
Timing Analysis of a Protected Operating System Kernel

Bernard Blackham†, Yao Shi†, Sudipta Chattopadhyay‡, Abhik Roychoudhury‡ and Gernot Heiser†

† NICTA and University of New South Wales, Sydney, Australia
‡ National University of Singapore

Email: bernard.blackham@nicta.com.au

Abstract—Operating systems offering virtual memory and
protected address spaces have been an elusive target of static
worst-case execution time (WCET) analysis. This is due to
a combination of size, unstructured code and tight coupling
with hardware. As a result, hard real-time systems are usually
developed without memory protection, perhaps utilizing a
lightweight real-time executive to provide OS abstractions.

This paper presents a WCET analysis of seL4, a third-
generation microkernel. seL4 is the world’s first formally-
verified operating-system kernel, featuring machine-checked
correctness proofs of its complete functionality. This makes
seL4 an ideal platform for security-critical systems. Adding
temporal guarantees makes seL4 also a compelling platform
for safety- and timing-critical systems. It creates a foundation
for integrating hard real-time systems with less critical time-
sharing components on the same processor, supporting en-
hanced functionality while keeping hardware and development
costs low.

We believe this is one of the largest code bases on which a
fully context-aware WCET analysis has been performed. This
analysis is made possible due to the minimalistic nature of
modern microkernels, and properties of seL4’s source code
arising from the requirements of formal verification.

Keywords-Real time systems; Operating system kernels;
Software verification and validation;

I. INTRODUCTION

Hard real-time systems demand guaranteed interrupt re-
sponse times, irrespective of system state when an interrupt
arrives. Designers of complex embedded systems often sep-
arate out hard real-time components onto separate proces-
sors with deterministic hardware and minimal interference
from other components. As manufacturers strive to gain
a competitive advantage by adding features to embedded
devices, these systems will need to integrate even more
software components. The added complexity and cost of
multiple dedicated processes does not scale—for example,
cars and aircraft are trending towards combining both critical
and convenience functionality; the cost, weight and power
consumption of tens or hundreds of processors is a serious
issue.

An alternative approach is to consolidate these systems
onto a single processor, trusting a supervisor such as a
microkernel or hypervisor to provide functional and tem-
poral isolation between critical real-time components and
less critical time-sharing components [1]. For hard real-time

designs, this approach depends on the ability to provide safe
upper bounds on the interrupt latency of the operating system
(OS). Computing bounds for the interrupt latency of OS
kernels is a task made difficult by their unstructured code,
tight coupling with hardware and sheer size.

Using a microkernel-based design reduces the size and
complexity of the analyzed code base. Static analysis can
also be aided by structuring the kernel to avoid potential
pitfalls that complicate the analysis. This paper analyzes the
temporal properties of the seL4 microkernel, with a view to
tuning the kernel for hard real-time applications.

seL4 [2] is a third-generation microkernel, broadly based
on the concepts of L4 [3]. It provides virtual address spaces,
threads, synchronous and asynchronous communication, and
capabilities for managing authority. The distinguishing fea-
ture of seL4 is that it is the only kernel to date to be
formally verified, with a formal machine-checked proof
that the C code implementation adheres to the specification
of the kernel. Among others, these proofs guarantee that
seL4 will never crash or perform a (functionally) unsafe
operation. Whilst these strong functional guarantees are
sufficient for many systems, critical real-time systems also
require temporal guarantees to achieve safety.

In this paper, we present a case-study of seL4 and analyze
its worst-case execution time (WCET) and thus interrupt
latency. seL4 has several properties that assist in the analysis
and make it possible to give tighter bounds on execution
time. Its structure helps to resolve many of the difficulties
encountered in previous analyses of kernels.

It is possible to achieve very good interrupt latencies
by making the kernel fully preemptible. In such a model,
interrupts are permitted to occur anywhere within the kernel,
except within some small protected regions of code, usually
to modify critical data structures. This gives typical interrupt
latencies in the order of tens, or hundreds, of cycles. How-
ever, this approach makes it very difficult to reason formally
(or even informally) about the behavior of the kernel, and
adds complexity to development and testing. It requires
very careful coding of the interrupt paths, and defensively
analyzing that at every point in the kernel an interrupt cannot
crash the kernel or make its state inconsistent.

Analyzing concurrency issues within a fully-preemptible
kernel is extremely challenging due to the explosion of

Copyright c© 2011 IEEE

possible interleavings to consider and the difficulty in repro-
ducing timing-related bugs. Formal verification of a fully-
preemptible kernel has not yet been achieved although there
has been some progress [4].

In contrast, seL4 executes with interrupts disabled during
kernel execution, and instead checks for pending interrupts
at explicit preemption points. This greatly simplifies the
design, testing and verification of the kernel, but increases
its interrupt latency. Furthermore, locks are expensive—on
modern hardware they can have significant cost even when
not contended. As the most frequently-used seL4 primitives
are fast (100s to 1000s of cycles), and preemption points
can be used to limit uninterruptible execution of longer-
running operations, this approach presents a tunable trade-
off between worst-case and average-case performance. The
latter is important for a general-purpose platform like seL4,
and is particularly relevant for battery-powered hybrid (real-
time plus best-effort) systems.

Furthermore, embedded processors are becoming faster,
and latencies of 10, 000s to 100, 000s of cycles are ac-
ceptable in many situations. For example, 1 GHz processors
are increasingly common on modern high-end embedded
devices and can execute 100, 000 cycles in 100µs—adequate
for many applications. Hence, a fully preemptible kernel is
generally not necessary to meet real-time requirements (ex-
cept where ultra-low latencies are required) provided that the
kernel can deliver reasonable interrupt latency guarantees.

We assert that a well-designed microkernel can be a
suitable platform for supporting memory-protected hard real-
time systems, even without being fully preemptible (and thus
remaining suitable for performance- or energy-constrained
hybrid applications). We analyze the timeliness of seL4, and
its suitability for such use.

