BIBLIOGRAPHIES

view with respect to sharing resources is that there are
precisely two cases: (1) the shared resource is passed
to another "use r" - - in which case the "rights" which
may be passed must be a subset of those of the passer;
or (2) the shared resource is owned by the "operating
system"-- in which case the set of "rights" expands
drastically when an operating system function is in-
voked. We reject both of these cases as inadequate to
serve as the basis of a truly secure system.

On several occasions we have referred to our rejec-
tion of "ownership" as a design concept. Consider the
consequences of this statement in the context of the
example; specifically, who "owns" object B1 ? We cannot
tell from the static picture who originally created the
object: indeed the creator may not be able to reference it
any longer. We do know that user #1 has more rights to
B1 than does user #2; however, even user #1 can only
invoke BIBLIO-specific operations on B l - - h e cannot,
for example, manipulate the representation of B1.

Nor does the BIBLIO subsystem "own" B1. As
discussed in the previous section, the rights acquired by
a procedure to a capability passed to it as an actual
parameter are obtained from the template in that pro-
cedure's prototype LNS. These rights may be a subset,
superset, or totally disjoint from those of the caller.
The point is that a procedure is invested with those
rights, and only those rights, which it needs to do its
job. Note that the procedures comprised within the
BIBLIO system do not have access to any BIBLIO ob-
jects except as parameters. (By way of analogy, I am

344 Communications June 1974
of Volume 17
the ACM Number 6

not permitted to repair my telephone. I am permitted,
however, to invoke an operation, namely a telephone
repairman, that can repair it. The repairman inherently
has the right to repair telephones; he does not, however,
have access to my particular telephone until I grant
him access to it.)

Conclusion

An operat ing system, even the kernel of one, is a
large undertaking which involves many interrelated
decisions. Indeed we believe that the consistency and
cleanliness of this interrelation are more impor tant to
the ultimate utility of the system than any of the in-
dividual decisions. It is this aspect of the HYDRA design
that we feel is most important .

A word or two concerning the status of the system
and our experience with it seem appropriate. At the time
of this writing the kernel has been operat ional for about
nine months. The existence of a kernel, however, does
not make a system usable, nor does it relieve the im-
plementers f rom the responsibility of developing at
least one version of the subsystems, e.g. a file system,
which users require. We are currently developing these
subsystems. The extent of our experience to date is that
the facilities provided by the kernel do indeed sig-
nificantly simplify the construct ion of these subsystems.

Acknowledgments . It is difficult to give proper credit
to the sources of all the ideas presented above. Al though
we have felt free to change terminology, the works of
Dennis [5], Dijkstra [4], Hansen [1], and especially
Lampson [7] and Jones [6] have had significant impact.
The ideas of these individuals will clearly show through
to those who are familiar with them. The remaining
ideas and the cement which holds the design together
emerged in discussion between the authors.

Received June 1973; revised December 1973

References
1. Brinch-Hansen, P. The nucleus of a multiprogramming
system. Comm. ACM 13, 4 (Apr. 1970), 238-241.
2. Dahl, O.J., Dijkstra, E.W., and Hoare, C.A.R. Structured
Programming, Academic Press, New York, 1972.
3. Dijkstra, E.W. The structure of THE multiprogramming
system. Comm. ACM 11, 5 (May 1968), 341-346.
4. Dijkstra, E.W., Cooperating sequential processes. In Program-
mingLanguages, F. Genuys, (Ed.), Academic Press, New York,
1968, pp. 43-112.
5. Dennis, J.B., and Van Horn, E.C. Programming semantics for
multiprogrammed computations. Comm. ACM 9, 3
(Mar. 1966), 143-155.
6. Jones, A.K. Protection in programming systems. Ph.D. Th.
Carnegie-Mellon U., 1973.
7. Lampson, B.W. Dynamic Protection Structures, Proc. AFIPS
1969 FJCC, Vol. 35, AI=IPS Press, Montvale, N.J. pp. 27-38.
8. Parnas, D.L. On the criteria to be used in decomposing systems
into modules. Comput. Sci. Dep. Rep., Carnegie-Mellon U., 1971.
9. Wulf, W.A., and Bell, C.G.C.mmp--a multi-mini-processor.
Proc. AFIPS 1972, FJCC. Vol. 41, AFIPS Press, Montvale, N.J.
pp. 765-777.

Informat ion Retrieval C.A. Mon tgomery
and Language Processing Editor

An Information-
Theoretic Approach to
Text Searching in
Direct Access Systems
Ian J. Barton, Susan E. Creasey,
Michael F. Lynch, and Michael J. Snell
University of Sheffield

Using direct access computer files of bibliographic
information, an attempt is made to overcome one of the
problems often associated with information retrieval,
namely, the maintenance and use of large dictionaries,
the greater part of which is used only infrequently. A
novel method is presented, which maps the hyperbolic
frequency distribution of text characteristics onto a
rectangular distribution. This is more suited to
implementation on storage devices.

This method treats text as a string of characters
rather than words bounded by spaces, and chooses subsets
of strings such that their frequencies of occurrence are
more even than those of word types. The members of this
subset are then used as index keys for retrieval. The
rectangular distribution of key frequencies results in a
much simplified file organizat ion and promises
considerable cost advantages.

Key Words and Phrases: text searching, information
theory, file organization, direct access, information
retrieval, character string, bit vector

CR Categories: 3.42, 3.70, 3.73, 3.74, 5.6

Introduction

Informat ion dissemination services providing com-
puter based searches of bibliographic data bases have
until recently depended largely on serial searches of mag-
netic tape files [1, 2]. However, the need to process large

Copyright © 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported by the Office of Scientific and Techni-
cal Information of the British Government. Authors' address: Post-
graduate School of Librarianship and Information Science, Univer-
sity of Sheffield, Western Bank, Sheffield, SI0 2TN, U.K.

345 Communications June 1974
of Volume 17
the ACM Number 6

