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Introduction 

The HYDRA system is the "kernel" base for a collection 
of operating systems designed to exploit and explore 
the potential inherent in a multiprocessor computer 
system. Since the field of parallel processing in general, 
and multiprocessing in particular, is not current art, 
the design of HYDRA has a dual goal imposed upon it: 
(1) to provide, as any operating system must, an en- 
vironment for effective utilization of the hardware 
resources, and (2) to facilitate the construction of such 
environments. In the latter case the goal is to provide a 
recta-environment which can serve as the host for 
exploration of the space of user-visible operating en- 
vironments. 

The particular hardware on which HYDRA has been 
implemented is C.mmp, a multiprocessor constructed 
at Carnegie-Mellon University. Although the details of 
the design of C.mmp are not essential to an understand- 
ing of the material which follows, the following brief 
description has been included to help set the context 
(a more detailed description may be found in [9]). 
C.mmp permits the connection of 16 processors to 32 
million bytes of shared primary memory through a 
cross-bar switch. The processors are any of the various 
models of PDP-11 l minicomputers. Each processor is 
actually an independent computer system with a small 
amount of private memory, secondary memories, I/O 
devices, etc. Processors may interrupt each other at 
any of four priority levels; a central clock serves for 
unique-name generation (see below) and also broadcasts 
a central time base to all process6rs. Relocation hard- 
ware on each processor's bus provides mapping of 
virtual addresses on that bus to physical addresses in 
shared primary memory. 

Design Philosophy 

The design philosophy of HYDRA evolved from both 
the environment in which the system was to function 
and a set of principles held by its designers. The central 
goals of the system together with the attitudes expressed 
below suggest that, at the heart of the system, one 
should build a collection of facilities of "universal 
applicability" and "absolute reliability"--a set of 
mechanisms from which an arbitrary set of operating 
system facilities and policies can be conveniently, 
flexibly, efficiently, and reliably constructed. Moreover, 
lest the flexibility be constrained at any instant, it 
should be possible for an arbitrary number of systems 
created from these facilities to co-exist simultaneously. 
The collection of such basic facilities has been called 
the kernel or nucleus [1] of an operating system. The 
more specific considerations are listed below. 
1. Multiprocessor environment. Although multiproces- 
sors have been discussed for well over a decade and a 

1 Manufactured by Digital Equipment Corpormion. 
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few have been built, both the potentials and problems 
of these systems are dimly perceived. The design of 
hYDRA was constrained to be sufficiently conservative 
to insure its construction and utility in a reasonable 
time frame, yet flexible enough to permit experimental 
exploration within the design space bounded by its 
hardware capabilities. 
2. Separation of mechanism and policy. Among the 
major causes of our inability to experiment with, and 
adapt, existing operating systems is their failure to 
properly separate mechanisms from policies. (Hansen 
[1] has presented cogent arguments for this separation.) 
Such separation contributes to the flexibility of the 
system, for it leaves the complex decisions in the hands 
of the person who should make them-- the  higher-level 
system designer. 
3. Integration of the design with implementation meth- 
odology. It has been observed that the structure of ex- 
tant operating systems bears a remarkable resemblance 
to that of the organization which created them. This 
observation is one of a set which asserts the (practical) 
impossibility of separating the design from the meth- 
odology to be used in implementing-the design. The 
authors' predisposition for implementation methodol- 
ogy is a hybrid of structured programming as advocated 
by Dijkstra and others [2] and the modularization 
philosophy of Parnas [8]. 
4. Rejection of strict hierarchical layering. The notion 
of a strict hierarchically layered system has become 
popular since first described by Dijkstra for the THE 
system [3]. While we believe that the system as viewed 
by any single user should be hierarchically structured, 
we reject the notion as a global design criterion. We 
believe that if the entire system is so structured, the 
design will severely limit the flexibility available to the 
high-level user and will strangle experimentation; in 
particular, there is no reason to believe that the same 
hierarchical relation should exist for control as for 
resource allocation, or as for protection, etc. 
5. Protection. Flexibility and protection are closely 
related, but not inversely proportional. We believe that 
protection is not merely a restrictive device imposed by 
"the system" to insure the integrity of user operations, 
but is a key tool in the proper design of operating sys- 
tems. It is essential for protection to exist in a uniform 
manner through the system, and not to be applied only 
to specific entities (e.g. flies). The idea of capabilities 
(in the sense of Dennis [5]) is most important in the 
laVORA design; the kernel provides a protection facility 
for all entities in the system. This protection includes 
not only the traditional read, write, execute capabilities, 
but arbitrary protection conditions whose meaning is 
determined by higher-level software. 
6. Reliability. The existence of multiple copies of most 
critical hardware resources in C.mmp suggests the 
possibility of highly reliable operation. Our desire is to 
provide commensurate reliability in the software. Re- 
liability not only requires that the system be correct, 
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but that it be able to detect and recover from errors that 
do exist--as the result of hardware malfunction, for 
example. 