A. Contribution

This paper presents the first full interrupt-response-time
analysis of an OS kernel providing full virtual memory
and memory protection. We show that realistic safe upper
bounds on interrupt latencies can be determined for protected
microkernel-based systems. We perform a full context-aware
WCET analysis of all of seL4’s code paths on a modern em-
bedded CPU architecture using a realistic pipeline model. By
virtually inlining all functions in seL4, every possible calling
context of each function is considered. Such an approach is
feasible due to seL4’s small code size (compared with other
protected operating system kernels), at around 8, 700 lines
of C code. Despite this fact, it is, to our knowledge, still the
largest code base where a full context-aware WCET analysis
has been performed. We also measure the identified worst-
case paths on real hardware, demonstrating that the WCET
bounds we obtain are not overly pessimistic and can be used
in practical systems.

Section II summarizes the state of the art of WCET
studies of operating systems code. Section III details the

properties of seL4 that make it amenable to automated
analysis. Section IV describes the methods and tools used
to analyze seL4. Section V gives some background on work
performed to improve seL4’s temporal behaviour. Section VI
shows the results of the analysis, outlining the worst-case
execution paths found.

II. RELATED WORK

There have been several studies on the interrupt latency
of operating systems code, however none have successfully
analyzed a kernel providing full virtual memory and memory
protection.

Safe upper bounds for WCET are generally computed
using a combination of static analysis techniques and mea-
surements on real hardware [5], [6]. WCET bounds based
on measurements alone cannot be relied upon—for example,
measurement-based upper bounds stated for RTLinux [7]
were later shown to be invalid [8].

The first major static WCET analysis of a real-time exec-
utive was published by Colin and Puaut [9], who analyzed
the RTEMS operating system. They used a tree-based static
analysis tool, HEPTANE, targeting a Pentium processor.
They encountered issues such as unstructured loops with
goto statements and function pointers, which all had to be
resolved manually to complete the analysis.

A WCET analysis of the microkernel used by the OSE
delta operating system was undertaken by Carlsson et. al.
[10] and Sandell et. al. [11]. The OSE kernel permits
interrupts in most kernel code, except within 612 “disable-
interrupt” regions. Despite the complex control flow of the
kernel, most of the disable-interrupt regions were simple,
well structured and free of function pointers, simplifying
the analysis.

The µC/OS-II kernel was analyzed for the WCET of each
system call [12]. The analysis was generally successful, but
required a significant amount of manual intervention.

The above systems are unprotected, single-mode kernels.
An analysis was attempted on the L4 Pistachio kernel
[13], which does offer memory protection. Unstructured
code, inline assembly and context switching contributed
to making the analysis difficult. Safe WCET bounds were
never established. A more detailed summary of past RTOS
analyses has been recently published by Lv et al. [14]

III. SEL4 DESIGN FEATURES

The seL4 microkernel has several properties that assist
with automated static analysis. First and foremost is that
its code base is small. We analyzed the ARM version
of the seL4 kernel, which has around 8, 700 lines of C
code and 600 lines of ARM assembly code. The analysis
was performed using a modified version of Chronos 4.1
[15], adapted for the ARM architecture, and took around
four hours to compute. The analysis is described further in
Section IV.

Copyright c© 2011 IEEE

seL4 is an event-based kernel—i.e., the kernel uses a
single kernel stack irrespective of which thread it is ser-
vicing. Context switching between threads is performed by
changing a variable pointing to the currently running thread.
In contrast, process-based kernels, with dedicated per-thread
kernel stacks, switch the stack pointer during a context
switch. As a result, the entire call stack is invalidated, and
execution resumes based on the call stack from a prior
context switch. The process-kernel model was originally
thought to be more efficient in the presence of frequent
context switching [16]. However, results on modern ARM
hardware have shown the difference to be negligible and in
fact event-based kernels have been shown to perform better
in macro benchmarks [17]. The event-based model of seL4
aids static analysis, as control flow is more structured.

The seL4 microkernel was designed from its inception to
be formally verified. Although the executable code is written
in C, seL4 was initially developed in the functional language
Haskell, to support rapid prototyping and provide a common
ground for both the development team and verification
team [18]. From the Haskell prototype, the development
team implemented a high-performance C version, while the
verification team mathematically formalized the expected
behavior of the kernel into an abstract specification. The
correctness of seL4 relies on a chain of proofs that the C
code implements the Haskell prototype, and that the Haskell
prototype conforms to the abstract specification.

As a result of this construction, the requirements of formal
verification, as well as the security-driven desire for strong
resource isolation, the C implementation of seL4 exhibits a
number of properties that simplified our analysis:

• seL4 never stores function pointers at run-time. This
allows all branches to be automatically resolved off-
line (with the help of symbolic execution).

• seL4 never passes pointers to stack variables. This
eliminates the possibility of variables aliasing stack
memory, simplifying the analysis of memory aliasing
for WCET.

• The task of memory allocation is delegated to
userspace, avoiding complex allocation routines within
the kernel. The kernel checks that regions do not
overlap but these checks are much simpler than the
code for a complete allocator.

• There are very few nested loops within seL4. Au-
tomatically identifying nested loops at the assembly
level and their loop relations is not an easy task, or
even well-defined, in the presence of heavy compiler
optimizations.

• Unbounded operations (such as object deletion) contain
explicit preemption points. If an interrupt is pending
at a preemption point, seL4 will postpone the current
operation and return up the call stack to a safe context
to handle the interrupt.

Table I
PROPERTIES OF THE ANALYZED SEL4 BINARY.

Code size (bytes) 42,120
Number of instructions 10,271
Number of functions 228
Number of basic blocks 2,384
Number of loops 56

It is worth noting that many of these properties arose
because of requirements of the formal verification process,
without any regard to a WCET analysis. Despite the restric-
tions imposed by some of these properties, seL4 does not
suffer a significant performance penalty—its hot-cache IPC
performance is within 10% of a heavily optimized assembly
IPC path in OKL4 2.1 [2].

seL4’s specification dictates that the kernel will never
enter an infinite loop—i.e., all seL4 system calls eventually
return to the user. This allows the analysis to ignore any
infinite loops that exist in the kernel. Such loops are executed
when assertions in the C code fail, however the proofs
guarantee that these assertions are always true (under the
assumptions of the proof, which include a correct C compiler
and the absence of hardware bugs).

