
Consistency Management for

Virtually Indexed Caches

Abstract

Bob Wheeler and Brian N. Bershad

School of Computer Science

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

A virtually indexed cache can improve performance by

allowing cache lookup and address translation to occur

in parallel, thus reducing processor cycle time. Un-

like physically indexed caches, virtually indexed caches

create consistency problems because a physical address

may be represented in more than one cache line when

it has been accessed through more than one virtual ad-

dress. Write-back virtually indexed caches create ad-

ditional inconsistencies because memory may become

stale with respect to the cache.

In this paper we examine the problem of consistency

management for a virtually indexed write-back cache.

We assume that the hardware does not support intra-

cache consist enc y. We present a model and software im-

plementation strategy for maintaining consistency with

virtually indexed caches.

We present measurements from an implementation

of this model on the HP 9000 Series 700 in the con-

text of the Mach operating system. Our measurements

show that a virtually indexed cache can be managed

with nearly the same cost as that required to manage

a physically indexed one, even when used by a virtual

memory system that encourages and exploits sharing.

This research was sponsored in part by The Defense Ad-
vanced Research Projects Agency, Information Science and Tech-
nology Office, under the title “Research on Parallel Computing”,
ARPA Order No. 733o, issued by DARPA/CMO under Contract
MDA972-90-C-O035, by the Open Software Foundation (OSF),
and by a grant from the Hewlett-Packard Corporation. Bershad
was partially supported by a National Science Foundation Pres-
idential Young Investigator Award.

The views and conclusions contained in this document are
those of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of DARPA,
OSF, HP, the NSF, or the U.S. government,

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appaar, and notice is given

that copying is by permission of tha Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ASPLOS V - I01921MA, USA

@ 1992 ACM 0-89791 -535 -6/92 /0010 /0124 . ..$1 .50

1 Introduction

Virtually indexed caches are becoming increasingly

common as architects try to reduce processor cycle

times [Kohn 89, Lee 89]. With a virtually indexed

cache, the virtual address of a data item selects the

cache line in which the item should reside. In con-

trast, with a physically indexed cache, the virtual ad-

dress must first be translated into its corres~ondin~

physical address, and that address is used to s;lect th;

cache line. Virtually indexed caches offer a speed im-

provement over physically indexed caches, since a cache

lookup can occur in parallel with address translation.

Comparable performance is possible with a physically

indexed cache only by tying cache size and associativity

to page size [Jouppi 88], by reducing the associativity

of virtual to physical mappings [Chiueh & Katz 92],

or by introducing a separate pipeline stage for address

translation [DEC Alpha 92].

Despite their low-level performance advantages, vir-

tually indexed caches have generally been considered

less desirable for operating systems that support arbi-

trary memory sharing within and between programs.

Since the selection of a cache line is based on a vir-

tual address, the contents of a physical address that has

been mapped at more than one virtual address may ap-

pear in more than one line in the cache at a time. This

creates an internal cache consistency problem. The

problem becomes more acute with a write-back virtu-

~lly indexed cache because memory can become stale

with respect to the cache.

In this paper we describe a solution to the problems

of internal cache consistency for machines with virtu-

ally indexed write-back caches. Our solution is based

on a simple model of consistency that captures the be-

havior of virtual memory, physical memory, and cache

memory. The model defines the consistency of virtually

indexed cache lines in terms of the operations that are

performed on memory (CPU-read, CPU-write, DMA-

read, and DMA-write) and the cache (purge, flush).

The model lends itself to a straightforward software so-

lution that relies on virtual memory hardware to deny

access to potentially inconsistent data.

From the standpoint of performance, two aspects

of the consistency model are important. First, the

model delays cache control operations for as long as

possible, ensuring consistency only when not doing so

124

would cause the memory system (the cache plus pri-

mary memory) to transfer a stale value to either the

CPUor a device. In contrast, many previous solutions

have forced the memory system into a consistent state

at the time that the inconsistency would be created,

rather than when it would be detected. Second, our

model naturally captures the effect of different virtual

addresses that map to both the same physical address

and to the same line within the virtually indexed cache.

Such aligned addresses do not create consistency prob-

lems and therefore do not require any consistency man-

agement.

1.1 Motivation and goals

We have implemented the machine-dependent layer

of the virtual memory system [Rashid et al. 87] in

Mach 3.0 [Accetta et al. 86] for the HP 9000 Se-

ries 700 [Lee 89]. The HP 9000 Series 700 uses a

high-performance RISC-based microprocessor (HP PA-

RISC) with separate instruction and data caches that

are direct mapped, virtually indexed, and physically

tagged. The data cache is write-back. There is no hard-

ware support for consistency when a physical address

is represented at more than one cache line. 1/0 devices

that rely on DMA do not snoop the cache. A trans-

lation looks.side buffer (TLB) translates virtual page

frames into physical page frames in parallel with cache

lookup. At the end of the cache lookup, the physical

frame number is compared to the cache tag. If they

match, the cache access hits. Otherwise the data is re-

trieved from memory and stored in the cache. If the

previous data in the cache line is dirty, it is first writ-

ten back to memory before being replaced. For the

purposes of cache management, the cache exports two

operations to the processor. These are flush virtual ad-

dress and purge virtual address. Both remove the cache

line containing the specified virtual address from the

cache. The flush will write the line back to main mem-

ory if it is dirty.

As we examined the consistency problem for virtu-

ally indexed caches, we began to appreciate the many

different kinds of inconsistencies that can occur. For

example, a cache line can become stale with respect

to other cache lines or memory due to writes by the

CPU or a DMA device, or primary memory can be-

come stale with respect to the cache due to the cache’s

write-back policy. When we considered strategies for

resolving the inconsistencies, we frequently discovered

inconsistencies that could be ignored, or that could be

handled lazily. For example, when zeroing data known

to be stale in the cache, there is no reason to first purge

the data as it will be entirely overwritten before being

read. On the other hand, when the CPU reads data

provided by a DMA device, previously stale data in the
cache must first be purged to ensure that the device’s

new data is not improperly shadowed. Concerned that

we might be taking an ad hoc approach to consistency

which would result in a less-than-optimal implementa-

tion, we sought first to define a consistency model that

would enable us to manage a virtually indexed cache

correctly and efficiently.

Our consistency model is therefore intended to meet

two goals. First, we want to make it easier to reason

about the cache control and virtual memory operations

that are required to ensure consistency. This allows us

to evaluate an implementation strategy in terms of cor-

rectness (does it ensure consistency?), necessity (does

it provide more consistency than is actually needed?),

and efficiency (can certain operations be combined in

order to achieve the same level of consistency with lower

cost?). Our model permits inconsistencies within the

memory system as long as those inconsistencies never

result in stale data being returned to either the CPU

or a device. Moreover, our model encourages the oper-

ating system to select virtual addresses that naturally

align within the cache so that consistency operations

can be avoided. The use of these techniques has re-

sulted in application performance improvements of up

to 10YO.

Our second goal is to better understand the virtual

cache management strategies that have been imple-

mented in other systems. When we first began our

work, we surveyed the literature to understand the ap-

proaches taken by others [Cheng 87, Chao et al. 90].

We found it difficult to describe succinctly the differ-

ences between the systems because we had no com-

mon reference point. Our model provides that refer-

ence point, and allows us to compare our solution to

previous ones.

1.2 The rest of this paper

In Section 2 we describe the consistency and perfor-

mance issues that arise in the use of a virtually indexed

cache, In Section 3 we present a consistency model for

such caches. In Section 4 we describe an implementa-

tion of the model that relies on the virtual memory sys-

tem. We also describe changes to the Mach operating

system that eliminate unnecessary cache inconsisten-

cies. In Section 5 we present measurements that show

the relative impact of our model and implementation

strategy. In Section 6 we discuss related work. Finally,

in Section 7 we present our conclusions.