Defining a kernel with all the attributes given above 
is difficult, and perhaps impractical at the current state 
of the art. It is, nevertheless, the approach taken in the 
HYDRA system. Although we make no claim either that 
the set of facilities provided by the HYDRA kernel is 
minimal (the most primitive "adequate"  set) or that it is 
maximally desirable, we do believe the set provides 
primitives which are both necessary and adequate for 
the construction of a large and ihteresting class of 
operating environments. It is our view that the set of 
functions provided by HYDRA will enable the user of 
C.mmp to create his own operating environment with- 
out being confined to predetermined command and file 
systems, execution scenarios, resource allocation policies, 
etc. 

Given the general decision to adopt the "kernel 
system" approach, the question remains as to what 
belongs in a kernel and, perhaps more important,  what 
does not. Nonspecific answers to this question are im- 
plicit in the attitudes enumerated earlier; e.g. a set of 
mechanisms may be appropriate in a kernel, but policy 
decisions certainly are not. For  other, more specific, 
answers we must step outside these attitudes alone and 
consider the nature of the entity to be built using the 
facilities of a kernel. 

If a kernel is to provide facilities for building an 
operating system and we wish to know what these 
facilities should be, then it is relevant to ask what an 
operating system /s or does. Two views are commonly 
held: (I) an operating system defines an "abstract  
machine" by providing facilities, or resources, which are 
more convenient than those provided by the "bare"  
hardware; and (2) an operating system allocates (hard- 
ware) resources in such a way as to most effectively 
utilize them. Of course these views are, respectively, 
the bird's-eye and worm's eye views of what is a single 
entity with multiple goals. Nevertheless, the important  
observation for our purposes is the emphasis placed, 
in both views, on the central role of resources--both 
physical and abstract. 

The mechanisms provided by the HYDRA kernel are 
all intended to support the abstracted notion of a 
resource (incarnations of a resource are called objects). 
These mechanisms provide for the creation and represen- 
tation of new types of resources, as well as operations 
defined on them, protected access to instances of one or 
more resources within controlled execution domains, 
and controlled passing of both control and resources 
between execution domains. The key aspects of these 
facilities are the generalized notion of resource, the 
definition of an execution domain, and the protection 
mechanism which allows or prevents access to resources 
within a domain. The remainder of this paper focuses on 
these issues, thus deemphasizing several of the other 
issues raised earlier. 
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Overview of the HYDRA Environment 

Before proceeding to a detailed description of the 
mechanisms, it will be convenient to present a somewhat 
incomplete and simplistic view of the execution en- 
vironment created by the HYDRA kernel. The material 
presented in this section will be elaborated further in 
the following sections; however, the overview will at- 
tempt to provide the context necessary to understand 
the more detailed information. 

In order to understand the execution environment 
which the kernel provides, one must clearly understand 
the interrelationships of three object types: procedure, 
LNS, and process. These primitive objects are provided 
by the kernel specifically for the purpose of creating 
and manipulating an execution environment. 

The procedure object is simply an abstraction of the 
intuitive notion of procedure or subroutine; z that is, a 
procedure has some "code"  and some "data"  asso- 
ciated with it, it may accept parameters, and it may re- 
turn values. HYDRA procedures go beyond this simple 
model by including protection facilities, as we shall see 
shortly. The act of creating a procedure object is 
analogous to the task of writing an Algol procedure; 
one produces a body of code, associates the code with a 
name, declares the data which the code requires, and 
specifies the nature of the parameters and return values 
which are involved. In more abstract terms, one creates 
a sequence of instructions and describes the environment 
in which they will ultimately execute; in HYDRA this 
abstraction is made precise. Let us consider the environ- 
ment description first. 

A procedure object contains a list of references to 
other objects which must be accessed during the execu- 
tion of the procedure's code. This is, in fact, a list of 
capabilities [7] and, therefore, defines not only which 
objects the procedure may reference, but also what ac- 
tions it may perform on those objects. The capabilities 
which a procedure requires may be divided into two 
groups: those which are caller independent and those 
which are caller dependent. These groups naturally 
correspond to those objects which the procedure always 
accesses (at least potentially) and those objects which 
are considered parameters. Obviously, the former of 
these groups can be precisely specified at the time the 
procedure is created, while the latter can only be 
characterized since the actual objects passed as param- 
eters are unknown until execution time. Thus, the en- 
vironment defined by a procedure object contains some 
"holes" or "parameter positions" which are only par- 
tially specified at creation time. These holes are filled 
in for each execution of the procedure, using capabilities 

2 It should be noted however, that the cost of entering a 
HYDRA procedure is considerably greater than, say, a Fortran 
subroutine. We do not expect that simple subroutines, such as SIN, 
would use the HYDRA mechanism until better hardware is pro- 
vided. The reader should visualize a procedure as replacing rela- 
tively large code units and/or at points where protection environ- 
ments must change. 

provided by the caller. We will return to a discussion of 
the mechanism by which a procedure characterizes its 
parameters, but first we must examine the LNS. 