One issue that arose during the analysis of seL4 is that in
two places mutually-recursive functions are used. The formal
proof guarantees termination, proving that the functions do
not call themselves more than once. This knowledge sim-
plifies the analysis, as it allows us to simply virtually inline
each function at most twice. However, for this analysis, we
chose to unwind the recursion manually.

In seL4’s event-based model, almost all functions return
to their caller, making static analysis simpler. However,
this is not true in one specific code path: seL4 features a
highly optimized C routine for handling the most common
IPC operations, known as the IPC fastpath; it improves
the average time for these IPC operations by an order of
magnitude. It does so by using a continuation-based control
flow, avoiding the need for stack unwinding. The analysis
toolchain required some work to support a continuation-
based control flow as it previously assumed that all functions
would return.

Finally, seL4 is accompanied by a large body of machine-
checked proofs which contains thousands of invariants and
lemmas. It should be possible to incorporate these into a
WCET analysis to assist in excluding many infeasible paths.
They have not been utilized in this analysis, but are the
subject of future work.

Some interesting statistics of the analyzed seL4 binary are
summarized in Table I.

IV. ANALYSIS METHOD

We performed an analysis of the seL4 kernel binary to
compute a safe upper bound on its interrupt latency. For

Copyright c© 2011 IEEE

comparison, we constructed scenarios to exercise the worst-
case paths detected by the analysis and executed them on
real hardware. This gave us an indication of how closely the
computed bounds reflected reality.

A. Processor Model

seL4 can run on a variety of ARM architectures and
platforms. For this analysis we chose the BeagleBoard-xM
platform with a TI DM3730 processor. This processor has
an ARM Cortex-A8 core running at 800 MHz, with separate
32 KiB L1 instruction and data caches, both 4-way set-
associative. The L2 cache was not modeled in this analysis
as our tools do not yet support this. As a result, the L2 cache
was also disabled in hardware for our measurements.

The experiments were configured to use 128 MiB of
physical memory. The latency of a read or write to physical
memory on this platform was measured to be 80–100 cycles;
in the static analysis we assume a 100-cycle penalty for all
cache misses. The seL4 kernel locks its pages into the TLB
so that there are no TLB misses during execution.

The Cortex-A8 has a 13-stage dual-issue pipeline, with
in-order issue, execution and retirement. Most arithmetic
instructions1 can be issued simultaneously with a subse-
quent arithmetic instruction or memory load, provided that
there are no dependencies between them. Forwarding paths
between stages permit single-cycle instructions to execute
without stalls arising from register dependencies. The com-
piled seL4 binary happens to use only those arithmetic
instructions which can be dual-issued—in particular, there
are no multiplication or “rrx” operations which would incur
a multi-cycle latency. Our static analysis models the dual-
issue nature of the pipeline for arithmetic instructions.

All non-arithmetic instructions executed by the seL4 ker-
nel fall into one of the following categories:
• load/stores—these incur a 100 cycle memory access

penalty on a cache miss or with caches disabled;
• branches—these incur a 13 cycle penalty without pre-

diction (see below);
• coprocessor operations (mcr/mrc)—these include

cache flushing, TLB flushing and address space switch-
ing which can take up to 120 cycles and depends on
the particular operation and the state of the system;

• synchronization instructions (isb/dsb)—these take up
to 13 or 29 cycles, respectively;

• processor state changes (cps)—these take 60 cycles.
The Cortex-A8 also supports speculative prefetching and

branch prediction. These features were disabled in hardware
in order to make measurements more deterministic, and were
not included as part of the processor model.

The L1 caches on the Cortex-A8 have an unspecified
random replacement policy. This prevents simulation of

1On ARM the “arithmetic instructions” also include logical primitives.
The full list is: ADC, ADD, AND, BIC, EOR, ORR, RSB, RSC, SBC, SUB,
CMN, CMP, TEQ, TST, MOV and MVN.

the exact cache behavior, and effectively forces any safe
cache analysis to assume a direct-mapped 8 KiB cache.
Furthermore, it makes it infeasible to construct a true worst-
case scenario on hardware, Thus we can only determine an
upper bound on the pessimism of our model.

B. Static Analysis

We analyzed seL4 for its interrupt latency by examining
the worst-case execution time of all possible paths through
the kernel. A path through the kernel begins at one of the
kernel’s exception handlers, such as the system-call or page-
fault handler. A path ends when control is passed back to
the user, or at the start of the kernel’s interrupt handler code.

seL4 disables interrupts at all times when executing kernel
code, but checks for pending interrupts at explicit preemp-
tion points (typically in long-running unbounded loops).
If an interrupt is detected at a preemption point, seL4
postpones the current operation and immediately handles
the interrupt. As preemption points occur only at the end
of loops, we account for them in the analysis by forcing the
iteration count of the loop to 1. The worst-case scenario for
a path including a preemptible loop occurs when an interrupt
arrives immediately after entry to the kernel. The kernel will
still execute the operation with one iteration of the loop to
ensure progress is made (avoiding livelock) and then handle
the interrupt.

Interrupts arriving during kernel execution are handled
immediately prior to returning to the user. The interrupt
latency is therefore the sum of the WCET of any path
through the kernel up to this point, and the time taken to
dispatch the interrupt to a user thread.

The seL4 binary we analyzed is compiled with gcc 4.5
(from CodeSourcery’s 2010.09 release) using the -O2 op-
timization level and additionally the -fwhole-program
flag, which enables gcc to perform very aggressive optimiza-
tion and inlining of code. This means that most function
boundaries are lost and functions are on average much
larger because of inlining. Chronos has a feature to assist
in correlating source code to instructions with the help of
debug information. However, the structure of the output
from our version of gcc bears very little resemblance to
that of the source code, making this correlation difficult
to automate. It may be possible to use the intermediate
representations within gcc to automate the process, but we
have not investigated this.

Figure 1 outlines the tools and workflow used to analyze
seL4. We wrote a program to extract the control flow graph
(CFG) of seL4 from the kernel binary. This step can be
performed without any user guidance thanks to the absence
of function pointers in seL4’s C sources.