2 Virtually indexed cache con-

sistency

In this section we discuss several issues that arise when

implementing a memory management system for a ma-

chine with a virtually indexed write-back cache. These

issues relate to aliases, new mappings, and DMA.

2.1 The virtual memory model

Mach provides a hierarchical virtual memory model in

which each process runs in its own address space. Mem-

125

ory can be shared between processes, although there is

no requirement that it be shared at the same address

everywhere. An alternative model places all processes

in a single, global virtual address space in which nam-

ing and protection are orthogonal. From an operating

systems perspective, exporting the large address space

model to applications opens up a large number of re-

search issues [Chase et al. 92]. These issues are com-

plicated by the fact that global address space machines

are still the exception and not the rule. Consequently,

we are retaining Mach’s hierarchical model for our port

to the HP 9000 Series 700.

For the purposes of virtually indexed cache manage-

ment, only one distinction exists between the two ad-

dressing models. In the hierarchical model, processes

can share memory at different virtual addresses, and

therefore possibly different cache lines. In the global

model, memory is shared at the same address in all

processes. This eliminates consistency problems due to

sharing (which is defined as aliasing in the next subsec-

tion), but does not solve the problems that arise during

the creation of new mappings or DMA-based 1/0 (Sec-

tions 2.3 and 2.4).

2.2 The problem with aliases

An alias occurs whenever the same physical address is

mapped at more than one virtual address. In a virtu-

ally indexed cache, where the virtual address is used

to select the cache line, an alias can result in a data

item being in more than one cache line at a time. It is

the job of the cache management system to ensure that

references to aliased data yield consistent values.

Write-back caches exacerbate the alias problem. A

write-back cache can improve processor performance

by reducing the frequency of stores to main memory.

Only the replacement of a dirty cache line requires a

store to memory, enabling physical memory to become

stale with respect to the cache. This can cause reads

through one virtual address to return stale values if the

data was written through another. Writes can also be

lost if a physical address is dirty in more than one cache

line because one or both dirty lines can be written back

to physical memory in any order.

Some solutions

Some solutions to the alias problem, such as the global

address space model mentioned earlier, disallow aliases

altogether. Others preclude arbitrary aliasing by forc-

ing shared data to reside at virtual addresses that align

in the cache, or by requiring that shared data be non-

cacheable [Cheng 87]. Two virtual addresses align if

they both map to the same cache line. In a physically

tagged cache, aligned aliases can be resolved without

going to memory. In a virtually tagged cache, aligned

aliases compete for the same cache line, although there

is no consistency problem.

Other solutions allow arbitrary aliases, but rely on

consistency protocols implemented in hardware [Wang

et al. 89, Knapp & Baer 85] or software [Chao et al. 90].

Hardware protocols use a reverse translation buffer to

determine if a physical address is aliased in more than

one cache line, and allow only the most recent alias to

be valid. Software protocols allow aliases to be read-

only. On the first write to a read-only alias, a page-fault

occurs, the page is mapped writable, and any other

read mapping is broken. On the next read through a

different virtual address, the write-mapping is broken

and the alias becomes read-only again. The cache may

require flushing or purging during transitions.

When do aliases occur?

Aliases occur for two general reasons. Either applica-

tions explicitly request that physical pages be multiply

mapped, or the operating system uses multiple map-

pings to implement techniques such as copy-on-write

to reduce the overhead of memory management [Young

et al. 87]. In either case, only unaligned aliases pose a

problem, as aligned aliases map to the same line in the

cache.

Despite the ability to share memory at arbitrary ad-

dresses, we are aware of few applications that rely on

this feature. Even applications that share in sophisti-

cated ways [Appel & Li 91] can generally do so without

specifying the address at which shared data must be

mapped [Li 92]. The name of a piece of virtual mem-

ory is much less important than other attributes, such

as its contents, pageability, protection, and reference

information.

In contrast to applications, the operating system it-

self is a more aggressive client of virtual memory shar-

ing primitives. As a result, it might be more inclined

to require unaligned aliases. In practice, though, this

turns out not to be case for the same reason as with

applications. The virtual memory system can therefore

generally select aligning virtual addresses for shared

data, We discuss this characteristic further in Sec-

tion 4.2.

Nevertheless, there will always be cases where it may

be more convenient to place shared memory at specific

virtual addresses (such as with shared persistent data

structures). Consequently, the cache management sys-

tem must deal with these aliases correctly.

2.3 The problem with new mappings

Aliases introduce a potential memory inconsistency

whenever the number of virtual mappings to a given

physical page is greater than one. An additional con-

sistency problem is created whenever a physical page

is newly mapped, that is, the number of mappings to

a physical page changes from zero to one. Unlike the

alias problem, the new mapping problem is not solved

by the use of a single, global address space.

New mappings are a problem because the cache may

contain data brought in through an old (but now non-

existent) mapping, For example, suppose that virtual

address V is mapped to physical page P, written, and

126

then unmapped so that P has no corresponding virtual

address. This could happen for any one of a number of

reasons, such as the termination of an address space, or

the remap of P from one virtual address to another. If

V’ is then mapped to P, yet V and V’ do not align in the

cache, a read or write through V’ could access data from

page P in physical memory that is older than the data

from page P in the cache. Furthermore, write-back of

dirty data that was once mapped at V could overwrite

physical memory that had been written through V’.

A straightforward way to ensure consistency for new

mappings is to clean the cache with a flush or a purge

when a virtual mapping to a physical page is removed.

The flush or purge ensures that the next time the phys-

ical page is accessed, none of its data will be in the

cache. This approach, for example, is taken in [Cheng

87].

While correct, the approach is unnecessarily eager.

It is possible that the next time the page is mapped,

it would be mapped at a virtual address that aligns

with the last assigned virtual address. By removing

the data from the cache at unmap, subsequent accesses

will involve slower fetches from main memory, thereby

degrading performance [Chao et al. 90]. On the other

hand, if the next mapping to the page is not aligned, ea-

ger removal reduces the likelihood that the data would

be naturally replaced by other references. On the HP

9000 Series 700, for example, a purge or flush of a vir-

tual address can be UD to seven times slower when the

data is in the cache ~ opposed to when it isn’t.

An alternative approach is to delay consistency man-

agement until the new mapping is created. It is not

necessary to purge or flush the cache of data when a

virtual address is unmapped by the operating system.

Other structures, however, such as TLB and page table

entries, must be invalidated to deny access to the data

in the memory system.

As with aliases, consistency operations for new map-

pings are only required when the new mapping to a

physical address does not align with the previous map-

ping to that physical address. If the previous and new

addresses do not align, the previous address may need

to be flushed and the new address may need to be

purged. The flush through the previous mapping en-

sures that any writes to it will take effect in memory

before any reads through the new mapping. The purge

of the new mapping ensures that any reads through it

will return fresh data from memory.

The consistency issues of new mappings are orthogo-

nal to the ot)eratin~ svstem issues of initializing data in

a newly ma~ped p;g;. Security concerns dicta~e that a

newly mapped physical page not contain data left over

from a previous mapping, otherwise one process’ data

could be made available to another process through a

remapping. Proper page preparation must occur with

both Dhvsicallv and virtually indexed caches. We dis-. .
cuss two optirnizations that are possible when prepar-

ing a newly mapped page in Section 4.