A procedure is a static entity; an LNS (local name 
space) is the record of the execution environment of a 
procedure when that procedure is invoked (called). 
There is a unique LNS for each invocation, which dis- 
appears after the procedure terminates. The LNS for a 
particular invocation is the result of combining the 
caller-independent capabilities (listed in the procedure 
object) with caller-dependent actual parameters (only 
characterized in the procedure object) to form a single 
list of capabilities. The LNS defines the totality of cap- 
abilities available to a procedure during the execution 
resulting from a particular invocation. Note that the 
LNS, while heavily dependent upon the corresponding 
procedure for its initialization, is a wholly independent 
object thereafter, and alterations of the LNS d o  not 
affect the procedure object; this implies, among other 
things, that procedures are reentrant and potentially re- 
cursive. 

Up to this point the term "capability" has been used 
in a somewhat loose and intuitive sense; subsequently 
it will be used in a technical sense. A capability con- 
sists of a reference to an object together with a collec- 
tion of "access rights" to that object. Possession of a 
capability is taken as prima facie evidence that the 
possessor may access the object in the ways, and in 
only the ways, described by the capability. Capabilities 
themselves are manipulated only by the kernel; hence 
it is impossible to "forge" a capability. 

A procedure object may contain templates in addi- 
tion to the usual collection of caller-independent cap- 
abilities. Templates characterize the actual parameters 
expected by the procedure. When the procedure is 
called, the slots in the LNS which correspond to param- 
eter templates in the procedure object are filled with 
"normal"  capabilities derived from the actual param- 
eters supplied by the caller. This "derivation" is, in 
fact, the heart of the protection-checking mechanism, 
and the template defines the checking to be performed. 
If the caller's rights are adequate, a capability is con- 
structed in the (new) LNS which references the object 
passed by the caller and which contains rights formed 
by merging the caller's rights with the rights specified 
in the template. This implies that a callee may have 
greater freedom to operate on an object than the caller 
who passed it as a parameter, but the caller can in no 
way obtain that freedom for himself. We shall see that 
this potential expansion of rights across environment 
domains is a key factor in achieving the flexibility goals 
of the kernel and in allowing us to reject enforced 
hierarchical structures without introducing chaos. 

Before proceeding, let us review the major actions of 
the CALL mechanism. An executing body of code first 
notifies the kernel that it wishes to call a procedure. 
The kernel examines the actual parameter capabilities 
supplied by the caller and determines whether all pro- 
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tection requirements are met. If  so, the kernel creates a 
new LNS which defines the new environment; the caller's 
LNS is superceded by this new LNS for the duration of 
the called procedure's execution. The body of code 
associated with the callee receives control from the 
kernel and begins executing. When it completes its 
function, it will return control to its caller by way of 
the kernel. The kernel will delete the callee's LNS and 
restore that of the caller, thus returning to the previous 
environment. 

Up to this point, nothing we have described suggests 
any exploitation of the parallel processing capabilities 
of C.mmp. The actions involved in calling and returning 
from procedures are strictly sequential in nature, being 
in essence formalizations of traditional subroutine be- 
havior. We come now to the unit of asynchronous 
processing in HYDRA--the process. A process in the 
technical sense defined by HYDRA corresponds closely 
to one's intuitive notion of a process. Viewed from the 
outside, it is the smallest entity which can be inde- 
pendently scheduled for execution. Viewed from the 
inside, it constitutes a precise record of the changes of 
environment induced by a sequence of calls. In other 
words, a process is a stack of LNS'S which represents the 
cumulative state of a single sequential task. HYDRA 
implements interprocess communication and synchro- 
nization by providing elementary message buffering 
primitives and Dijkstra-style semaphore operations. 
These facilities have been treated in [4] and elsewhere 
and will not be discussed here. 

The Protection Mechanism 

The protection mechanism is at the heart of the 
HYDRA design. In describing the mechanism it is im- 
portant  at the outset to distinguish between protection 
and security and to determine what is to be protected 
and against what. 

In our view, protection is a mechanism; security is a 
policy. A system utilizing such a mechanism may be 
more or less secure depending upon policies governing 
the use of the mechanism (for example, passwords 
and the like are policy issues) and upon the reliability 
of the programs which manipulate the protected en- 
tities. Thus the design goal of the HYDRA protection 
mechanism is to provide a set of concepts and facilities 
on which a highly secure system may be built, but not 
to inherently provide that security. A particular con- 
sequence of this philosophy has been to discard the 
notion of "ownership."  While ownership is a useful, 
perhaps even an important,  concept for certain "secur- 
ity" strategies, to include the concept at the most prim- 
itive levels would be to exclude the construction of cer- 
tain other classes of truly secure systems. 