We use symbolic execution to extract the CFG, by finding
all reachable instructions within the kernel from the given set
of entry points (system call, page fault, invalid instruction,
etc). Determining the destination of some branches requires

Copyright c© 2011 IEEE

!"#$

%&'()*'+($

,%-.$/01)(2$

!"#$
30*(+4)(*50'%*'6()7$$

8+9%701:$

30*(+4)(*5$*+1,;$

<(+*%,,+($

*+1=:6()>+1,$

"61*>+1)7$*+1,;$$

?01@%),0/7%$

A)'5,B$%'*C$

<)'5$D1)72,0,$

"7+E$*+1,;$

F,%($

D990>+1)7$6,%($

*+1,;$?7++A$

/+619,B$%'*;C$

G-<$$

A(+/7%8$

!<-HI$

H,>8)'%9$$

J!HK$

L/,%(M%9$

J!HK$

N%):7%/+)(94&3$

Figure 1. Workflow used to analyze seL4.

evaluating sequences of pointer arithmetic on read-write
memory (e.g. return addresses pushed onto the stack). By
symbolically executing the binary, we can resolve all of these
off-line. The symbolic execution is not complete, but is suf-
ficient to simulate any arithmetic operations, memory loads
and stores which ultimately affect the possible destinations
of a branch.

Loop bounds: We specified the iteration counts of the
56 loops by hand. Due to compiler optimizations, some ef-
fort was required to correlate loops in the binary CFG to the
source code. Most loops in seL4 have obvious fixed bounds
which can be determined automatically with a rudimentary
analysis utilizing constant propagation. Some loops have
iteration counts which would require more sophisticated
analysis and reasoning—however there is sufficient infor-
mation in the binary to ascertain all of these automatically.

All iteration counts within seL4 are fixed and independent
of any system state. Due to heavy inlining by the compiler,
none of the iteration counts in the binary are context-
sensitive, even though some are at the source level (e.g.
memcpy). The analysis itself virtually inlines all function
calls, so even if the compiler had not performed such
aggressive inlining, context-dependent iteration counts could
still be specified, or possibly computed automatically.

The control flow graph, along with the loop iteration
counts, is passed to a modified version of Chronos 4.1 [15].

The compiled binary exhibited optimizations such as tail-
calls (where a function returning up the call stack shortcuts
intermediate callers when possible) and loop rotation (where
the loop body is “rotated” so that the entry and exit points
of the loop are not necessarily the first and last instructions
of the loop body). This required some modifications to
Chronos, as these optimizations violated its assumptions
about the structure of functions and loops.

C. Static timing analysis by Chronos
We chose to use the Chronos tool for our analysis because

of its existing support for instruction and data caches, its
flexible approach to modeling processor pipelines, and its
open license.

Static timing analysis through Chronos is broadly com-
posed of two parts: i) micro-architectural modeling and
ii) path analysis. Micro-architectural modeling involves es-
timating the timing effects of major micro-architectural
components of the underlying hardware platform such as
the pipeline and caches. Path analysis exploits infeasible
path information in the control flow graph to estimate the
execution time of the longest program path.

We adapted Chronos to support the ARMv7 instruction
set. Precise modeling of the Cortex-A8 pipeline is made
difficult not only by its complexity, but also due to a lack of
sufficient documentation. Even the official documents from
the manufacturer have been shown to be inaccurate [19]. We
therefore used a conservative approximation of the pipeline,
as described in Section IV-A.

Chronos models the pipeline on the granularity of a basic
block. For each basic block, it constructs an execution graph.
Nodes in the execution graph correspond to the different
stages of pipeline for each instruction in the basic block.
Edges in the execution graph correspond to dependencies
among pipeline nodes. Such a flexible modeling of pipeline
behavior via dependence edges also allows Chronos to
model advanced processor features such as superscalarity.

For a normal processor, we have dependence edges be-
tween the pipeline stages of subsequent instructions, for
example IF (Ii+1) can only start after IF (Ii) concludes,
where Ii+1 is the instruction following Ii and IF denotes in-
struction fetch. For a superscalar processor with n-way fetch
we set dependency edges between IF (Ii+n) and IF (Ii),
thereby allowing greater parallelism. The estimation method
supports any execution graph; various pipeline models can
be achieved by simply altering the automated mechanism
for generating the execution graph from basic blocks.

Instruction cache modeling can be easily integrated with
the pipeline modeling in Chronos. Chronos categorizes each
instruction memory block m into one of the following: if
m is categorized as HIT, then the memory block is always
a cache hit. If m is categorized as MISS, then the memory
block is always a cache miss. Finally, if m is categorized as
UNCLEAR, static cache analysis has failed to determine an
accurate cache categorization of m.

The instruction cache is accessed at the IF stage. Pipeline
modeling computes an interval of each pipeline stage for
each instruction in the basic block. If an instruction is HIT,
then we can add [1,1] as the instruction cache latency to the
computed interval of the IF node. If an instruction is a MISS
and miss penalty is lat, we add [lat, lat] to the computed
interval. Finally, if the instruction cache categorization is
UNCLEAR, the exact latency is not known but we are sure

Copyright c© 2011 IEEE

that it is between the interval [1,lat]. Therefore, we add
[1,lat] to the computed interval.

A major source of imprecision in data-cache analysis
comes from the “address analysis”—estimating the set of
memory addresses touched by an instruction. Data-cache
analysis in Chronos avoids this by determining which in-
stances of a given instruction touch the same memory ad-
dress. This leads to an analysis framework which is scalable,
precise and also takes into account program scopes.

Chronos differentiates the cache contexts in terms of loop
nests. For a single loop nest, Chronos considers two different
contexts: the first iteration and all subsequents iterations.
This contextual cache analysis greatly helps to give tighter
estimates as the cache categorization of a memory block
may vary significantly, depending on its loop nest.

