Intro To The Byzantine Generals Problem
Leslie Lamport, Robert Shostak, Marshall Pease

BGP – the Generals
• Loyal Generals
 – Behave according to the algorithm
 • They decide upon the same plan
 – Every loyal general must obtain the same \(v(1) \ldots v(n) \)
 • A small number of traitors shouldn’t be able to force a bad decision
 – If the \(P \) general is loyal \(v(i) \) must be used by all (loyal) generals
 • Traitorous Generals
 – Try to influence the final decision
 – Send any info they want

Byzantine Generals Problem (formalism)
• 0 .. N-1 processes in a complete graph
• Process 0 needs to send a value \(v \) to all others such that
 – \((IC1)\) If process 0 is non faulty then any non faulty process \(i \) receives \(v \)
 – \((IC2)\) If processes \(i \) and \(j \) are non faulty, they receive the same value
• Note: 0 is non faulty, then IC1=>IC2

Impossibility Results – Oral Msg
• Oral message – the content is entirely under the control of the sender
• No solution if more than 1/3 of the generals are traitorous

Traitorous Lieutenant
• Attacked
• He said "retreat"
Traitorous General

he said “retreat”

Traitorous General

Attack

Retreat

An Actual Protocol

request pre-prepare prepare commit reply

0

1

2

3

Note: Relatively high overhead

Impossibility Results – Generalization

• No solution with fewer than $3m+1$ generals for m traitors
• Proof by contradiction: reduce the problem to the 3 generals problem
 – Assume $3m$ (let’s call them Albanians) or fewer generals can cope with m traitors
 – Build the solution with Byzantine generals