Our rejection of hierarchical system structures, and 
especially ones which employ a single hierarchical rela- 
tion for all aspects of system interaction, is also, in 

part, a consequence of the distinction between protection 
and security. A failure to distinguish these issues coupled 
with a strict hierarchical structure leads inevitably to a 
succession of increasingly privileged system components,  
and ultimately to a "mos t  privileged" one, which gain 
their privilege exclusively by virtue of their position in 
the hierarchy. Technologists like hierarchical struc- 
t u r e s - t h e y  are elegant; but experience from the real 
world shows they are not viable security structures. The 
problem, then, which HYDRA attempts to face squarely, 
is to maintain order in a nonhierarchical environment.  

The obvious candidate for (the unit of) protection 
is the object since this is the abstracted notion of an 
arbitrary resource. Similarly, the HYDRA procedure is 
considered to be the abstraction of an operation. Thus 
HYDRA provides a protection mechanism for the applica- 
tion of operations (procedures) to instances of resources 
(objects). All of the familiar security for files (e.g. read, 
write, delete), memory  (e.g. read, write, execute), etc., 
can be conveniently modeled in this way. In addition a 
large additional class of secure systems can be built. 

Everything of interest in the HYDRA view is the ab- 
stracted notion of a resource, called an object, or a 
reference to an object, called a capability. Each object 
has a unique name, a type part, and a representation 
(consisting of a capability part, and a data part). 

The unique name of an object distinguishes the 
object not only from all other extant objects, but f rom 
all objects which have existed or will exist. Knowledge 
of the unique name of an object does not grant access 
to the object since objects may only be referenced 
through capabilities (which are not manipulable except 
by the kernel). 

The type part of an object serves to identify the 
object with that class of objects whose type parts have 
an identical value. The type part contains, in fact, the 
unique name of a distinguished object which serves as 
the representative of such a class. (By convention the 
type of these representatives is the name of a special 
distinguished object whose name is TYPE and which 
names itself in its type field.) Since there is a potentially 
infinite supply of unique names, there is a potentially 
infinite number of  object types as well. A new class of  
objects may be created simply by creating a single ob- 
ject to serve as its distinguished representative. 

Objects become inaccessible only when there are no 
references to them. It is possible to generate self- 
referential structures; and although a general garbage- 
collection deletion mechanism is required, these struc- 
tures are rare. Hence a reference count is maintained 
in each object, and objects are deleted a when this count 
becomes zero. 

The representation portion of an object con t a in s  
whatever information is relevant to the representation 
of the resource which the object denotes. This informa- 
tion may be of two types: data (which is normally un- 

a The deletion mechanism is not essential to an understanding 
of HYDRA, therefore this function of the kernel will not be dis- 
cussed further. 
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interpreted by the kernel), and references to other 
objects. These two kinds of information are stored in 
the data and capability parts of the object respectively. 
Given the appropriate access rights, a program may 
manipulate the data part of an object freely. Even with 
the most liberal access rights, however, the capability 
part of an object may be manipulated only by invocation 
of kernel functions. 

The fact that every object in HYDRA may contain 
capabilities referencing other objects is a significant de- 
parture from other capability-based systems [5, 7], 
and is a major factor in satisfying the flexibility goal of 
the design. It permits new object types to be represented 
wholly or partially in terms of existing types while 
preserving the protection philosophy through each level 
of representation. An understanding of the use of the 
capability-part of an object to represent new objects is 
essential to an understanding of the HYDRA philosophy; 
we will return to it after discussing capabilities, pro- 
cedures, and the CALL mechanism further. 

As mentioned several times previously, in addition 
to supporting objects, HYDRA supports references to 
objects (called capabilities). Capabilities are, however, 
more than simple pointers. Together with the actual/  
formal parameter "derivation" of the CALL mechanism 
(for crossing execution domains), capabilities are the 
key to the protection mechanism. As such, capabilities 
may only exist in the capability part of an object and 
may be directly manipulated only by the kernel. 

Each capability includes information detailing the 
operations which may be performed on the object 
referenced by the capability. Whenever an operation is 
attempted on an object, the requestor supplies a cap- 
ability referencing that object. The kernel examines the 
rights list and prevents the operation when a protection 
failure occurs (i.e. when the requestor does not have 
the appropriate rights). It is important to understand 
that the rights checking operation does not require 
interpretation of the list; the kernel can determine when 
a protection failure has occurred without assigning 
meaning to the individual rights bits. 

