Virtual Machine (VM)

"A VM is an efficient, isolated duplicate of a real machine"
[PoPek&Goldberg 74]

- Duplicate: VM should behave identically to the real machine
 - Programs cannot distinguish between real or virtual hardware
 - Except for:
 - Fewer resources (and potentially different between executions)
 - Some timing differences (when dealing with devices)
- Isolated: Several VMs execute without interfering with each other
- Efficient: VM should execute at speed close to that of real hardware
 - Requires that most instruction are executed directly by real hardware

Hypervisor aka virtual-machine monitor: Software implementing the VM

"Real machine": Modern usage more general, "virtualise" any API

Types of Virtualization

<table>
<thead>
<tr>
<th>Type-1</th>
<th>Type-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Native"</td>
<td>"Hosted"</td>
</tr>
</tbody>
</table>

"Platform" (HW/SW Interface)
Why Virtual Machines?

- Historically used for easier sharing of expensive mainframes
 - Run several (even different) OSes on same machine
 • called guest operating system
 - Each on a subset of physical resources
 - Can run single-user single-tasked OS in time-sharing mode
 • legacy support
- Gone out of fashion in 80’s
 - Time-sharing OSes common-place
 - Hardware too cheap to worry...

Why Virtual Machines?

- Renaissance in recent years for improved isolation
- Server/desktop virtual machines
 - Improved QoS and security
 - Uniform view of hardware
 - Complete encapsulation
 • replication
 • migration/consolidation
 • checkpointing
 • debugging
 - Different concurrent OSes
 • eg Linux + Windows
 - Total mediation
- Would be mostly unnecessary
 - ... if OSes were doing their job!

Why Virtual Machines?

- Core driver today is Cloud computing
 - Increased utilisation by sharing hardware
 - Reduced maintenance cost through scale
 - On-demand provisioning
 - Dynamic load balancing through migration
- Embedded systems: integration of heterogenous environments
 - RTOS for critical real-time functionality
 - Standard OS for GUIs, networking etc
- Alternative to physical separation
 - low-overhead communication
 - cost reduction
 - consolidate complete components
 • including OS,
 • certified
 • supplied by different vendors
Hypervisor

- Program that runs on real hardware to implement the virtual machine
- Controls resources
 - Partitions hardware
 - Schedules guests
 - "world switch"
 - Mediates access to shared resources
 - e.g. console
- Implications
 - Hypervisor executes in privileged mode
 - Guest software executes in unprivileged mode
 - Privileged instructions in guest cause a trap into hypervisor
 - Hypervisor interprets/emulates them
 - Can have extra instructions for hypercalls

Native vs. Hosted VMM

- Hosted VMM beside native apps
 - Sandbox untrusted apps
 - Convenient for running alternative OS on desktop
 - Leverage host drivers
 - Less efficient
 - Double node switches
 - Double context switches
 - Host not optimised for exception forwarding

Virtualization Mechanics: Instruction Emulation

- Traditional trap-and-emulate (T&E) approach:
 - guest attempts to access physical resource
 - hardware raises exception (trap), invoking HV’s exception handler
 - hypervisor emulates result, based on access to virtual resource
- Most instructions do not trap
 - prerequisite for efficient virtualisation
 - requires VM ISA (almost) same as processor ISA

Trap-and-Emulate Requirements

Definitions:
- Privileged instruction: traps when executed in user mode
 - Note: NO-OP is insufficient!
- Privileged state: determines resource allocation
 - Includes privilege mode, addressing context, exception vectors...
- Sensitive instruction: control- or behaviour-sensitive
 - control sensitive: changes privileged state
 - behaviour sensitive: exposes privileged state
 - incl instructions which are NO-OPs in user but not privileged state
- Innocuous instruction: not sensitive
 - Some instructions are inherently sensitive
 - eg TLB load
 - Others are context-dependent
 - eg store to page table
Trap-and-Emulate Architectural Requirements

- **T&E virtualisable**: all sensitive instructions are privileged
 - Can achieve accurate, efficient guest execution
 - ... by simply running guest binary on hypervisor
 - VMM controls resources
 - Virtualized execution indistinguishable from native, except:
 - resources more limited (smaller machine)
 - timing differences (if there is access to real time clock)

- **Recursively virtualisable**:
 - run hypervisor in VM
 - possible if hypervisor not timing dependent, overheads low

Binary Translation

- Locate sensitive instructions in guest binary, replace on-the-fly by emulation or trap/hypercall
 - pioneered by VMware
 - detect/replace combination of sensitive instruction for performance
 - modifies binary at load time, no source access required

- Looks like pure virtualisation!

