
Why Events Are A Bad Idea
(for high-concurrency servers)

Rob von Behren, Jeremy Condit and Eric Brewer

University of California at Berkeley

{jrvb,jcondit,brewer}@cs.berkeley.edu

http://capriccio.cs.berkeley.edu

A Talk HotOS 2003

The Stage

� Highly concurrent applications
� Internet servers (Flash, Ninja, SEDA)

� Transaction processing databases

� Workload Ideal

� Operate “near the knee”

� Avoid thrashing!

� What makes concurrency hard?
� Race conditions

� Scalability (no O(n) operations)

� Scheduling & resource sensitivity

� Inevitable overload

� Code complexity

Peak: some
resource at max

Overload: some
resource thrashing

Load (concurrent tasks)

P
e
rf
o
rm
a
n
ce

The Debate

� Performance vs. Programmability

� Current threads pick one

� Events somewhat better

� Questions

E
a
se
 o
f
P
ro
g
ra
m
m
in
g

Ideal

� Questions

� Threads vs. Events?

� How do we get performance and
programmability?

Performance

E
a
se
 o
f
P
ro
g
ra
m
m
in
g

Current
Threads

Current Threads

Current Events

Our Position

� Thread-event duality still holds

� But threads are better anyway

� More natural to program

� Better fit with tools and hardware� Better fit with tools and hardware

� Compiler-runtime integration is key

The Duality Argument

� General assumption: follow “good practices”

� Observations
� Major concepts are analogous

� Program structure is similar

Accept
Conn.

Web Server

� Performance should be similar
� Given good implementations!

Threads Events

� Monitors

� Exported functions

� Call/return and fork/join

� Wait on condition variable

� Event handler & queue

� Events accepted

� Send message / await reply

� Wait for new messages

Write
Response

Read
File

Read
Request

Pin
Cache

Exit

The Duality Argument

� General assumption: follow “good practices”

� Observations
� Major concepts are analogous

� Program structure is similar

Accept
Conn.

Web Server

� Performance should be similar
� Given good implementations!

Threads Events

� Monitors

� Exported functions

� Call/return and fork/join

� Wait on condition variable

� Event handler & queue

� Events accepted

� Send message / await reply

� Wait for new messages

Write
Response

Read
File

Read
Request

Pin
Cache

Exit

The Duality Argument

� General assumption: follow “good practices”

� Observations
� Major concepts are analogous

� Program structure is similar

Accept
Conn.

Web Server

� Performance should be similar
� Given good implementations!

Threads Events

� Monitors

� Exported functions

� Call/return and fork/join

� Wait on condition variable

� Event handler & queue

� Events accepted

� Send message / await reply

� Wait for new messages

Write
Response

Read
File

Read
Request

Pin
Cache

Exit

“But Events Are Better!”

� Recent arguments for events

� Lower runtime overhead

� Better live state management

� Inexpensive synchronization� Inexpensive synchronization

� More flexible control flow

� Better scheduling and locality

� All true but…

� No inherent problem with threads!

� Thread implementations can be improved

Runtime Overhead

� Criticism: Threads don’t perform
well for high concurrency

� Response

� Avoid O(n) operations

R
eq
u
es
ts
 /
 S
ec
o
n
d 90000

 100000

 110000

� Avoid O(n) operations

� Minimize context switch overhead

� Simple scalability test

� Slightly modified GNU Pth

� Thread-per-task vs.
single thread

� Same performance!
R
eq
u
es
ts
 /
 S
ec
o
n
d

Concurrent Tasks

Event-Based Server

Threaded Server

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 1 10 100 1000 10000 100000 1e+06

Live State Management

� Criticism: Stacks are bad for live state

� Response

� Fix with compiler help

� Stack overflow vs. wasted space

Event State (heap)

� Stack overflow vs. wasted space
� Dynamically link stack frames

� Retain dead state
� Static lifetime analysis

� Plan arrangement of stack

� Put some data on heap

� Pop stack before tail calls

� Encourage inefficiency
� Warn about inefficiency

Live

Live

Dead

Unused

Thread State (stack)

Synchronization

� Criticism: Thread synchronization is heavyweight

� Response

� Cooperative multitasking works for threads, too!

