Intro To The Byzantine Generals Problem
Leslie Lamport, Robert Shostak, Marshall Pease
Byzantine Generals Problem
BGP – the Generals

• Loyal Generals
 – Behave according to the algorithm
 • They decide upon the same plan
 – Every loyal general must obtain the same $v(1)\ldots v(n)$
 • A small number of traitors shouldn’t be able to force a bad decision
 – If the i^{th} general is loyal) $v(i)$ must be used by all (loyal) generals

• Traitorous Generals
 – Try to influence the final decision
 – Send any info they want
Byzantine Generals Problem
(formalism)

- 0 .. N-1 processes in a complete graph
- Process 0 needs to send a value v to all others such that
 - (IC1) If process 0 is non faulty then any non faulty process i receives v
 - (IC2) If processes i and j are non faulty, they receive the same value
- Note: 0 is non faulty, then IC1=>IC2
Impossibility Results – Oral Msg

• Oral message – the content is entirely under the control of the sender

• No solution if more than 1/3 of the generals are traitorous
Traitorous Lieutenant

he said “retreat”
Traitorous General

He said “retreat.”

Attack → Retreat
Impossibility Results – Generalization

• No solution with fewer than $3m+1$ generals for m traitors
• Proof by contradiction: reduce the problem to the 3 generals problem
 – Assume $3m$ (let’s call them Albanians) or fewer generals can cope with m traitors
 – Build the solution with Byzantine generals
An Actual Protocol

- Note: Relatively high overhead