- Very tricky to get right (especially on x86!)
 - Assumptions needed about sane guest behaviour
 - “Heroic effort” [Orran Krieger, then IBM, later VMware] 😊

Impure Virtualization

- Virtualise other than by T&E of unmodified binary

- Two reasons:
 - Architecture not T&E virtualisable
 - Reduce virtualisation overheads

- Change guest OS, replacing sensitive instructions
 - by trapping code ("hypercalls")
 - by in-line emulation code

Para-Virtualization

- **New(ish) name, old technique**
 - coined by Denali [Whitaker ’02], popularised by Xen [Barham ’03]
 - Mach Unix server [Golub ’90], L4Linux [Härtig ’97], Disco [Bugnion ’97]

- **Idea**: manually port guest OS to modified (more high-level) ISA
 - Augmented by explicit hypervisor calls (hypercalls)
 - higher-level ISA to reduce number of traps
 - remove unvirtualisable instructions
 - remove “messy” ISA features which complicate
 - Generally outperforms pure virtualisation, binary re-writing

- **Drawbacks**:
 - Significant engineering effort
 - Needs to be repeated for each guest-ISA-hypervisor combination
 - Para-virtualised guests must be kept in sync with native evolution
 - Requires source
Virtualization Overheads

- VMM must maintain virtualised privileged machine state
 - processor status
 - addressing context
 - device state
- VMM needs to emulate privileged instructions
 - translate between virtual and real privileged state
 - e.g. guest \(\rightarrow\) real page tables
- Virtualisation traps are expensive
 - \(\geq 1000\) cycles on some Intel processors!
 - Better recently, Haswell has \(<500\) cycle round-trip
- Some OS operations involve frequent traps
 - STI/CLI for mutual exclusion
 - frequent page table updates during fork()
 - MIPS KSEG addresses used for physical addressing in kernel

Virtualization Mechanics: Shadow Page Table

- Hypervisor must shadow (virtualize) all PT updates by guest:
 - trap guest writes to guest PT
 - translate guest PA in guest (virtual) PTE using guest memory map
 - insert translated PTE in shadow PT
- Shadow PT has TLB semantics (i.e., weak consistency)
 - Update at synchronisation points:
 - page faults
 - TLB flushes
- Used by VMware
 - Shadow PT as virtual TLB
 - similar semantics
 - can be incomplete: LRU translation cache
Virtualisation Semantics: Lazy Shadow Update

User → Guest OS → Hypervisor

- access new page...
- add mapping to GPT
- add mappings...
- return to user
- write-protect GPT
- unprotect GPT & mark dirty
- update dirty shadow
- write-protect GPT
- flush TLB
- update dirty shadow

Virtualisation Semantics: Optimised Guest PT

- Guest translates PTEs itself when reading from PT
 - supported by Linux PT-access wrappers
- Guest batches PT updates using hypercalls
 - reduced overhead

Virtualization Mechanics: Real Guest PT

- On guest PT access must translate (virtualize) PTEs
 - store: translate guest “PTE” to real PTE
 - load: translate real PTE to guest “PTE”
- Each guest PT access traps!
 - including reads
 - high overhead

Virtualization Mechanics: Optimised Guest PT

- Para-virtualized guest “knows” it is virtualized
- Used by original Xen
Virtualization Techniques

- Impure virtualisation methods enable new optimisations
 - avoid traps through ability to control the ISA
 - changed contract between guest and hypervisor
- Example: virtualised guest page table
 - lazy update of virtual state (TLB semantics)
- Example: virtual interrupt-enable bit (in virtual PSR)
 - requires changing guest’s idea of where this bit lives
 - hypervisor knows about VM-local virtual state
 - eg queue virtual interrupt until guest enables in virtual PSR

Virtualization Mechanics: 3 Device Models

- Emulated: Device register accesses
 - each device access must be trapped and emulated
 - unmodified native driver
 - high overhead
- Split: Simplified, high-level device interface
 - small number of hypercalls
 - new (but very simple) driver
 - low overhead
 - must port drivers to hypervisor
- Pass-through: Device
 - direct access to device
 - no virtualisation

Virtualization Mechanics: Emulated Device

Virtualization Mechanics: Split Driver (Xen speak)
Virtualization Mechanics: Driver OS (Xen Dom0)

- Leverage Driver-OS native drivers
 - no driver porting
 - must trust complete Driver OS guest!
 - huge TCB!