Not all rights are type-dependent; there exist opera- 
tions worthy of protection which are well-defined for 
any object. These are precisely the operations which the 
kernel provides for controlled manipulation of objects 
and capabilities. Accordingly, we partition the rights 
list of a capability into two mutually exclusive sets--the 
type-independent rights (called kernel rights), and the 
type-dependent rights (called auxiliary rights). A "right"  
in either set grants permission to pass the capability as a 
parameter to any procedure in a particular class. The 
kernel defines these classes for type-independent rights, 
and the creator of the type defines them for auxiliary 
rights. 

The notions of object and capability now permit us 
to be more specific about one of the object types men- 
tioned earlier--the LNS. At any instant, the execution 
environment (domain) of a program is defined by an 
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LNS object associated with it. The capability part of the 
LNS contains references to objects which may be ac- 
cessed by that program at that instant. (In addition, of 
course, the program may be able to access objects ref- 
erenced by the objects referenced in its LNS, and so on.) 
The LNS provides a mapping function between local 
names in a program (i.e. small integers naming "slots" 
in the LNS) and globally unique objects. More than this, 
however, the rights lists in each capability define the 
permissible access rights of this program at this instant. 

Thus far we have described two essential elements of 
the protection mechanism, objects and capabilities. 
The third and final element is the rule governing the 
passing from one execution domain to another and how 
protection changes a t  this interface. The execution 
domain is, at any instant, defined by the current LNS, 
and an LNS is uniquely associated with an invocation of 
a procedure; thus, execution domains change precisely 
when a procedure is entered or exited. The kernel 
provides two primitive functions, CALL and RETURN 
which allow a procedure to invoke a new procedure or 
to return to the current procedure's caller. 

The essential function of the CALL mechanism is to 
instantiate a procedure: to create an LNS for its execu- 
tion domain, and to transfer control to the code body. 
The essential aspect of the CALL mechanism for the 
present, however, is its parameter passing/checking 
mechanism, or "derivation" alluded to previously. Since 
a procedure is an object, it has a capability part; this 
capability part serves as the prototype for the pro- 
cedure's LNS when it is instantiated (i.e. the procedure is 
CALLed). Thus the capability part of a procedure con- 
tains capabilities which reference the caller-independent 
capabilities of any invocation of the procedure. 

In addition, the capability part of a procedure may 
contain parameter templates for capabilities which will 
be passed as actual parameters when the procedure is 
CALLed. The template contains a type attribute, which 
specifies the required type of the corresponding actual 
parameter. (One can also have a template which accepts 
any type.) If a type mismatch occurs, the call is not 
permitted and an error code is returned to the caller. 
If the types agree, the rights are then checked, using a 
special field present only in templates called the "check- 
rights field." The rights contained in the actual param- 
eter capability must include the rights specified in the 
check-rights field of the template; otherwise, a protec- 
tion failure occurs and the call is not permitted. If  the 
caller's rights are adequate, a capability is constructed 
in the (new) LNS which references the object passed by 
the caller, but which contains a rights list specified by 
the template. (A template has a "regular" rights field 
distinct from the check-rights which specifies the rights 
which the callee (i.e. the procedure) will need to operate 
on the actual parameter.) This implies that a callee 
may have greater freedom to operate on an object than 
the caller who passed it as a parameter, but the caller 
can in no way obtain that freedom for himself (since the 
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.additional rights are present only in the callee's LNS-- 
the caller's LNS is unchanged). Also, by appropriate use 
of the check-rights and type fields in a template, the 
creator of a procedure can implement rather general 
type-dependent protection checking. (This follows from 
the observation that the check-rights field is not in- 
terpreted by the kernel; the interpretation of the auxiliary 
rights is up to the user.) 

Path Names and the Walk Right 

We have avoided enumerating the specific primitives 
provided by HYDRA; this is intentional since we are 
more concerned with philosophy than with implementa- 
tion. However, a few primitives must be discussed in 
order to fairly present the philosophy--one is walk. 
The walk primitive is a one-level coercion which, given 
a capability and a nonnegative integer, produces the 
capability which occupies the specified position in the 
capability part of the object named by the parameter 
capability. The walk primitive, like all kernel primitives, 
is an access right protected by the "kernel rights" bits 
in a capability. 

Because of the walk primitive, the environment of a 
procedure does not consist of the objects named by 
capabilities in its LNS alone. Rather, it is the closure of 
the set of objects reachable along a path (originating in 
the LNS) such that every capability along the path 
(except possibly the last) grant the walk right. Recog- 
nizing this, all of the kernel primitives accept path 
names as parameters and the walk right is checked at 
each step along the path. The use of path names and 
walk rights effect a significant reduction in the number of 
capabilities needed in an LNS. Far more important, how- 
ever, is that the walk right (or rather the lack of it) is 
used to prevent access to the representation of an object. 
The amplification walk rights is one of the most common 
when entering a procedure which implements operations 
on a particular object type. 