2.4 The problem with DMA-based 1/0

DMA-based 1/0 is another source of cache inconsis-

tency, and hence potential cache management over-

head, The 1/0 problem is independent of the cache ar-

chitecture (virtual or physical) or address space model

(hierarchical or global).

DMA devices support two memory-oriented opera-

tions: DMA-write and DMA-read. DMA-write causes

the device to transfer data into the memory system.

DMA-read causes the device to read data from the

memory system. Prior to issuing a DMA-write, the

CPU must ensure that the physical addresses written

by the device will not be overwritten by previously dirt-

ied data still in the cache. Prior to accessing the data,

the CPU must ensure that old data in the cache is

not shadowing new data in memory. Prior to issuing

a DMA-read, the CPU must ensure that data at the

addresses being read by the device has been flushed to

main memory.

2.5 The cost of cache management

In managing a virtually indexed cache, an operating

svstem has two remonsibilities. First. it must strive.
to reduce the frequ;ncy of unaligned aliases and new

mappings by taking the cache index function into ac-

count when defining virtual to physical mappings. Sec-

ond, when unaligned mappings do occur and consis-

tency management is required, the operating system

should provide it with as little overhead as possible.

For example, because purges and flushes of virtual ad-

dresses that are not present in the cache should be less

expensive than those that are, they should be delayed

for as long as possible. A delayed cache management

operation may even be avoided altogether if it is known

to be obviated by a subsequent and otherwise necessary

operation. For example, copying into or zeroing a cache

line overwrites its contents entirely, making an earlier

purge of stale data in that line unnecessary.

To demonstrate the importance of meeting these re-

sponsibilities, we have measured the performance of

several benchmark programs on two versions of the

Mach 3.0 kernel running on the HP 9000 Series 700

(Model 720). An operating system server running at

user level provides Unix functionality [Golub et al. 90].

The benchmarks are afs-bench, latex-bench, and kernel-

build. The first is a version of the Andrew File System

benchmark [Satyanaranyanyan et al. 85] that runs a

file-intensive shell script. The second formats a version

of this paper using 14TEX. The third builds a version of

the Mach kernel from about 200 source files.

The two versions of the kernel are identical with the

exception of their cache management policies. In the

first version of the system (labeled “old”), neither the

kernel nor the user-level operating system server at-
tempt to align virtual addresses. Both the kernel and

the Unix server run under the mis-assumption that the

cache is physically indexed, while low-level machine-

dependent software guarantees consistency through a

127

simple strategy for cache management. 1 on a write

to an alias.ed physical page, all other mappings to that

page are broken. On a read to an unmapped aliased

page, any existing writable mapping is broken and the

faulting address is marked read-only. Whenever a vir-

tual to physical mapping is broken, the page is removed

from the cache with a flush (if dirtv) or a rnmre. In the

second version of the system (la~~led “;ew;), which

uses the cache management strategies laid out in the

next two sections, careful alignment and delayed con-

sistency are used extensively.

Table 1 summarizes the performance of the bench-

marks on the two systems in terms of program execu-

tion time and number of cache consistency operations.

The numbers represent the average from the last two

of three runs on an otherwise idle machine. 2 Despite

the fact that none of the benchmarks directly stress

Mach’s virtual memory system (they are all Unix pro-

grams), their indirect reliance on the kernel and the

Unix server can incur a significant amount of cache

management overhead stemming from the cost of hav-

ing to purge and flush pages from the cache. Overall,

the new system’s cache consistency policies improve ex-

ecution times by between 5?lo and 10Yo. A more detailed

performance analysis is presented in Section 5.

We also ran an entirely contrived benchmark, which

is not shown in the table, that exposes the benefit

of aligning shared mappings. A single thread repeat-

edly wrote one physical address through two virtual

addresses, When the virtual addresses were aligned,

a loop of 1,000,000 writes completed in a fraction of a

second, When unaligned, the loop took over 2 minutes.

Program Elapsed Page Page
Time Flushes Purges

(seconds) (xlO’) (X103)
old new ?O gain “old new old ‘new

afs-bench I 66.0 59.4 I 10% 177.41 7.754 I 62.09 22,61

[atex-paper 5.8 5.5 Syo 2.029 .143 1.52 .2s
kernel-build 678.9 620.9 8.5% 602.9 57.88 418.41 171.62

Table 1: Performance of several common benchmarks

using two approaches to consistency management on

two versions of the Mach 3.0 kernel (version MK6i’)

and Unix server (version UX28).

1This version derives its cache management policy from an
earlier version of Mach worked on by one of this paper’s authors
while at the University of Utah.

2The first run, which reflects performance on a cold instruc-
tion, data, and file system buffer cache, took slightly longer due
to increased file system read activity.

3 A model for virtually indexed

cache management

The previous section enumerated different situations

that arise in consistency management for virtually in-

dexed write-back caches. There are cases where caches

need to be flushed or purged when the inconsistency

is created (write access to an alias, DMA). In other

cases, the flush or purge can be delayed (remove a map-

ping). Finally, in other cases, the flush or purge can be

avoided altogether (virtual addresses align). These sit-

uations also include a large number of cases that can

be handled specially to improve performance.

The problems introduced by aliases, new mappings

and DMA-based 1/0 can be distilled into the single

problem of ensuring that the memory system never

transfers an inconsistent value to either the CPU or

a DMA device.

In this section we present a consistency model for

a virtually indexed cache that allows us to solve this

problem. The model expresses the consistency state of

each cache line with respect to virtual and physical ad-

dresses. Transitions between consistency states occur

as a result of operations applied to the memory sys-

tem by the CPU and devices. We define the states and

transitions in such a way as to prevent the detection of

data in an inconsistent state, allowing us to delay and

sometimes omit cache purge and flush operations. We

also use this model to describe the behavior and cache

management requirements for several other cache ar-

chitectures.

3.1 A restatement of the problem

A correctly functioning memory system must never

transfer stale data to either the CPU or a DMA-device.

Because data is kept only in memory or the cache, stale

data may be transferred for only two reasons:

1,

2.

Memory is stale with respect to the cache. The

most recently written data is not in memory. In

the case of a CPU access, the most recently written

data may be in a cache line other than the one

being accessed. In the case of DMA access, the

most recently written data may be in the cache.

The cache is stale with respect to memory. The

most recently written data _is in memory, but the

cache is returning stale data, either to the CPU

(in the case of a CPU access) or to memory (in

the case of a cache write-back).

We can solve both problems by keeping track of cache

lines that are stale, and by ensuring that stale lines are

never transferred out of the cache.

3.2 A solution to the problem

For any virtual address, a cache line can be in one of

four states: empty, present, dirty, or stale (E,P,D or S).

128

An empty cache line does not contain the data at the

virtual address that was used to select the cache line;

an access through that virtual address results in a cache

miss and a value being transferred from main memory,

A present line is one that contains the correct data at

the virtual address. A dirty line is like a present line,

except that the line has been written by the CPU and

may therefore be inconsistent with respect to memory

or another cache line. A stale line is one for which the

data at the cached physical address is inconsistent with

a more recently written version either in memory or in

another cache line.

Six events can change the consistency state of cache

lines with respect to a virtual address. These are CPU-
read, (7P U-writ e, DMA-read, DMA - write, Purge, and

Flush. The first four operations can create inconsisten-

cies, while the last two can resolve them.

Figure 2 enumerates the state transitions that must

occur during each operation in order to ensure consis-

tency. The first column names the operations that can

be applied to a target virtual address. The second col-

umn describes the transitions that must occur for the

target cache line, depending on the target line’s cur-

rent state. The target line is the one selected by the

cache index function for the target virtual address. The

third column describes the transitions that must occur

for all other cache lines which share the same map-

ping as the target virtual address but are not aligned.