Modern Architectures Not T&E Virtualisable

- Examples:
 - x86: many non-virtualizable features
 - e.g. sensitive PUSH of PSW is not privileged
 - segment and interrupt descriptor tables in virtual memory
 - segment description expose privileged level
 - MIPS: mostly ok, but
 - kernel registers k0, k1 (for save/restore state) user-accessible
 - performance issue with virtualising KSEG addresses
 - ARM: mostly ok, but
 - some instructions undefined in user mode (banked registers, CPSR)
 - PC is a GPR, exception return in MOVS to PC, doesn't trap
- Addressed by virtualization extensions to ISA
 - x86, Itanium since ~2006 (VT-x, VT-i), ARM since ’12
 - additional processor modes and other features
 - all sensitive ops trap into hypervisor or made innocuous (shadow state)
 - e.g. guest copy of PSW

x86 Virtualization Extensions (VT-x)

- New processor mode: VT-x root mode
 - orthogonal to protection rings
 - entered on virtualisation trap
ARM Virtualization Extensions (1)

Hyp mode

- New privilege level
 - Strictly higher than kernel
 - Virtualizes or traps all sensitive instructions
 - Only available in ARM TrustZone “non-secure” mode

```

<table>
<thead>
<tr>
<th>Non-Secure world</th>
<th>Secure world</th>
</tr>
</thead>
<tbody>
<tr>
<td>User mode</td>
<td>User mode</td>
</tr>
<tr>
<td>Kernel modes</td>
<td>Kernel modes</td>
</tr>
<tr>
<td>Hyp mode</td>
<td>Hyp mode</td>
</tr>
</tbody>
</table>

Monitor mode

```

ARM Virtualization Extensions (2)

Configurable Traps

- `Native syscall`
 - User mode
 - Can configure traps to go directly to guest OS
 - Big performance boost!

- `Virtual syscall`
 - User mode
 - Trap to guest

- `x86 similar`
 - User mode
 - Can configure traps to go directly to guest OS
 - Big performance boost!

ARM Virtualization Extensions (3)

Emulation

1. Load faulting instruction
 - Compulsory L1-D miss!
2. Decode instruction
 - Complex logic
3. Emulate instruction
 - Usually straightforward

```
```

Emulation Support

- HW decodes instruction
 - No L1 miss
 - No software decode
- SW emulates instruction
 - Usually straightforward
ARM Virtualization Extensions (4)

2-stage translation

- Hardware PT walker traverses both PTs
- Loads combined (guest-virtual to physical) mapping into TLB
- eliminates “virtual TLB”

1st PT ptr (Hardware)

Guest physical address

Hypervisor’s guest memory map

Memory

2nd PT ptr (Hardware)

User

ld r0, addr

Guest

virtual address

Guest OS

Physical address

ARM Virtualization Extensions (5)

Virtual Interrupts

- ARM has 2-part IRQ controller
 - Global “distributor”
 - Per-CPU “interface”
- New H/W “virt. CPU interface”
 - Mapped to guest
 - Used by HV to forward IRQ
 - Used by guest to acknowledge
- Halves hypervisor invocations for interrupt virtualization

x86 different (VT-d)

Many ARM SoCs different

ARM Virtualization Extensions (6)

System MMU (I/O MMU)

- Devices use virtual addresses
- Translated by system MMU
 - elsewhere called I/O MMU
 - translation cache, like TLB
 - reloaded from same page table
- Can do pass-through I/O safely
 - guest accesses device registers
 - no hypervisor invocation
World Switch

x86
- VM state is ≤ 4 KiB
- Save/restore done by hardware on VMexit/VMentry
- Fast and simple

ARM
- VM state is 488 B
- Save/restore done by software (hypervisor)
- Selective save/restore
 - Eg traps w/o world switch

Hybrid Hypervisor OSes

- Idea: turn standard OS into hypervisor
 - … by running in VT-x root mode
 - eg: KVM (“kernel-based virtual machine”)
- Can re-use Linux drivers etc
- Huge trusted computing base!
- Often falsely called a Type-2 hypervisor

Variant: VMware MVP
- ARM hypervisor
 - pre-HW support
 - re-writes exception vectors in Android kernel to catch virtualization traps in guest