After the micro-architectural modeling, we get the
WCETs of each basic block, which are fed to the program
path analysis stage. Program path analysis in Chronos is
performed via integer linear programming (ILP) based on
the implicit path enumeration technique (IPET) [20]. The
basic approach is to view WCET estimation as an optimiza-
tion problem. We formulate a linear programming problem
where the variables are the execution counts of the basic
blocks, and the coefficients are the execution times of each
basic block (obtained from micro-architectural modeling).
The flow constraints from the control flow graph, the loop
bounds, as well as any available/detected information about
infeasible control flow paths are all encoded as linear con-
straints. The execution time taken by the program is defined
as a linear function which is maximized subject to these
linear constraints. We refer the reader to other papers for
details of the static analysis employed by Chronos [21], and
its techniques for data-cache modeling [22].

All function calls are virtually inlined in Chronos so
that the cache analysis is context-aware. This results in
approximately 400, 000 basic blocks after inlining. The
output from Chronos is a system of linear constraints and an
objective function to maximize subject to those constraints.
With 400, 000 basic blocks, Chronos creates 2.3 million
variables and three million equations.

Finally, we utilize an off-the-shelf ILP solver—IBM’s
ILOG CPLEX Optimizer 12.2—to solve the ILP problem
generated by Chronos. The result gives the WCET value
and the assignment of edge counts, which can be used to
reconstruct a corresponding path. This is the most compu-
tationally intensive step of the process, and takes about four
hours for the entire seL4 kernel, when performed on an Intel
Xeon running at 2.66 GHz. Smaller portions of the kernel are
solved much faster—within seconds for most. Section VI-D
details the time taken to analyze portions of the kernel.

D. Hardware Measurements

In order to get an idea of the degree of pessimism in our
WCET estimates, we measured actual execution times on

hardware for the feasible worst-case paths detected by static
analysis. For timings we used the Cortex-A8’s cycle counter,
which is a part of its performance monitoring unit.

The results from the ILP solver specify the execution
counts of basic blocks and edges of the worst-case path. To
determine the path itself, we construct a directed multigraph
(a graph with potentially multiple edges between nodes)
using the nodes of the original CFG, and replicate the
CFG edges as many times as the execution count variable
corresponding to that edge dictates. The path taken is then
given by an Eulerian path from the source to sink—a path
that traverses every edge once and only once. Such a path
is guaranteed to exist in the graph because of the flow
constraints for each node. Note that this path may not be
feasible due to semantic behavior of the code which is not
modeled in the static analysis.

In the absence of nested loops, this information is suf-
ficient to uniquely identify the concrete path through the
kernel. With nested loops, the edge counts in the ILP
solution is not sufficient to uniquely identify a path, as inner
loop iterations could potentially differ between iterations of
the outer loop. In seL4, nested loops are sufficiently rare and
consistent in structure—all inner loops where this arises have
a fixed iteration count.

We manually constructed test cases to approximate the
worst-case path resulting from static analysis. In some cases,
these paths turned out to be clearly infeasible, in which case
we manually added constraints to exclude these paths.

E. Comparing Static Analysis with Measurements

In order to compare our static analysis model with empir-
ical results, we analyzed a number of test programs aimed to
exercise various parts of the seL4 kernel API. The test cases
were run on a simulator, QEMU, which provided us with a
trace of the instructions that would be executed. We also ran
the test case on hardware to obtain empirical timings. All
test cases are deterministic and so always produce the same
execution paths in the simulator as on hardware (assuming
there are no bugs in the simulator).

Using the instruction trace, we determined the precise
iteration counts of the loops as executed and provided these
as extra linear constraints to Chronos. Finally, we verified
that the new path from our static analysis matched what was
executed on the simulator. Note that this was only used for
determining the amount of pessimism in our model, and not
for the safe WCET bounds themselves.

Figure 2 shows the difference between the estimated
execution time and the real execution time for typical uses
of the system calls in Table II. The average ratio of all
system calls in Figure 2 is 5.98, and the largest ratio is
7.38. For each system call, because the estimated path and
the executed path are identical, we attribute the error to
conservatism in the pipeline and cache models and the

Copyright c© 2011 IEEE

0	

20	

40	

60	

80	

100	

120	

seL
4_
Sen

d	

seL
4_
NB
Sen

d	

seL
4_
Ca
ll	

seL
4_
Wa

it	

seL
4_
Re
ply
	

seL
4_
Re
ply
Wa

it	

seL
4_
No
;fy

	

seL
4_
Yie
ld	

Es;ma;on	 Execu;on	

Figure 2. The error between estimation and real execution time for typical
invocations of the seL4 system calls, measured in µs.

inability to exercise the worst-case cache/pipeline behaviour
of the processor.

F. Open vs. Closed Systems

We analyzed seL4 for two different use cases—open
systems and closed systems. We define an open system to be
one where the system designer cannot prevent arbitrary code
from executing on the system. This is in contrast to a closed
system, where the system designer has full control over all
code that executes. This is a coarse parameterization of the
kernel, as suggested by Schneider [23], in order to achieve
tighter bounds on the WCET in real-world use cases.

In seL4, all long-running system calls have preemption
points to prevent unbounded execution with interrupts dis-
abled. However, there still exist paths with a longer execu-
tion time than desirable for some hard real-time systems,
and where adding preemption points is increasingly difficult
to both implement and reason about formally. For example,
adding preemption points to certain object creation and
deletion paths would lead to the existence of partially con-
structed (or deconstructed) objects. These objects must be
handled specially by other kernel operations and considered
throughout the formal proof. This is the subject of future
work on seL4, and leads us to differentiate between open
and closed systems.

In an open system, real-time subsystems may execute
in conjunction with arbitrary and untrusted code (although
confined by the capabilities provided to them). seL4 uses a
strict priority-based round-robin scheduler. In such a scheme,
time sensitive threads must be assigned the highest priority
on the system so that they may run as soon as required
(typically when triggered by a hardware interrupt). seL4’s
design disables interrupts whenever in the kernel, except at
a few select preemption points. As a result, the interrupt
latency for the highest-priority thread is the sum of the
worst-case execution time of all possible non-preemptible

Table II
SYSTEM CALLS PERMITTED IN A CLOSED SYSTEM.