Systems and Subsystems 

The previous sections describe how the kernel sup- 
ports the notion of an object, operations on objects, and 
protection. It is now time to question to what extent 
these mechanisms permit and facilitate the construction 
of operating systems; part of the response is implicit 
in what has already been described, and part is not. 

An "operating system," in the sense of a monolithic 
entity which provides various facilities to the user, is 
not an appropriate image of a user environment in the 
HYDRA context. Rather, a user environment consists of 
a collection of resources (objects) of various types and 
procedures which operate on them. The environment in 
which one user operates may or may not be the same 
as that for another user, it may be totally different, or 
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may partially overlap. It is entirely possible, for ex- 
ample, that at some point in the evolution of the HYDRA 
environment several different "file systems" will have 
been devised. Each.such "system" will consist of a 
distinct object-type to denote the style of file supported 
by that system, and a collection of operations (pro- 
cedures) for dealing with that style of file. The various 
styles of files, for example, may correspond to different 
access methods, different queueing strategies for dealing 
with disk, or different security policies. An individual 
user may use any one of the systems, or because the 
various systems are optimized along distinct dimen- 
sions, he may use more than one. Similar comments, of 
course, apply to every type of facility provided by an 
operating system, e.g. command interpreters, syn- 
chronization mechanisms, etc. 

The flexibility necessary to obtain this form of ex- 
tension results from both the representation of objects 
as both data and capabilities, and from the nature of 
the protection mechanism. Let us return, for a moment, 
to the issue raised earlier concerning the use of the 
capability-part of an object in the representation of new 
object types. First, an instance of an object may be 
created by invoking a kernel primitive create and passing 
to it a capability referencing the representative of type 
of object one wishes to create. In particular, then, in- 
voking create with a capability referencing the dis- 
tinguished object named TYPE will create the representa- 
tive of a new type class. Subsequent calls on create 
passing capabilities referencing this new type represen- 
tative will create instances of the new class of objects. 

Suppose, for example, that at some instant at least 
the types 4 FILE, SEMAPHORE, and PROCEDURE exist. We 
wish to introduce the notion of a general directory 
object, which defines a mapping from print names to 
capabilities. One idea is to list the print names in the 
data part, and associate each such name with a capability 
in the capability part. (Clearly, a more sophisticated 
structure could be devised.) To support the mutual ex- 
clusion needed to permit shared access to directories, 
we also include a capability for a SEMAPHORE in the 
DIRECTORY'S capability part. We may now create PRO- 
CEDURES which "understand" the representation just 
described and which provide typical directory functions. 
Notice that we have not restricted the capabilities con- 
tained in a D1RECa'ORY to be of the same type; indeed, 
the PROCEDURES which maintain directories may spe- 
cifically allow directories of FLUES, or PROCEDURES, or of 
arbitrarily mixed types. In fact, a directory may contain 
capabilities for other directories, which suggests the 
potential for general path names in a directory structure, 
and inherent search rules. Many variations are possible; 
the important idea is that the nature of the directory 
"subsystem" is completely user-specified. 

4 We have tried to use suggestive names for object and type 
names in the examples. In practice, of course, the unique names of 
objects have no visible representation; they are 64-bit values. 
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An E x a m p l e  

In this section we present an example which demon- 
strates the power of the protection mechanism de- 
scribed above to accomplish in a natural way a kind of 
protection which can be achieved in existing systems, if 
at all, only by rather artificial devices. While the specific 
example is itself somewhat artificial, it has very realistic 
counterparts.  

Consider the case of a research worker who, being a 
diligent fellow, wishes to keep himself abreast of the 
relevant literature in his field. Also having access to a 
computer,  this researcher has written some programs 
to maintain an annotated bibliography on that com- 
puter. The programs permit him to update the bibliog- 
raphy either by inserting new entries or changing exist- 
ing ones; he may also print the bibliography in total, or 
selectively on any one of several criteria; he may also 
wish to completely erase an entire bibliography occa- 
sionally. In addition, our hero has organized both the 
programs and the bibliography structure to be very 
efficient. I t 's  a nice system of programs, indeed! 

Now, in the fullness of time, the researcher decides 
that it would be to his advantage to allow his colleagues, 
and perhaps his students, to use his programs and his 
bibliographies. In addition to creating their own in- 
dependent bibliographies, the colleagues may be able 
to add new entries to the researcher's own or to add 
annotations which (may) provide the researcher with 
additional insights. He is concerned, however, about  
several aspects of  the protection of both his programs 
and data. 
1. No one, except himself, should be able to erase his 
bibliographies. 
2. He worked hard on his system of programs, and he 
would not like anyone else to copy or modify them. In 
any case his supervisor has informed him that since the 
programs were developed on the employer 's  time, the 
employer is considering selling them as a proprietary 
package. 
3. Some of the references cited in his own bibliography 
were written by his colleagues. His annotations are occa- 
sionally cryptic, and he would prefer that they were not 
read by everyone. He would like to choose selectively 
who may read the annotations. 
4. The data structures used to contain the bibliography 
references are highly optimized and "delicate." He 
would like to insure that when an update is done, the 
data structures are correctly manipulated. 
5. From time to time he changes the programs, either 
to correct errors or to add new features. For  a period of 
time after the changes are made, he would like to allow 
only a small, sympathetic subset of his (growing) user 
community to use the new versions of his programs. 
6. He suspects that after he has allowed others to use 
his programs and build their own bibliographies they 
will share some of his concerns, e.g. items (1), (3), and 
(5), above. In particular, they will not want him to be 
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able to erase or examine their bibliographies, or to 
force a new version of the programs upon them. 