Transitions labeled with purge and flush indicate the

cache consistency operation which is required to force

the transition.

Initially, at power up, all cache lines for all virtual ad-

dresses are in the empty state (the cache can be purged

to ensure this). Any operation that can modify state

must be caught and acted upon before the operation

takes place, and the requisite state transitions must oc-

cur atomically. This guarantees, for example, that an

empty line is not marked present and then read before

dirty data in another similarly mapped line has been

flushed to memory.

A CPU-read through a cache line in the empty state

must cause that cache line to enter the present state

(E - P), indicating the data’s presence in the cache

at the particular line. To ensure that the previously

empty line returns the most recently written data, any

similarly mapped but unaligned cache line in the dirty

state must be flushed to main memory, leaving the

flushed line empty (D ‘~~ E). A CPU-read of a stale

line requires that the line first be purged.

A CPU-write forces an empty, present, or dirty line

to enter the dirty state ([E, P, D] + D). Other sim-

ilarly mapped but unaligned cache lines not in the

empty state must enter the stale state ([P, S] -+ S)

or the empty state (D ‘~~ E). As with a CPU-read, a

CPU-write to a stale line requires purging.
DMA-read and DMA-write are similar to CPU-read

and CPU-write, respectively. Their similarity is re-

vealed by the set of equivalent transitions for similarly

mapped but unaligned cache lines for CPU-read and

Operation

on target

address

CPU-read

CPU-write

DMA-read

DMA-write

Purge

Flush

Target

cache

line

E-p
p-p

D+D

SP=E+P

E--+D

P+D

D-D

Sp~E-+D

E+E
P-P

~ f~h E

s-s

E+E
p-s

Dp~E
S*S

E--+E
p-E

D-+E

S+E

E-E

P-E
D-+E
S--+E

All other similarly

mapped but unaligned

cache lines

E-E
P-P

~ fIus_h E

s-s

E-E

p-s
~ fl@l ~

$$-s

E-E
P-P

~ f~h ~

S+S

E-E
p-s

DP~E
s-s

E-E
p-p
D-D
s-s

E-E
p-p
D-I)
s-s

Table 2: Cache line state transitions. These transitions
must occur to ensure that the memory system never
returns inconsistent data to either the CPU or a device.

DMA-read, and CPU-write and DMA-write. DMA

does not go through the cache, so all cache lines that

contain the physical address referenced by the DMA op-

eration share the same transitions. In contrast, CPU-

read and CPU-write of a virtual address affect the tar-

get cache line (and state) differently than the cache

lines (and states) for similarly mapped but unaligned

virtual addresses. One difference between CPU-write

and DMA-write is that a DMA-write under a dirty

cache line only requires that the line be purged rather

than flushed, since the DMA-write will cause the data

in memory to be overwritten.

The states themselves are pessimistic with respect

to consistency and the operation of a cache. Because

we do not consider the cache replacement policy in the

transitions, it is possible to have a cache line in the

present state in terms of the model, yet not physically

present in an actual cache (although the converse is not

possible). Such pessimism does not influence correct-

ness because a flush or purge of a physically non-present

line has no effect on the system.

129

Correctness of the state transitions

We can return to the problem restatement and show

that the state transitions ensure > correct solution. The

transition rules guarantee that neither:

1. memory is stale with respect to the cache, or

2. the cache is stale with respect to memory

can result in stale data being transferred by the mem-

ory system to the CPU or a device.

We avoid the first problem because a cache line can-

not leave the empty state until memory is consistent

with the most recent update. For updates caused by a

CPU-write, consistency is enforced by the flush of the

dirty line. For updates caused by a DMA-write, con-

sistency is implied by the fact that the DMA device

performed the most recent write to memory, and that

all equivalently mapped cache lines are either empty or

stale.

We avoid the second problem because stale lines are

never transferred by the cache to either the CPU or

memory. In the first case, a stale line must first be

purged before it can be read or written. In the second

case, only dirty data can ever be written back by the

cache, and the transitions for CPU-write and DMA-

write guarantee that data corresponding to a physical

address is dirty in at most one cache line (one for CPU-

write, zero for DMA-write).

3.3 Application to other architectures

Although we are primarily concerned with direct-

mapped, virtually indexed, write-back caches on a

uniprocessor, the consistency model can be applied to

other memory system architectures.

●

●

●

Write-through caches. In a write-through cache,

memory is never stale with respect to the cache.

Consequently, the dirty state can be replaced with

the present state, and all redundant transitions can

be eliminated. There is also no need for the flush

operation.

Physically indexed caches. With a physically in-

dexed cache, all similarly mapped virtual addresses

naturally align in the cache, so the third column

in Table 2 becomes irrelevant. Only DMA-write

and DMA-read create consistency problems, and

those are handled with the transitions in the sec-

ond column. As with a virtually indexed cache,

write-back and write-through physically indexed

caches are distinguished only by the existence of a

dirty state.

DMA can access the cache. In a system in which

DMA can access the cache, CPU-read and DMA-

read fold into a single read operation, and CPU-

write and DMA-write fold into a single write op-

eration. The transitions on read and write are the

same as for CPU-read and CPU-write in Table 2.

●

●

4

We

Set-associative caches. For a set-associative cache,

the consistency rules remain the same since con-

sistency within a set is ensured by hardware. That

is, the physical tags associated with each entry are

guaranteed to be unique within a set.

Cache-coherent multiprocessors. The caches in a

cache-coherent multiprocessor can be viewed as a

distributed set-associative cache. Equivalent cache

lines from each processor constitute an element of

a set, while hardware ensures inter-cache (intra-

set) consistency. As with set-associative caches,

no changes to the transition rules are required.

Implementing the model

now describe an implementation strategy for the--
cache consistency model described in the previous sec-

tion. Our strategy requires that the hardware have the

following characteristics:

The first address within any virtual page aligns in

the cache with the first address of any other virtual

page if and only if all addresses within those two

virtual pages align.

Reads and writes to individual virtual memorv

pages can be caught by the operating system ker~

nel.

The first requirement allows us to maintain consis-

tency state on a “cache page)” rather than a cache

line, basis. A cache page is the set of cache lines onto

which the cache index function maps all virtual ad-

dresses within a virtual page. A cache page is the same

size as a virtual page, and a virtually indexed cache

contains n cache pages, where n is the cache size di-

vided by the page size.

All aligned virtual pages map into the same cache

page. With cache pages, all cache lines within a cache

page are defined to have the same consistency state.

This enables the use of standard virtual memory hard-

ware to implement the state transitions, and reduces

the amount of cache state information from O(number

of cache lines x number of virtual addresses in use) to

O(number of cache pages x number of physical pages).

The reduction in state is because of the larger coverage

of a cache page, and because cache state information

is required only for pages that are physically resident.

A virtual memory system already denies access to non-

resident pages, so cache consistency for these pages is

not an issue.

The second requirement guarantees that we can de-

tect cache page state changes, and that we can prevent

stale cache pages from being accessed by the CPU.

These requirements are met by the HP 9000 Series

700. While it is conceivable that one could build a vir-

tually indexed cache for which the first assumption does

not hold, we are presently aware of no such cache, nor of

130

any compelling reason to build such a cache. Any sys-

tem with a memory management unit should be able to

satisfy the second assumption. Consequently, no spe-

cial hardware is required to implement the algorithm.

Note that if the hardware supports multiple page sizes,

then the operating system must take additional care to

ensure that a cache page is mapped only by similarly

sized virtual pages.