System Call Description
seL4_Send() Blocking send to an endpoint.
seL4_Wait() Blocking receive on an endpoint.
seL4_Call() Combined blocking send/receive.
seL4_NBSend() Non-blocking send to an endpoint (fails if

remote is not ready).
seL4_Reply() Non-blocking send to most recent caller.
seL4_ReplyWait() Combined reply and wait.
seL4_Notify() Non-blocking send of a one-word message.
seL4_Yield() Donate remaining timeslice to a thread of the

same priority.

operations performed by seL4, and the time taken to handle
and dispatch an interrupt.

In a closed system, the system designer has full control
over all operations performed by the kernel. Therefore she
can ensure that operations which have a significant impact
on interrupt latency are avoided at critical times (e.g. by
allocating all resources at boot and avoiding delete opera-
tions at run time). The interrupt latency in this scenario is
defined by the WCET of a select number of paths within
the kernel which are used by the running system—primarily
inter-process communication (IPC) operations, as well as
thread scheduling. Table II lists the permitted system calls.

Note that seL4_Call() can be invoked on an IPC
object to perform IPC operations, but it is also used to
interact with other kernel objects. We exclude these latter
operations from the analysis of closed systems, allowing
only the IPC-related uses of seL4_Call().

V. INITIAL WCET RESULTS

Our initial analysis of seL4 pointed us to some seri-
ous latency issues under pathological circumstances. One
such issue arose due to a scheduler optimization used in
seL4 known as lazy scheduling [16]. In microkernel-based
systems, where IPC is frequent, a thread blocking on an
IPC operation will often be made runnable again before
the scheduler even needs to reconsider it for execution. To
benefit from this observation, seL4 would not immediately
remove threads from the run queue, but deferred that work
until a thread was selected to be scheduled. Whilst this
improved the common case, it led to a worst-case scenario
where many non-runnable threads pollute the run queue. The
scheduler must iterate over all of these threads, inspect and
then dequeue them, until it finally finds a runnable thread
(or the idle thread).

In conjunction with the seL4 development team, we
removed lazy scheduling from the kernel. We replaced it by a
model where only runnable threads reside on the run queue,
except the actively running thread. This model avoids run
queue manipulation for the most common IPC operations:
if a running thread A performs a blocking IPC that wakes up
a blocked thread B, then thread A moves from the running
state to the blocked state, and thread B moves from the

Copyright c© 2011 IEEE

blocked state to the running state. These transitions avoid
the run queue altogether, thereby maintaining seL4’s fast
IPC performance.

We discovered other unbounded non-preemptible paths
in our initial analysis. The primary culprits were in the
object creation and deletion paths. We modified these to
introduce additional preemption points so that their non-
preemptible regions are bounded. The formal verification of
these modifications has not yet been completed, however
there are no insurmountable obstacles to doing so.

Combined with the removal of lazy scheduling, these
modifications have reduced seL4’s worst-case interrupt la-
tency to a constant, independent of variables such as the
number of objects on the system. The results presented in
the following section use this updated kernel.

VI. EXPERIMENTAL RESULTS

A. Open System

In analysing an open system, we consider all possible
seL4 operations. Without any user input other than the loop
bounds themselves, our toolchain determined the worst-case
execution time to be in excess of 20 ms, and corresponded to
an infeasible execution path. We excluded several infeasible
paths by adding additional constraints on the set of ILP
equations until we found a feasible worst case.

We found the single longest path to occur when deleting
an ASID pool. ASID pools are seL4 objects used to manage
collections of virtual address spaces. Deleting an ASID pool
requires iterating over each address space in the pool (of
which there may be 1024), and invalidating the user’s TLB
mappings associated with each one.

Beyond this case, we also found that most of the long
non-preemptible paths occured when creating, deleting or
recycling2 objects. The largest non-preemptible loop in seL4,
by measure of iteration count, is in one of these paths and
iterates over a 16 KiB page directory in order to clear all of
its associated mappings.

The other entry points into the kernel (unknown system
calls, undefined instructions, page faults, interrupts), do not
invoke the creation or deletion paths. Their worst cases
involve a simple asynchronous message delivery to a specific
thread on the system and are therefore very lightweight.

The results of these are shown in Table III.

B. Closed System

Within a closed system, we permit only the system calls
outlined in Table II, along with page faults, undefined
system calls and invalid instructions (commonly used by
virtualization), and of course, interrupts. The only difference
between the open and closed analysis is in the system-call
handler. All other exception paths are identical to the open-
system case.

2An seL4 recycle operation is equivalent to deleting and re-creating the
object, but is faster and requires less authority than re-creating the object.

The most significant worst-case scenario that
arose was the seL4_ReplyWait() system call.
seL4_ReplyWait() is used to respond to the most
recently received message, and then wait for a new incoming
message. The particular scenario detected was infeasible
and is described below. It is an interesting infeasible case
as there are in fact invariants in the formal proof that could
potentially be utilized to exclude this automatically.

In seL4, threads do not communicate with each other
directly. Rather, they construct IPC “endpoints” which act as
communication channels between threads. Multiple threads
are permitted to wait to receive (or send) a message on an
endpoint—threads join a queue and are woken in turn as
partners arrive. Deleting an endpoint in such a state leads
to a long-running operation as threads are unblocked and
moved back onto the scheduler’s run queue. Although this
is done preemptibly, it still adds a non-trivial amount of
work to this path. On closed systems, we do not permit a
delete operation, so this scenario should not be considered.

However, seL4_Reply() and seL4_Wait() utilize a
one-time endpoint (known as a reply cap) which is stored in
a dedicated location in each thread control block (the reply
slot). The kernel must delete the existing reply cap before a
call to seL4_Wait() and after a call to seL4_Reply().

The analysis detected that deleting this reply cap could
lead to a longer execution time as it entered the deletion path.
Even though we excluded explicit delete operations from our
analysis, this implicit operation was exposed. However, it is
impossible to construct this scenario, as a reply cap can only
be used by other threads if it is first removed from the reply
slot. Therefore the delete operation on the reply slot never
needs to enter the longer deletion path.

With this knowledge, we added an extra constraint which
excluded this infeasible path. The new analysis determined
that the worst-case path for each kernel entry point is
bounded by the time taken to perform an IPC.