� Also presents same problems� Also presents same problems
� Starvation & fairness

� Multiprocessors

� Unexpected blocking (page faults, etc.)

� Compiler support helps

Control Flow

� Criticism: Threads have restricted
control flow

� Response

� Programmers use simple patterns� Programmers use simple patterns
� Call / return

� Parallel calls

� Pipelines

� Complicated patterns are unnatural
� Hard to understand

� Likely to cause bugs

Scheduling

Task

� Criticism: Thread schedulers are too generic
� Can’t use application-specific information

� Response

� 2D scheduling: task & program location

P
ro
g
ra
m
 L
o
ca
ti
o
n� 2D scheduling: task & program location

� Threads schedule based on task only

� Events schedule by location (e.g. SEDA)

� Allows batching

� Allows prediction for SRCT

� Threads can use 2D, too!
� Runtime system tracks current location

� Call graph allows prediction

Scheduling

Task

� Criticism: Thread schedulers are too generic
� Can’t use application-specific information

� Response

� 2D scheduling: task & program location

P
ro
g
ra
m
 L
o
ca
ti
o
n

Threads

� 2D scheduling: task & program location
� Threads schedule based on task only

� Events schedule by location (e.g. SEDA)

� Allows batching

� Allows prediction for SRCT

� Threads can use 2D, too!
� Runtime system tracks current location

� Call graph allows prediction

Scheduling

� Criticism: Thread schedulers are too generic
� Can’t use application-specific information

� Response

� 2D scheduling: task & program location

Task

� 2D scheduling: task & program location
� Threads schedule based on task only

� Events schedule by location (e.g. SEDA)

� Allows batching

� Allows prediction for SRCT

� Threads can use 2D, too!
� Runtime system tracks current location

� Call graph allows prediction

P
ro
g
ra
m
 L
o
ca
ti
o
n

Threads

Events

The Proof’s in the Pudding

� User-level threads package

� Subset of pthreads

� Intercept blocking system calls

� No O(n) operations 800

900

KnotC (Favor Connections)� No O(n) operations

� Support > 100K threads

� 5000 lines of C code

� Simple web server: Knot

� 700 lines of C code

� Similar performance

� Linear increase, then steady

� Drop-off due to poll() overhead

0

100

200

300

400

500

600

700

800

1 4 16 64 256 1024 4096 16384

KnotC (Favor Connections)

KnotA (Favor Accept)

Haboob

Concurrent Clients
M
b
it
s
/
se
co
n
d

Our Big But…

� More natural programming model

� Control flow is more apparent

� Exception handling is easier

� State management is automatic� State management is automatic

� Better fit with current tools & hardware

� Better existing infrastructure

� Allows better performance?

Control Flow

� Events obscure control flow

� For programmers and tools

Threads Events
thread_main(int sock) { AcceptHandler(event e) {

Accept
Conn.

Web Server

thread_main(int sock) {

struct session s;

accept_conn(sock, &s);

read_request(&s);

pin_cache(&s);

write_response(&s);

unpin(&s);

}

pin_cache(struct session *s) {

pin(&s);

if(!in_cache(&s))

read_file(&s);

}

AcceptHandler(event e) {

struct session *s = new_session(e);

RequestHandler.enqueue(s);

}

RequestHandler(struct session *s) {

…; CacheHandler.enqueue(s);

}

CacheHandler(struct session *s) {

pin(s);

if(!in_cache(s)) ReadFileHandler.enqueue(s);

else ResponseHandler.enqueue(s);

}

. . .

ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s); }

Write
Response

Read
File

Read
Request

Pin
Cache

Exit

Control Flow

Accept
Conn.