4.1 The algorithm

The cache control algorithm should be invoked during

any operation that could change the consistency state

of cache pages. Virtual memory protections are set to

detect state transitions during CPU-reads and CPU-

writes.3 Operating system software should invoke the

algorithm before scheduling DMA operations.

Pseudo-code for the algorithm is shown in the Fig-

ure 1. As input, the algorithm takes a virtual address,

an operation type, and two booleans which indicate

whether stale and dirty cache data will ever be read.

The algorithm modifies cache state information and en-

sures that stale data is never mapped. The code in Fig-

ure 1 has been adapted directly from that running in

the machine-dependent module of Mach’s virtual mem-

ory system for the HP 9000 Series 700. Atomicity on

a uniprocessor is guaranteed by running the code se-

quence with interrupts disabled. As presented, the code

is not safe for use on a multiprocessor, although it could

be made so with appropriate data structure locking.

Data structures

The algorithm relies on several data structures. Each

physical page p in the system is represented by a data

structure, Pk], that contains a list of virtual mappings

for the page, P~] .rnappings, and the cache page state

for that page. The cache page state consists of two bit

vectors, P~] mapped and Pk] stale, and a single dirty

bit, P(p] .cache_dirty,

Each bit in the vectors corresponds to a particu-

lar cache page. The bit vector P~] mapped indicates

which cache pages have been mapped by the CPU, and

therefore which cache pages may contain data from a

given physical page p. The bit vector P~] stale indi-

cates which cache pages may contain stale data from a

given physical page p. The P~] ,cache.dirty bit for a

physical page p indicates that the physical page could

be dirty within a cache page. That dirty cache page c

is given by the entry for which P~] ,mapped[c] is true.

The P~] cache-dirty bit is cleared when the dirty cache

page is removed from the cache with either a flush or a

purge.

3The algorithm assumes that illegal page accesses, such as a
write to a text page, have been filtered out in earlier stages of
the kernel’s fault handler.

CacheControl (virtual. address target-va, operat ion op,

boolean will-overwrite, boolean need-data)

begin

phys.page p = va.to-physical-page (t Srget-va);
cache-page c = va.to-cache-page (target_va) ;

if (P [p] . cache-dirty) then

cache-page w = f ind-mapped-cache_page (P [p]);
/* (!lean cache if dirty page is not target */

if (op == DMA_WRITE OR Op== DMA-READ OR w ! = C)
then if (need-data) then

flush-cache-page (w);

else
purge-cache-page (w) ;

end
P [p] . cache-dirty = FALSE;

end
end

if ((op == CPU-READ OR op == CPU-WRITE)
AND P [p] . stale [c]) then

if (NOT will-overwrite) then

purge_ cache-page (c);

end

P[p]. stale [c] = FALSE;
end

/* I)MA input operations and write operations force

* all mapped and stale cache pages to stale, and

* all mapped pages to unmapped. */

if (op == DMA_WRITE OR op == CPU-WRITE) then
P[p]. stale = bitwise-or(P [pi, mapped, P[p]. stale);

bitwise-clear(P[p] mapped) ;
/* For a write, mark the target cache page

* as not stale, dirty, and mapped. */

if (op == CPU-WRITE) then

P[p]. stale [c] = FALSE;
P[p]. cache_dirty = TRUE;

P[p]. mapped [c] = TRUE;

end
end

if (op == CPU_READ) then

P[p]. mapped [c] = TRUE;
end

/* Set mappings for all virtual addresses that

* map to p to prevent inconsistencies from
* being perceived, to detect subsequent accesses,

* and to allow the current operation to complete.*/
foreach (virtual-address v in P[p].mappings) do

c = va-to-cache-page(v);

if (P[pl.stale[cl) then
set-protection(v, NO_ACCESS);

else if (NoT P[p].mapped[c]) then
set_protection(v, NO_ACCESS);

else if (op == CPU_WRITE) then

set_protection(v, READ-WRITE-ACCESS);
else if (op == CPU-READ) then

set-protection(v, READONLY-ACCESS);
end

end
end CacheControl.

Figure 1: Pseudo-code sequence implementing consis-

tencyfor avirtualJy indexed write-back cache.

131

Together, the bit vectors and the dirty bit encode the

consistency state of every cache page c with respect to

all virtual addresses that map to that physical page and

cache page. This encoding is shown in Table 3.

The CPU’s access through any virtual address V,
where V maps to physical page p and cache page

c, is determined by Pk] .rnapped[c] together with

Pk] .cache_dirty. If Pb] .rnapped[c] is false (the cache

page is empty or stale), then CPU access through V
must fault. This allows the consistency state to be up-

dated by the cache control algorithm. If Pb] .rnapped[c]
is true but P(p] cache-dirty is false (the cache page is

present), then write access through any V that maps

to p must be disabled in order to catch the write, and

to mark the cache page as dirty and other cache pages

as stale.

The hardware does not guarantee consistency be-

tween separate instruction and data caches. Conse-

quently, virtual addresses containing data never align

with those containing instructions, even when they are

equivalent. In the implementation, it is necessary to

maintain cache page state for both caches, and to in-

terpret a virtual address in the context of the cache in

which it will be found. For simplicity, though, the al-

gorithm shown in Figure 1 assumes that a read access

includes both instruction and data fetches.

Explanation of the code

The code in Figure 1 is broken into six stanzas. The

first stanza computes the physical page and target

cache page corresponding to the target virtual address.

The second stanza removes the contents of a dirty

cache page in the case that it is not the tar-

get cache page. A dirty page can be mapped

through only one cache page, and the operation

f lndmapped_cache_page returns that cache page.

The third stanza ensures that the target cache page

is not stale. This is only relevant for a CPU access.

The fourth stanza ensures that writes into the mem-

ory system cause all mapped pages to become stale

and thus no longer mapped. In the case of a CPU-

write, the written page is marked as mapped and not

stale, and the physical page is marked as dirty. The ac-

tual implementation includes an optimization that sets

P~] .cache_dirty whenever the virtual memory system

sets the page-modi$ed bit yet the number of mapped

bits is one. Finally, note that the data structures used

by the algorithm lend themselves to efficient state mod-

ification. For example, all mapped (present) pages can

be marked stale with a bitwise-or of P~] mapped and

P~] stale into the P~] stale vector, and a bitwise-clear

of the Pb] mapped vector.

The fifth stanza sets the mapped bit for the page on a

CPU-read to indicate that the cache page may contain

data from the physical page.

The final stanza sets the virtual memory page pro-

tections for all mappings to the physical page to be

consistent with the cache page state.

Two simple optimizations

The code sequence in Figure 1 includes two simple opti-

mizations that reduce the frequency of purge and flush

operations. These are driven by the two parameters

will-overwrite and need-data. In order, their use is

described below.

A straightforward way to eliminate stale data from

the cache is to purge it through the virtual address at

which the data is known to be stale. Another way to

eliminate the stale data, though, is to completely over-

write it with new data from the CPU. In particular, if

a stale line is known to become completely overwrit-

ten before it will be read, then a preliminary purge is

not necessary. This situation commonly arises when

the virtual memory system prepares a page of memory

with either a copy-page or zero-fill operation. In both

cases, the CPU completely overwrites the page with

new data before any other access to the page occurs.

In such cases, the page can be allowed to leave the stale

state without a preliminary purge (will_overwrite is

true).

A second optimization relates to the assumption is

that dirty data is also useful data. This assumption is

not always valid. For example, consider the case of a

new mapping where a physical page that had previously

been mapped into one address space is being remapped

into another, and then copied into or zeroed. Clearly,

the previous contents of the physical page are no longer

useful. Therefore, if the page is dirty, it can be purged

instead of flushed (need-data is false).