In a feasible IPC operation, we identified three factors
which affected execution time. The first is that endpoints are
addressed using a structure resembling guarded page tables
[24]; decoding the address involves traversing up to 32 edges
of a directed graph. The second is, unsurprisingly, the size
of the message to be transferred, on which seL4 places a
hard limit of 120 32-bit words. Finally, an IPC may also
grant the recipient access to seL4 objects, which requires
additional bookkeeping to be done by the kernel. With these
three factors exercised to their limits, the worst-case latency
is still bounded to a reasonable value.

We reproduced this case on hardware and measured its
execution time, as shown in Table III.

C. Analysis of Results

The results in Table III show that there is a factor of
up to 10.15 between the observed and computed execution
times. This disparity can be attributed to both the random

Copyright c© 2011 IEEE

Table III
COMPUTED WCET VERSUS OBSERVED WCET FOR FEASIBLE

WORST-CASE PATHS IN SEL4.

Event handler Computed Observed Ratio
Syscall (open) 1634.8µs 305.2µs 5.36
Syscall (closed) 387.4µs 46.4µs 8.21
Unknown syscall 173.3µs 17.9µs 9.68
Undefined instruction 173.4µs 17.1µs 10.15
Page fault 175.5µs 18.9µs 9.27
Interrupt 104.7µs 13.1µs 8.01

Table IV
MOST COMPUTATIONALLY INTENSIVE SEL4 FUNCTIONS WHEN

SOLVING FOR WCET.

BBs before BBs after
Function inlining inlining

1 arm swi syscall 2, 384 433, 085
2 handleSyscall 2, 381 433, 082
3 decodeInvocation 2, 148 139, 066
4 handleInvocation 2, 237 140, 890
5 decodeCNodeInvocation 985 32, 106
6 decodeTCBInvocation 958 100, 810

Computation Time
Function Chronos CPLEX Total

1 arm swi syscall 6m52s 227m37s 234m29s
2 handleSyscall 6m42s 226m9s 232m51s
3 decodeInvocation 2m49s 44m11s 47m0s
4 handleInvocation 2m20s 14m50s 17m10s
5 decodeCNodeInvocation 37s 4m59s 5m36s
6 decodeTCBInvocation 2m11s 2m14s 4m25s

cache replacement policy of the instruction and data caches,
and conservatism in modeling the Cortex-A8 pipeline. It is
extremely difficult to model worst-case scenarios for these
without very fine control over the processor’s state.

A proportion of the disparity can also be attributed to
infeasible paths detected by the analysis. Although we man-
ually excluded some infeasible paths, the final paths detected
may still contain smaller portions that are not possible. There
is scope here to improve the bounds further, to the degree
permitted by the inherent unpredictability of the hardware.

To compute the worst-case interrupt latency of the sys-
tem, from interrupt arrival to a userspace interrupt handler
executing, we take the largest WCET value from the given
scenario and add the WCET of delivering an interrupt to the
highest priority thread on the system.

Overall, these results show that seL4 could be used as
a platform for closed systems and provide a guaranteed
interrupt response time of 387.4 + 104.7 = 492.1µs on
this hardware. In open systems, the interrupt response time
is 1635µs + 104.7µs = 1.74 ms, which is still quite
reasonable for many applications. However there is clearly
scope to improve the response times for both open and
closed systems.

D. Computation Time

To examine the scalability of our analysis method on
seL4, we computed the worst-case execution time for not

only the top-level entry points, but also all subroutines in
the seL4 binary. Table IV shows the functions in seL4 that
took the longest time to analyze. arm_swi_syscall is
the assembly-level entry point for all system calls. It directly
or indirectly calls the other functions listed in the table. All
other functions within the kernel are solved much faster (in
minutes or seconds, rather than hours). The table also shows
the number of basic blocks (BBs) before and after virtual
inlining, as a measure of how complex the computation is.

Only five functions took more than five minutes to solve.
They contain the largest number of basic blocks of any func-
tion in the kernel, once virtual inlining has been performed.
From this table, it can be seen that the approach used almost
scales up to the size of seL4, depending on one’s patience.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an interrupt-response-time analysis of
the seL4 microkernel, highlighting the properties of the code
base that make it amenable to static analysis. This is the first
analysis to our knowledge of a protected operating system
providing virtual memory. There are many properties of seL4
that both ease the analysis process and reduce the interrupt
latency, without the need for a fully-preemptible kernel. Our
analysis shows that seL4’s WCET can be kept low enough
for many closed- as well as many open-system applications.

seL4 is designed as a highly-secure general-purpose OS
kernel, suitable for a large class of real-time, best-effort and
hybrid systems. One of the design decisions supporting these
goals is to disallow interrupts in the kernel, and instead
limit interrupt latencies via specific preemption points. This
means that the kernel cannot support extremely low interrupt
latencies (of the order of 10s or 100s of cycles). seL4’s
latencies are currently several hundreds of thousands of
cycles in the worst case. With the introduction of additional
preemption points, guided by this analysis, we believe seL4’s
interrupt latency can reduced to just thousands of cycles.
Future work will focus on achieving this whilst maintaining
its proofs of correctness.

There are still significant differences between the results
of static analysis and measurements on hardware. A part of
this is due to conservatism in the pipeline and cache model
used by static analysis (mostly inevitable due to the degree
of undocumented behaviour in the processor). Another factor
is code paths which are difficult to reproduce from userspace
because of very fragile pathological cases. It may be possible
to set up the state of the relevant data structures from within
the kernel to force these paths, but this may not result in a
realistic scenario.

Finally, some amount of pessimism comes from unde-
tected infeasible paths in the control flow graph. While we
could eliminate some of these in our analysis, we expect
that we can automate and improve this by making use
of invariants proved during the formal verification of the
kernel. There is also scope to automate the determination of

Copyright c© 2011 IEEE

loop bounds so that user input is not required, removing a
potential source of misinformation.

Despite these limitations, we have been able to perform
a complete WCET analysis of seL4. In conjunction with a
formal proof of functional correctness, this already makes
seL4 a compelling platform for safety-critical applications.