Several of the concerns of  our researchers can, of 
course, be handled by most "reasonable"  protection 
systems; others, however, cannot. The most straight- 
forward implementation of the bibliography would be to 
store the bibliographic information in a single file; 5 
therefore, let us frame the discussion in that context. 

Since most file systems only protect read access to 
an entire file, there is no way to enforce selective print- 
ing, i.e. to distinguish between the accessors who 
may print the entire file and those who may not print 
the annotations. Similarly, undifferentiated read access 
may permit an unscrupulous user to dump an entire 
bibliography file, determine its structure, and thus com- 
promise the proprietary nature of the programs. 

Undifferentiated write access implies analogous 
problems. Clearly, the operation of updating the file 
implies writing on it; in fact it may conceivably imply a 
massive reorganization in order to maintain the "op- 
t imal" data structure. 

The concept of  "ownership,"  and its corollary 
privileges, present in many extant systems may imply 
that the user of this system cannot protect himself 
(unless he takes special, explicit precautions) from ex- 
amination of his bibliographies by the author of  the 
system and/or  from unexpected alteration of the sys- 
tem. In particular he may not be able to protect him- 
self from alteration in ways which penetrate the security 
of his bibliographies. 

Now let us consider the "na tura l"  implementation 
of the bibliography system in HYDRA and how this im- 
plementation overcomes the problems mentioned above. 

Clearly a bibliography is a new type of virtual 
resource. Therefore, we would create a new object type; 
call it BIBLIO. In fact, of course, we will want to use exist- 
ing file mechanisms to represent bibliographies. In all 
likelihood an instance of a bibliography object will have 
an empty data part  and its capability part  will merely 
consist of  a single capability which references an  

ordinary file object. 
Even though the representation of a bibliography is 

a file, file operations are not applicable to bibliography 
objects; they are applicable only to file objects; we can  

create new operations (procedures), however, which are 
applicable to bibliography objects, for example: 

U(~,pl,... ,p,) Update  
P(~,pl,...,pm) Print 
PWOA(~,p~,...,pm) Print WithOut Annotations 
E(~) Erase 

In each of these, ¢~ must be a capability which ref- 
erences a bibliography object and the pi's further specify 
the nature of the update, print, etc., to be done. (Notice 

Some, but not all, of the problems raised can be solved by an 
esoteric multi-file structure for the bibliography; however, since 
these solutions violate the "naturalness" criterion, they will not be 
mentioned. 
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that even though P and PWOA are distinct procedures, 
in the sense of being distinct objects, they need not 
necessarily have distinct code bodies; that is, the cap- 
ability part of each of these procedure objects, their 
prototype LNS'S, may reference some or all of the same 
page objects.) 

For simplicity, let us assume that each of the pro- 
cedures above is uniquely associated with a single bit 
in the "auxiliary rights" field of a capability which 
references a bibliography object; denote these bits by 
the lowercase version of the procedure name, i.e. u, 
p, etc. Thus in order to validly execute "CALL U(¢~,...)" 
it is first necessary that ~3 be a reference to a bibliography 
object, and second that the "u"  bit of ¢~ be set. 

Figure 1 illustrates (incompletely) a situation in- 
volving several "users" and several bibliographies which 
might exist at some instant. Rectangular boxes denote 
objects. Directed arrows illustrate capability references, 
and the lowercase letters along these arrows signify 
which of the auxiliary rights bits are set in these cap- 
abilities. 

The following kinds of information may be gleaned 
by inspection of Figure 1. 
1. User #1 may access all of the procedures U, P, 
PWOA, and E. He may also access bibliography objects 
B1 and B2. He may perform any of the operations 
U, P, PWOA, and E on B1, but he may only perform U 
and PWOA on B2. 
2. User #2 may also access all of the procedures and, 
in addition, may access three bibliography objects: 
B2, B3, and B4. He may only perform PWOA on B2, 
but may perform U, P, or E on B3 and B4. 
3. User #3 may only access three of the procedures; he 
does not have a reference to E. He may access three 
bibliography objects--Bl ,  B4, and B5, and may, in 
principle, perform U or  P on B4, and U, P, or E on 
B5, and P on B1. Notice, however, that the right, in 
principle, to perform E on B5 is useless to him since he 
does not have a reference to capability E. 