4.2 Eliminating inconsistencies

Although the algorithm delays consistency operations

and handles aligned mappings, it does not reduce the

frequency of unaligned virtual addresses. We found

that such accesses occurred frequently in Mach because

the system was initially designed for use on machines

with physically indexed caches where virtual address

selection was not a factor in cache performance. Conse-

quently, we made three changes to the system to reduce

the frequency of unaligned virtual mappings, These

changes allow the virtual memory system to select the

virtual address at which a physical page is mapped so

that it aligns with the previous virtual address bound

to that physical, page. None of the changes have af-

Cache
page
state

Empty

Present
Dirty
Stale

P~].7napped[c]

false
true
true
false

P~].sta/e[c]

false

false
false
true

fd-se
true

Table 3: Correspondence between cache page state and
data structures maintained by the algorithm.

132

fected the system’s functionality, only its performance,

which is discussed in the next section.

Pages passed during IPC operations

A large number of virtual memory remapping opera-

tions correspond to physical pages being passed as part

of interprocess communication (IPC) messages. The

kernel’s IPC code transfers a physical page from one

virtual address to another [Young et al. 87]. The ker-

nel is free to select any destination virtual address, so

choosing one that aligns with the source address guar-

antees that no cache management operation is neces-

sary. The destination virtual address, though, was orig-

inally chosen according to a first-fit strategy, so the

source and destination virtual addresses rarely aligned.

Consequently, the old virtual address, which would gen-

erally be dirty since it contained data generated by the

sender, would be flushed, and the new virtual address

would be purged.

We modified the IPC code to select an address in the

receiver that aligns in the cache with the sender’s.

Preparing new pages with copy and zero-fill

The kernel can prepare a new page with data us-

ing copy and zero-fill. The first operation copies

data from one physical page to another, and the sec-

ond clears a physical page by filling it with zeros.

Page preparation in Mach is split between machine-

independent and machine-dependent components. The

machine-independent component deals with virtual ad-

dresses and initiates page preparation in response to

demands on the virtual memory system. The machine-

dependent component deals with physical pages and

implements the copy and zero-fill operations. With

a virtually indexed cache, a page should be prepared

through a virtual address that aligns with the ultimate

mapping for the page. This consideration is unimpor-

tant on a machine with a physically indexed cache, how-

ever, so the preparation routines (which were designed

assuming such a cache) were not passed the ultimate

virtual address.

We extended the machine-dependent interface so

that the machine-independent layer could pass the ul-

timate virtual address down to the page preparation

routines. A similar extension was introduced by the

Tut project [Chao et al. 90].

Shared pages in the Unix server

Mach’s user-level Unix server allocates and shares sev-

eral pages of memory with each Unix process. These

pages are expected to be used aa a high-bandwidth,

low-latency channel for passing information between

applications and the Unix server. In the initial ver-

sion of the system, the Unix server requested that the
shared pages be allocated at a specific virtual address in

its own and each process’ address space. These pages

did not align, so accesses resulted in frequent consis-

tency faults.

We changed the Unix server so that these pages can

be allocated at addresses determined by the virtual

memory system, thereby aligning.

5 Performance

We have measured the three benchmark programs

described in Section 2.5 on the HP 9000 Series 700

(Model 720). We ran each benchmark on six successive

configurations of the Mach 3.0 kernel. Table 4 shows

the performance statistics averaged over the last two of

three consecutive runs of each benchmark on an oth-

erwise unloaded system. The table shows the elapsed

time, operation counts, and average cycle counts across

various configurations for each of the programs. The

cycle counts were gathered using the processor’s on-

chip cycle counter.

The configurations ranged from one having only min-

imal cache consistency machinery (that described as

“old” in Section 2.5 and labeled ‘(A” in the table) to

one having all of the machinery described in the pre-

vious section (that described as “new” in Section 2.5

and labeled “F” in the table). Each successive ver-

sion provides a cumulative and more efficient solution

to consistency management than the previous by in-

cluding an additional optimization. In order, we (B)

delay flush and purge operations until a virtual ad-

dress is reused (+la.zy unmap), (C) allow the kernel

to select virtual addresses for multiply mapped pages

so that they align in the cache (+aiign pages), (D) sup-

port aligned page preparation (+a/igrzed prepare), (E)

replace flushes with purges when old data will never be

used (+need.dat a), and (F) eliminate purges when the

destination cache page is being completely overwritten

(+will-overwrite). The bottom two rows of the table

show total counts and times for the three benchmarks

running on the final and most efficient configuration.

In the benchmarks, all DMA activity is due to disk

access. There are no disk reads, which correspond to

DMA-writes, for either of the first two benchmarks.

This is because all file system reads are satisfied by

the Unix buffer cache. The third benchmark, which

accesses substantially more file system data than the

other two, does require disk reads. The low cyle count

for DMA-read flushes is because the file system’s write-

behind policy introduces delays between the dirtying

and subsequent flushing of a buffer cache block, so the

dirty lines tend to be written back naturally.

5.1 Interpretation of results

Careful cache management improves application per-
formance. Moving downward over successive configu-

rations for a given benchmark shows that performance

improves by delaying cache consistency operations, by

aligning pages, and by exploiting the semantics of data

use. For example, the decrease in page purges between

configurate ions “A” and “B” reflects the fact that a

physical page is often unmapped, and then remapped

133

Program

A. afs-bencla
B. +lazy unmap
C. +align pages
D. +aligned prepare

E. +need-data
F. +vill.overwrite

A. latex-paper
B. +lazy unmap
C. +align pages
D. +-aligned prepare

E. +need-data
F. +will.overwrite

A. kernel-build
B. +lazy unmap
C. +align pages

D. +aligned prepare
E. +need-data
F. +will-overwrit<

Total for “F”

Seconds for “F”

WI Consis- Total DMA

Mapping tency Page Read
Ilrne Faults Faults Flushes Flushes
sees cnt avg cnt avg cnt avg cnt avg

x 103 Cyc X103 Cyc X103. Cyc X103 Cyc

66.0 60.65 1507 24.07 2165 77.41 1327 0.726 316
64.1 60.61 1786 23.74 1413 70.36 1148 0.703 313
62.0 60.58 1712 0.046 1288 54.45 1328 0.695 304
59.5 60.56 1272 0.046 1293 25.19 605 0.681 311
59.9 60.59 1266 0.046 1338 7.753 669 0.695 322
59.4160.58 126410.046 1336117.754 66610.696 310

5.811.481 133510.963 2235112.029 125310.056 311

5.8 1.477 1647 0.%52 1480 1.649 1232 0.052 324
5.8 1.474 1469 0 0 1.107 1621 0.052 303
5.6 1.479 1135 0 0 0.423 729 0.055 305

5.7 1.472 1131 0 0 0.140 448 0,052 304
5.5 1,481 1139 0 0 0.143 463 0,055 310

678.91408.5 13881249.3 222311602.9 135415.306 310

661.3 407.7 1772 247.6 1457 541.9 1115 5.365 324
641.9 407.7 1706 1.001 1381 405.4 1278 5.258 326
626.8 408.8 1204 1.002 1402 197.6 473 5.283 321
627.6 408.9 1211 1.015 1406 57.88 531 5.300 318
620.9 407.6 1199 0.986 14091 57.88 529 5.305 328
685.8 469.7 3602 1.032 27451 65.78 1658 6.056 948

685.8 11.34 1.6% 0.03 0%1 0.72 .1O% 0.04 .01%

Data to II Page I Page
Inst. Purges Purges

Copies (Ins~r.) (Da~a)
cnt avg cnt avg cnt avg

X103 Cyc X103 Cyc X103 Cyc

o 0 18.30 1099 43.79 387

L
7.012 827 4.874 1105 42.86 295

7.058 831 4.803 1106 42.76 294
7058 701 4755 1107 1425 297

7.058 703 4.767 1103 31.80 470
7.058 701 4,857 1105 17.75 613

0 0110,273 112611.250 456
0.088 540 0.003 1127 0.485 301
0.088 547 0.003 1120 0.361 296
0.088 539 0.002 1122 0.161 296
0.088 534 0.003 1120 0.310 1197
0.088 560110.002 111810.278 131C

o 01181.11 10981337.3 392

52.06 608 28.31 1104 309.1 298
52.58 608 27.06 1105 303.0 294
52.58 552 30.61 1104 101.1 297
52.57 553 29.77 1104 239.6 39C
52.58 549 29.02 1104 142.6 451
59.72 1810 33.88 3327 160.6 237.!