Whilst the focus of this paper has been WCET analysis for
determining interrupt response time of the kernel, the results
of the analysis can also be used to determine bounds on
the latency of individual kernel operations. Bounds for non-
preemptible kernel operations are directly obtainable from
the analysis presented, whilst bounds for preemptible oper-
ations need to consider the running system and its possible
preemptions. This knowledge forms part of a schedulability
analysis which is crucial for designing reliable hard real-time
systems.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their comments and feedback.

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Coun-
cil through the ICT Centre of Excellence program.

REFERENCES

[1] F. Mehnert, M. Hohmuth, and H. Härtig, “Cost and benefit
of separate address spaces in real-time operating systems,” in
23rd RTSS, Austin, TX, USA, 2002.

[2] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-
rish, T. Sewell, H. Tuch, and S. Winwood, “seL4: Formal
verification of an OS kernel,” in 22nd SOSP, Big Sky, MT,
USA, Oct 2009, pp. 207–220.

[3] J. Liedtke, “On µ-kernel construction,” in 15th SOSP, Copper
Mountain, CO, USA, Dec 1995, pp. 237–250.

[4] X. Feng, Z. Shao, Y. Dong, and Y. Guo, “Certifying low-level
programs with hardware interrupts and preemptive threads,”
in PLDI, Tucson, AZ, USA, Jun 2008, pp. 170–182.

[5] R. Kirner, I. Wenzel, B. Rieder, and P. Puschner, “Using
measurements as a complement to static worst-case execu-
tion time analysis,” in Intelligent Systems at the Service of
Mankind. UBooks Verlag, Dec 2005, vol. 2.

[6] S. M. Petters, P. Zadarnowski, and G. Heiser, “Measure-
ments or static analysis or both?” in 7th WS Worst-Case
Execution-Time Analysis, Pisa, Italy, Jul 2007, satellite WS
19th ECRTS.

[7] V. Yodaiken and M. Barabanov, “A real-time Linux,” in
USELINUX, Anaheim, CA, January 1997, satellite WS 1997
USENIX.

[8] F. Mehnert, M. Hohmuth, S. Schönberg, and H. Härtig,
“RTLinux with address spaces,” in 3rd Real-Time Linux WS,
Milano, Italy, Nov 2001.

[9] A. Colin and I. Puaut, “Worst case execution time analysis
of the RTEMS real-time operating system,” in 13th ECRTS,
Delft, Netherlands, Jun 13–15 2001, pp. 191–198.

[10] M. Carlsson, J. Engblom, A. Ermedahl, J. Lindblad, and
B. Lisper, “Worst-case execution time analysis of disable
interrupt regions in a commercial real-time operating system,”
in 2nd Int. WS Real-Time Tools, 2002.

[11] D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper, “Static
timing analysis of real-time operating system code,” in 1st Int.
Symp. Leveraging Applic. Formal Methods, October 2004.

[12] M. Lv, N. Guan, Y. Zhang, R. Chen, Q. Deng, G. Yu, and
W. Yi, “WCET analysis of the µC/OS-II real-time kernel,”
in 12th Int. Conf. Computational Sci. & Engin., Vancouver,
Canada, Aug 2009, pp. 270–276.

[13] M. Singal and S. M. Petters, “Issues in analysing L4 for
its WCET,” in 1st MIKES. Sydney, Australia: NICTA, Jan
2007.

[14] M. Lv, N. Guan, Y. Zhang, Q. Deng, G. Yu, and J. Zhang, “A
survey of WCET analysis of real-time operating systems,” in
ICESS, Hangzhou, China, May 2009, pp. 65–72.

[15] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury, “Chronos: A
timing analyzer for embedded software,” in Science of Com-
puter Programming, Special issue on Experimental Software
and Toolkit, vol. 69(1-3), Dec 2007.

[16] J. Liedtke, “Improving IPC by kernel design,” in 14th SOSP,
Asheville, NC, USA, Dec 1993, pp. 175–188.

[17] M. Warton, “Single kernel stack L4,” BE Thesis, School
Comp. Sci. & Engin., University NSW, Sydney 2052, Aus-
tralia, Nov 2005.

[18] G. Klein, P. Derrin, and K. Elphinstone, “Experience report:
seL4 — formally verifying a high-performance microkernel,”
in 14th ICFP, Edinburgh, UK, Aug 2009, pp. 91–96.

[19] B. Avison, “ARM Cortex-A8 instruction timings,” http://
www.avison.me.uk/ben/programming/cortex-a8.html, visited
8 May 2011.

[20] Y.-T. Li, S. Malik, and A. Wolfe, “Efficient microarchitecture
modeling and path analysis for real-time software,” in 16th
RTSS, 1995, pp. 298–307.

[21] X. Li, A. Roychoudhury, and T. Mitra, “Modeling out-
of-order processors for WCET analysis,” Real-Time Syst.,
vol. 34, pp. 195–227, 2006.

[22] B. Huynh, L. Ju, and A. Roychoudhury, “Scope-aware data
cache analysis for WCET estimation,” in 17th RTAS, Apr
2011.

[23] J. Schneider, “Why you can’t analyze RTOSs without con-
sidering applications and vice versa,” in 2nd WS Worst-Case
Execution-Time Analysis, 2002.

[24] J. Liedtke, “A high resolution MMU for the realization of
huge fine-grained address spaces and user level mapping,”
German National Research Center for Computer Science
(GMD), Sankt Augustin, Germany, Arbeitspapiere der GMD
No. 791, 1993.

Copyright c© 2011 IEEE

http://www.avison.me.uk/ben/programming/cortex-a8.html
http://www.avison.me.uk/ben/programming/cortex-a8.html

	Introduction
	Contribution

	Related work
	seL4 Design Features
	Analysis Method
	Processor Model
	Static Analysis
	Static timing analysis by Chronos
	Hardware Measurements
	Comparing Static Analysis with Measurements
	Open vs. Closed Systems

	Initial WCET results
	Experimental Results
	Open System
	Closed System
	Analysis of Results
	Computation Time

	Conclusions and Future Work
	References