Web Server

Threads Events
thread_main(int sock) { CacheHandler(struct session *s) {

� Events obscure control flow

� For programmers and tools

Write
Response

Read
File

Read
Request

Pin
Cache

Exit

thread_main(int sock) {

struct session s;

accept_conn(sock, &s);

read_request(&s);

pin_cache(&s);

write_response(&s);

unpin(&s);

}

pin_cache(struct session *s) {

pin(&s);

if(!in_cache(&s))

read_file(&s);

}

CacheHandler(struct session *s) {

pin(s);

if(!in_cache(s)) ReadFileHandler.enqueue(s);

else ResponseHandler.enqueue(s);

}

RequestHandler(struct session *s) {

…; CacheHandler.enqueue(s);

}

. . .

ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s);

}

AcceptHandler(event e) {

struct session *s = new_session(e);

RequestHandler.enqueue(s); }

Exceptions
� Exceptions complicate control flow

� Harder to understand program flow

� Cause bugs in cleanup code Accept
Conn.

Web Server

Threads Events
thread_main(int sock) { CacheHandler(struct session *s) {

Write
Response

Read
File

Read
Request

Pin
Cache

Exit

thread_main(int sock) {

struct session s;

accept_conn(sock, &s);

if(!read_request(&s))

return;

pin_cache(&s);

write_response(&s);

unpin(&s);

}

pin_cache(struct session *s) {

pin(&s);

if(!in_cache(&s))

read_file(&s);

}

CacheHandler(struct session *s) {

pin(s);

if(!in_cache(s)) ReadFileHandler.enqueue(s);

else ResponseHandler.enqueue(s);

}

RequestHandler(struct session *s) {

…; if(error) return; CacheHandler.enqueue(s);

}

. . .

ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s);

}

AcceptHandler(event e) {

struct session *s = new_session(e);

RequestHandler.enqueue(s); }

State Management

Threads Events
thread_main(int sock) { CacheHandler(struct session *s) {

Accept
Conn.

Web Server
� Events require manual state management

� Hard to know when to free
� Use GC or risk bugs

thread_main(int sock) {

struct session s;

accept_conn(sock, &s);

if(!read_request(&s))

return;

pin_cache(&s);

write_response(&s);

unpin(&s);

}

pin_cache(struct session *s) {

pin(&s);

if(!in_cache(&s))

read_file(&s);

}

CacheHandler(struct session *s) {

pin(s);

if(!in_cache(s)) ReadFileHandler.enqueue(s);

else ResponseHandler.enqueue(s);

}

RequestHandler(struct session *s) {

…; if(error) return; CacheHandler.enqueue(s);

}

. . .

ExitHandlerr(struct session *s) {

…; unpin(&s); free_session(s);

}

AcceptHandler(event e) {

struct session *s = new_session(e);

RequestHandler.enqueue(s); }

Write
Response

Read
File

Read
Request

Pin
Cache

Exit

Existing Infrastructure

� Lots of infrastructure for threads

� Debuggers

� Languages & compilers

� Consequences� Consequences

� More amenable to analysis

� Less effort to get working systems

Better Performance?

� Function pointers & dynamic dispatch

� Limit compiler optimizations

� Hurt branch prediction & I-cache locality

� More context switches with events?� More context switches with events?

� Example: Haboob does 6x more than Knot

� Natural result of queues

� More investigation needed!

The Future:
Compiler-Runtime Integration

� Insight

� Automate things event programmers do by hand

� Additional analysis for other things

� Specific targets� Specific targets

� Dynamic stack growth*

� Live state management

� Synchronization

� Scheduling*

� Improve performance and decrease complexity

* Working prototype in threads package

Conclusion

� Threads ≈ Events

� Performance

� Expressiveness

� Threads > Events

E
a
se
 o
f
P
ro
g
ra
m
m
in
g

New Threads?
� Threads > Events

� Complexity / Manageability

� Performance and Ease of use?

� Compiler-runtime integration is key

Performance

E
a
se
 o
f
P
ro
g
ra
m
m
in
g

Current
Threads

Current Threads

Current Events