ARM: seL4 vs KVM [DallNieh ‘13]
Virtualisation Cost (KVM)

<table>
<thead>
<tr>
<th>Component</th>
<th>ARM A15 cycles</th>
<th>x86 Sandybridge cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>VE ex+ent</td>
<td>27</td>
<td>821</td>
</tr>
<tr>
<td>World Switch</td>
<td>1,135</td>
<td>814</td>
</tr>
<tr>
<td>I/O Kernel</td>
<td>2,850</td>
<td>3,291</td>
</tr>
<tr>
<td>I/O User</td>
<td>6,704</td>
<td>12,218</td>
</tr>
<tr>
<td>EOI+ACK</td>
<td>13,726</td>
<td>2,305</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>ARM LoC</th>
<th>x86 LoC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core CPU</td>
<td>2,493</td>
<td>16,177</td>
</tr>
<tr>
<td>Page Faults</td>
<td>738</td>
<td>3,410</td>
</tr>
<tr>
<td>Interrupts</td>
<td>1,057</td>
<td>1,978</td>
</tr>
<tr>
<td>Timers</td>
<td>180</td>
<td>573</td>
</tr>
<tr>
<td>Other</td>
<td>1,344</td>
<td>1,288</td>
</tr>
<tr>
<td>Total</td>
<td>5,812</td>
<td>25,367</td>
</tr>
</tbody>
</table>

Source: [Dall&Nieh, ASPLOS’14]

Fun and Games with Hypervisors

- Time-travelling virtual machines [King ‘05]
 - debug backwards by replay VM from checkpoint, log state changes
- SecVisor: kernel integrity by virtualisation [Seshadri ‘07]
 - controls modifications to kernel (guest) memory
- Overshadow: protect apps from OS [Chen ‘08]
 - make user memory opaque to OS by transparently encrypting
- Turtles: Recursive virtualisation [Ben-Yehuda ‘10]
 - virtualize VT-x to run hypervisor in VM
- CloudVisor: mini-hypervisor underneath Xen [Zhang ‘11]
 - isolates co-hosted VMs belonging to different users
 - leverages remote attestation (TPM) and Turtles ideas

... and many more!

Hypervisors vs Microkernels

- Both contain all code executing at highest privilege level
 - Although hypervisor may contain user-mode code as well
 - privileged part usually called "hypervisor"
 - user-mode part often called “VMM”
- Both need to abstract hardware resources
 - Hypervisor: abstraction closely models hardware
 - Microkernel: abstraction designed to support wide range of systems
- What must be abstracted?
 - Memory
 - CPU
 - I/O
 - Communication

Hypervisors
- Modelled on HW, Re-uses SW
- Minimal overhead, Custom API
- Real Difference?
- Just kernel-scheduled activities
- Just page tables in disguise

Microkernels
- Similar abstractions
- Optimised for different use cases

What’s the difference?

<table>
<thead>
<tr>
<th>Resource</th>
<th>Hypervisor</th>
<th>Microkernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>Virtual MMU (vMMU)</td>
<td>Address space</td>
</tr>
<tr>
<td>CPU</td>
<td>Virtual CPU (vCPU)</td>
<td>Thread or scheduler activation</td>
</tr>
</tbody>
</table>
| I/O | Simplified virtual device
 | • Driver in hypervisor
 | • Virtual IRQ (vIRQ) |
| Communication | Virtual NIC, with driver and network stack
 | • IPC interface to user-mode driver
 | • Interrupt IPC |
 | High-performance message-passing IPC |
Closer Look at I/O and Communication

- Communication is critical for I/O
 - Microkernel IPC is highly optimised
 - Hypervisor inter-VM communication is frequently a bottleneck

Hypervisors vs Microkernels: Drawbacks

Hypervisors:
- Communication is Achilles heel
 - more important than expected
 - critical for I/O
 - plenty improvement attempts in Xen

- Most hypervisors have big TCBs
 - infeasible to achieve high assurance of security/safety
 - in contrast, microkernel implementations can be proved correct

Microkernels:
- Not ideal for virtualization
 - API not very effective
 - L4 virtualization performance close to hypervisor
 - effort much higher
 - Needed for legacy support
 - No issue with H/W support?
- L4 model uses kernel-scheduled threads for more than exploiting parallelism
 - Kernel imposes policy
 - Alternatives exist, eg. K42 uses scheduler activations