0.68 .10% 0.75 .11% 1.51 .22%

DMA
Write

Purges
cnt avg

X103 Cyc

00

00

00
00

00

00

00
00

00
00

00
00

00

1.000 368
1.549 400

1.572 477

1.600 497
1.537462

1.537 462

0.01 o%

Table 4: Performance of three benchmark programs using variously configured versions of Mach 3.0 (MK67) running
on a 50Mhz HP 9000 Series 700 (Model 720);

through an aligned virtual address. The slight reduc-

tion in purge time for the data cache occurs because

the delayed purge reduces the likelihood that the page’s

data is in the cache. That no such reduction occurs for

the instruction cache appears to be an artifact of the

720)s implementation which requires constant time to

purge the instruction cache, regardless of its contents.

The reduction in flushes between configurations “D”

and “E shows that dirty data is often left in the cache

never to be accessed again. This data can be purged,

rather than flushed. As expected, the decrease in data

cache flushes is offset by an equivalent increase in data

cache purges. No increase occurs for purges of the in-

struction cache because that cache never contains dirty

data. Execution time does not improve because the 720

appears to purge no more quickly than it flushes.4

The overhead to maintain consistency state is low.
The Mach kernel lazily evaluates many virtual memory

operations. For example, machine-dependent page ta-

ble entries are not created until they are first faulted

on, thereby enabling sparse but space-efficient virtual

address spaces [Rashid et al. 87]. This approach intro-

duces a certain number of mapping faults, which occur

every time a virtual page is first accessed by an ad-

dress space. These faults occur regardless of the cache

architecture. In contrast, a consistency fault occurs

whenever a reference to a virtual address requires a

4We have verified the 720’s unusual flush and purge behavior
independently of the benchmarks.

cache consistency state transition that cannot be in-

ferred by some other mapping fault. Consistency faults

are the result of the cache being virtually indexed, and

should be counted as bookkeeping overhead separate

from purge and flush overhead. The table shows that

mapping faults remain almost constant across configu-

rations, but that consistency faults drop substantially.

In the end, the total bookkeeping overhead for the three

benchmarks is a small fraction of the total mapping

overhead and insignificant compared to total execution

time.

Page flushes need occur no more oflen in a virtually
indexed cache than in a physically indexed one. For

configuration “F,” the number of page flushes is equal

to the number of DMA-read flushes plus the number

of pages copied from data space into instruction space.

Both of these operations require a flush. The flushes

due to copying into instruction space arise because of

the interaction between separate instruction and data

caches, and the operating system’s buffer cache. When

a process faults on an instruction page, the file system

copies the faulted page from its buffer cache into a page

in the faulting process’ address space. That copy oper-

ation writes into the data cache, yet the page is needed

in the instruction cache. The page must therefore be

flushed from the data cache before it can be used. The

destination virtual page, unless empty in the instruc-

tion cache, must also be purged. This problem exists

with physically indexed caches as well, because dual

caches effectively create an aliasing problem.

134

The “A” configurations all show no data to instruc-

tion space copies because the file system first unmaps

the dirty data cache page before mapping it into the

faulting address space. The unmap forces an immedi-

ate flush which is reflected in the column for total page

flushes, rather than in the column for data to instruc-

tion space copies.

Virtually indexed caches should support a fast page
purge operation. For the benchmarks running under

configuration “F,” page purges represent the largest

cost component of virtually indexed cache manage-

ment. They occur almost 200,000 times during the

three benchmarks. Although some of the purges are

necessary during DMA-writes (.8Yo), and when copy-

ing instructions from data space to instruction space

(17.5%), most (about 80%) are due to the creation of

new mappings when a virtual address is assigned to a

random physical page from the kernel’s free page list.

Some of these purges could be eliminated by reduc-

ing the associativity of virtual to physical mappings

through the use of multiple free page lists.5 The ar-

chitecture, however, should also provide support for ef-

ficient cache purges, It should be possible to purge

an empty, present, or dirty line, and possibly page, in

one cache cycle since no interaction with memory is re-

quired. A fast purge would also benefit systems with

a physically indexed cache, since purges that cannot

be eliminated through reduced associativity are neces-

sary there as well. In all, the total savings for the three

benchmarks given a single cycle cache page purge would

be about 2.26 seconds (.33Yo) out of 685.8 seconds.

In summary, the total overhead for virtually indexed

cache management across the three benchmarks in con-

figuration “F” is 1.53 seconds (.22%). This is the

amount of time spent handling consistency faults (.03

seconds) and purging the data cache for reasons other

than DMA (1.50 seconds). An additional 1.48 seconds

(.21%) is required for operations that must occur re-

gardless of the cache architecture. This is the amount

of time spent flushing and purging the cache to drive

DMA devices, and to copy from instruction space to

data space.

6 Related work

Several operating systems have been implemented for

architectures with virtually indexed caches. As men-

tioned in Section 2, these systems either disallow

aliases, allow constrained aliases, or support full aliases

through cache flushing and purging. The most impor-

tant difference between these other systems and our

own is not so much in the optimizations that they

support, but the style with which they ensure consis-

tency. Our approach, based on state transitions for

cache pages with respect to virtual and physical pages,

5This reduction in associativity is only an optimizaticm, and

not a requirement [Chlueh & Katz 92].

naturally handles the many kinds of inconsistencies and

optimization that arise in the management of a virtu-

ally indexed cache. The state of a cache page depends

only on its previous state and the current operation,

and the state transitions can be encapsulated entirely

within a short code sequence. Moreover, adapting that

sequence to alternative architectures is straightforward,

given the observations made in Section 3.3. In con-

trest, previous systems, which do not maintain cache

page state in any explicit manner, have dealt with in-

consistencies and optimization on a case-by-case basis.

As a result, optimization requiring global information,

such as “does a cache page need to be flushed before

it can be used as the destination of a DMA-write,)) are

difficult to implement, and are therefore less likely to

be found.

Table 5 highlights some of the functional differences

between several operating systems implemented for ma-

chines with virtually indexed caches. The CMU system

is the one described in this paper. The Utah system is

a version of Mach that behaves as the one described in

Section 2.5. The Tut project [Chao et al. 90] merged

Mach’s virtual memory system into HP-UX, HP’s ver-

sion of UNIX. The Apollo system is an implementation

of OSF/ 1 done by the Apollo Systems Division of HP.

These four systems have been implemented on HP PA-

RISC machines. The Sun system is an implementation

of 4.2 BSD for Sun-3 200 series machines [Cheng 87].