It should now be clear that each of the protection 
concerns expressed by our friend the researcher is neatly 
handled by this scheme. For  example, 
1. Since the operation of printing is the protected 
"r ight"  in the system rather than the act of reading, it is 
possible to distinguish between printing the entire 
bibliography and printing it without annotations. More- 
over, since the concept of " read"  is not defined with 
respect to bibliographies at all, it is simply impossible for 
someone to examine the representation of a bibliog- 
raphy object and determine its structure; the proprietary 
nature of the system is therefore insured. 
2. Similarly, since the operation of updating a bibliog- 
raphy is distinct from that of writing the file which 
represents it, the internal integrity of the data structure 
is guaranteed (at least if the procedure U works cor- 
rectly). 

We would like to make two more points with respect 
to the example before leaving it. The conventional 

Fig, 1. Bibliography example. 
PROCEDURES USERS BIBLIOGRAPHIES 

view with respect to sharing resources is that there are 
precisely two cases: (1) the shared resource is passed 
to another "use r" - - in  which case the "rights" which 
may be passed must be a subset of those of the passer; 
or (2) the shared resource is owned by the "operating 
system"-- in  which case the set of "rights" expands 
drastically when an operating system function is in- 
voked. We reject both of these cases as inadequate to 
serve as the basis of a truly secure system. 

On several occasions we have referred to our rejec- 
tion of "ownership" as a design concept. Consider the 
consequences of this statement in the context of the 
example; specifically, who "owns" object B1 ? We cannot 
tell from the static picture who originally created the 
object: indeed the creator may not be able to reference it 
any longer. We do know that user #1 has more rights to 
B1 than does user #2; however, even user #1 can only 
invoke BIBLIO-specific operations on B l - - h e  cannot, 
for example, manipulate the representation of B1. 

Nor does the BIBLIO subsystem "own"  B1. As 
discussed in the previous section, the rights acquired by 
a procedure to a capability passed to it as an actual 
parameter are obtained from the template in that pro- 
cedure's prototype LNS. These rights may be a subset, 
superset, or totally disjoint from those of the caller. 
The point is that a procedure is invested with those 
rights, and only those rights, which it needs to do its 
job. Note that the procedures comprised within the 
BIBLIO system do not have access to any BIBLIO ob- 
jects except as parameters. (By way of analogy, I am 
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not  permitted to repair my telephone. I am permitted, 
however,  to invoke an operation,  namely a telephone 
repairman,  that can repair it. The repairman inherently 
has the right to repair telephones; he does not, however, 
have access to my particular telephone until I grant 
him access to it.) 

Conclusion 

An operat ing system, even the kernel of  one, is a 
large undertaking which involves many interrelated 
decisions. Indeed we believe that  the consistency and 
cleanliness of  this interrelation are more impor tant  to 
the ultimate utility of  the system than any of  the in- 
dividual decisions. It is this aspect of  the HYDRA design 
that  we feel is most  important .  

A word or two concerning the status of  the system 
and our  experience with it seem appropriate.  At  the time 
of  this writing the kernel has been operat ional  for about  
nine months.  The existence of  a kernel, however, does 
not  make a system usable, nor  does it relieve the im- 
plementers f rom the responsibility of  developing at 
least one version of  the subsystems, e.g. a file system, 
which users require. We are currently developing these 
subsystems. The extent of  our  experience to date is that  
the facilities provided by the kernel do indeed sig- 
nificantly simplify the construct ion of  these subsystems. 
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An Information- 
Theoretic Approach to 
Text Searching in 
Direct Access Systems 
Ian J. Barton, Susan E. Creasey, 
Michael F. Lynch, and Michael J. Snell 
University of Sheffield 

Using direct access computer files of  bibliographic 
information, an attempt is made to overcome one of  the 
problems often associated with information retrieval, 
namely, the maintenance and use of  large dictionaries, 
the greater part of which is used only infrequently. A 
novel method is presented, which maps the hyperbolic 
frequency distribution of  text characteristics onto a 
rectangular distribution. This is more suited to 
implementation on storage devices. 

This method treats text as a string of  characters 
rather than words bounded by spaces, and chooses subsets 
of  strings such that their frequencies of occurrence are 
more even than those of word types. The members of this 
subset are then used as index keys  for retrieval. The 
rectangular distribution of  key  frequencies results in a 
much simplified file organizat ion and promises 
considerable cost advantages.  

Key Words and Phrases:  text searching, information 
theory, file organization, direct access, information 
retrieval, character string, bit vector 
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Introduction 

Informat ion  dissemination services providing com-  
puter based searches of  bibliographic data bases have 
until recently depended largely on serial searches of  mag- 
netic tape files [1, 2]. However,  the need to process large 
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