The column labels describe the behavior of each sys-

tem with respect to consistency management. All five

systems handle unaligned aIiases, although the Sun sys-

tem limits accesses through unaligned aliases to well-

behaved operating system code fragments. Otherwise,

aliases must be uncached. The Utah, Apollo, and Sun

systems clean the cache whenever the last mapping to

a physical page is removed, while the CMU and Tut

systems delay the consistency operation until the map-

ping could be reused (lazy unmap). In Tut, if the new

virtual address for a page is the same as the old one

(as opposed to aligned) then no purge or flush is re-

quired. Otherwise the cache pages corresponding to the

old and new virtual pages are removed from the cache.

The Utah system makes no attempt to select aligning

virtual addresses for multiply mapped pages. Tut does

so only for program text pages. Tht, like the CMU sys-

tem, attempts to choose preparatory mappings so that

they align with eventual mappings when preparing a

page with copy or zero-fill. In situations where ad-

dresses do not align, the CMU kernel eliminates many

cache control operations by exploiting the semantics

of new mappings (need.data) and page preparation

(will.overwrite)c

The systems can also be viewed in terms of the cache

consistency states that they maintain for data in the

cache, physical memory, and virtuaI memory. None of

the Utah, Apollo or Sun systems maintain a stale state,

as evidenced by the fact that they purge or flush the

cache whenever a mapping is broken, such as on a write

to an aliased page or during the removal of a virtual to

135

Try Align Uses
Handle to page Uses “will-

unaligned Lazy align pre- “need. over

System aliases umnap pages pare dat a“ write”

CMU Yes Yes Yes Yes Yes Yes
Utah Yes No No No No No
Tut Yes Equal Text Yes No No
Apollo Yes No Yes No No No
Sun Memory No Yes No No No

Table .5: Characteristics of several different systems for
machines with virtually indexed caches.

physical mapping. The Sun system appears to main-

tain only present and empty states for physical pages,
although in some cases, such as pageout, it uses the

fact that a physical page is dirty to avoid a redundant

cache flush, Tut associates state with a virtual address,

rather than with a cache page, as evidenced by the fact

that only equal, rather than aligned, aliased virtual ad-

dresses avoid cache management operations.

7 Conclusions

Virtually indexed write-back caches create consistency

problems. We have described these problems infor-

mally, and have then defined a model that attacks the

consistency problems at their core by ensuring that the

memory system never returns a stale value to either de-

vices or the CPU. Our consistency model lends itself to

an implementation that relies on the virtual memory

system to trap memory accesses that could create or

reveal inconsistencies,

The performance of our approach on the HP 9000 Se-

ries 700 demonstrates that careful cache management

is an important factor in overall system performance.

Moreover, an analysis of the operations required to en-

sure consistency reveals that a virtually indexed cache

need not incur significantly more overhead than a phys-

ically indexed one.

Our experience with implementing Mach’s virtual

memory system on a machine with a virtually indexed

cache has led us to conclude that there exist no quan-

titative or qualitative reasons to shy away from such

machines, as they offer reduced cycle times with in-

significant software cost and complexity.

Acknowledgements

Jerry Huck, Michael Mahonl Bart Sears, and John

Wilkes of Hewlett-Packard, Jim Hayes of NeXT, and

Tom Mistretta of Apollo provided insight into the prob-

lems of virtually indexed cache management. They,

along with Jeff Chase, Mike Hibler, Ed Lazowska, Hank

Levy, Chris Maeda, Steve Schwab, Dan Stodolsky and

Matt Zekauskas provided valuable feedback on earlier

drafts of this paper.

References

[Accetta et al. 86] Accetta, M. J., Baron, R. V., Bolosky, W.,
Golub, D. B., Rashid, R. F., Tevanian, Jr., A., and Young,
M. W. Mach: A New Kernel Foundation for Unix Develop-
ment. In Proceedings oj the SummeT 1986 USENIX Confer-

ence, pages 93–113, July 1986.

[Appel & Li 91] Appel, W. and Li, K. Virtual Memory Primi-
tives for User Programs. In Proceedings of the Fourth Sym-
posium on Architectural Support jor Programming Languages
and Operating Systems, pages 96–107, April 1991.

[Chao et al. 90] Chao, C., Mackey, M., and Sears, B. Mach on a
Virtually Addressed Cache Architecture. In Proceedings o-f the

First Mach USENIX Workshop, pages 31–51, October 1990.

[Chase et al. 92] Chase, J. S., Levy, H. M., Baker-Harvey, M.,
and Lazowska, E. D. How to Use a 64-Bit Virtual Address
Space. Department of Computer Science and Engineering
Technical Report 92-03-02, University of Washington, Febru-
ary 1992.

[Cheng 87] Cheng, R. Virtual Address Cache in Unix. In Pro-
ceedings o.f the 1987 Summer Useniz Con.feTence, pages 217–
224, 1987.

[Chiueh & Katz 92] Chiueh, T. and Katz, R. Beating The Ad-
dress Translation Bottleneck. In Proceedings o.f the Fifth Sym-

posium on Architectural Support foT Programming Languages

and Operating Systems, October 1992. This issue.

[DEC Alpha 92] DEC Alpha. Alpha Architecture Technical

Summary. Digital Equipment Corporation, 1992.

[Golub et al. 90] Golub, D,, Dean, R,, Forin, A., and Rashid,
R. Unix as an Application Program. In Proceedings o.f the

Summer 199o USENIX Conference, pages 87–95, June 1990.

[Jouppi 88] Jouppi, N. P. Architectural and Organizational
Tradeoffs in the Design of the MultiTitan CPU. In Proceed-

ings of the It!ith Annual Symposium on Computer Architec-

ture, pages 281-289, June 1988.

[Knapp & Baer 85] Knapp, V. and Baer, J.-L. Virtually Ad-
dressed Caches for Multiprogramming and Multiprocessing
Environments. In Proceedings of the 18th Annual Hawaii In-
ternational Conference on System Sciences, pages 477-486,
1985.

[Kohn 89] Kohn, L. Description of the Intel i860 64-bit RISC-
based Microprocessor. IEEE Micro, 4(9), August 1989.

[Lee 89] Lee, R. B. Precision Architecture. IEEE Comput eT,

pages 78–91, January 1989.

[Li 92] Li, K., March 1992. Personal communication.

[Rashid et al. 87] Rashid, R., Tevanian, Jr., A., Young, M.,
Golub, D., Baron, R., Black, D., Bolosky, W., and Chew, J.
Machine-Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures. In Proceed-

ings of the 2nd Symposium on Architectural Support for Pro-

gramming Languages and Operat{ng Systems, April 1987.

[Satyanaranyanyan et al. 85] Satyanaranyanyan, M., Howard,
J., Nichols, D., Sidebotham, R., and Spector, A. The ITC Dis-
tributed File System: Principles and Design. In Proceedings of
the toth ACM Symposium on Operating Systems PTineiples,
pages 35–50, December 1985.

[Wang et al. 89] Wang, W.-H., Baer, J.-L., and Levy, H. M. Or-
ganization and Performance of a Two-level Virtuaf Real Cache
Hierarchy. In Proceedings of the 16th Annual Symposium on
Computer Architecture, pages 140-148, May 1989.

~oung et al. 87] Young, M., Tevanian, Jr., A., Rashid, R.,
Golub, D., Eppinger, J., Chew, J., Bolosky, W,, Black, D.,
and Baron, R. The Duality of Memory and Communication
in the Implementation of a Multiprocessor Operating System.
In Proceedings oj the 1 lth ACM Symposium on Operating Sys-

tems Principles, pages 63–76, November 1987.

136

