
Network File System (NFS) library

Generated by Doxygen 1.8.1.2

Thu Aug 1 2013 15:54:58

CONTENTS 1

Contents

1 Data Structure Index 1

1.1 Data Structures . 1

2 File Index 2

2.1 File List . 2

3 Data Structure Documentation 2

3.1 fattr_t Struct Reference . 2

3.1.1 Detailed Description . 2

3.1.2 Field Documentation . 3

3.2 fhandle_t Struct Reference . 3

3.2.1 Detailed Description . 3

3.3 sattr_t Struct Reference . 3

3.3.1 Detailed Description . 4

3.3.2 Field Documentation . 4

3.4 timeval_t Struct Reference . 4

3.4.1 Detailed Description . 4

4 File Documentation 4

4.1 nfs.h File Reference . 4

4.1.1 Detailed Description . 6

4.1.2 Typedef Documentation . 7

4.1.3 Enumeration Type Documentation . 9

4.1.4 Function Documentation . 10

1 Data Structure Index

1.1 Data Structures

Here are the data structures with brief descriptions:

fattr_t
The "fattr" structure contains the attributes of a file 2

fhandle_t
The "fhandle" is the file handle passed between the server and the client 3

sattr_t
The "sattr" structure contains the file attributes which can be set from the client 3

timeval_t
The "timeval" structure is the number of seconds and microseconds since midnight January 1,
1970, Greenwich Mean Time 4

Generated on Thu Aug 1 2013 15:54:58 for Network File System (NFS) library by Doxygen

2 File Index 2

2 File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

nfs.h
Network File System (NFS) client 4

3 Data Structure Documentation

3.1 fattr t Struct Reference

The "fattr" structure contains the attributes of a file.

Data Fields

• ftype_t type

The type of the file.

• uint32_t mode

The access mode encoded as a set of bits.

• uint32_t nlink

The number of hard links to the file (the number of different names for the same file).

• uint32_t uid

The user identification number of the owner of the file.

• uint32_t gid

The group identification number of the group of the file.

• uint32_t size

The size in bytes of the file.

• uint32_t block_size

The size in bytes of a block of the file.

• uint32_t rdev

The device number of the file if it is type NFCHR or NFBLK.

• uint32_t blocks

The number of blocks the file takes up on disk.

• uint32_t fsid

The file system identifier for the file system containing the file.

• uint32_t fileid

A number that uniquely identifies the file within its file system.

• timeval_t atime

The time when the file was last accessed for either read or write.

• timeval_t mtime

The time when the file data was last modified (written).

• timeval_t ctime

The time when the status of the file was last changed.

3.1.1 Detailed Description

The "fattr" structure contains the attributes of a file.

Generated on Thu Aug 1 2013 15:54:58 for Network File System (NFS) library by Doxygen

3.2 fhandle_t Struct Reference 3

3.1.2 Field Documentation

3.1.2.1 uint32 t mode

The access mode encoded as a set of bits.

Notice that the file type is specified both in the mode bits and in the file type. The encoding of this field is the same
as the mode bits returned by the stat(2) system call in UNIX.

3.1.2.2 uint32 t nlink

The number of hard links to the file (the number of different names for the same file).

3.1.2.3 timeval_t ctime

The time when the status of the file was last changed.

Writing to the file also changes "ctime" if the size of the file changes.

The documentation for this struct was generated from the following file:

• nfs.h

3.2 fhandle t Struct Reference

The "fhandle" is the file handle passed between the server and the client.

3.2.1 Detailed Description

The "fhandle" is the file handle passed between the server and the client.

All file operations are done using file handles to refer to a file or directory. The file handle can contain whatever
information the server needs to distinguish an individual file.

The documentation for this struct was generated from the following file:

• nfs.h

3.3 sattr t Struct Reference

The "sattr" structure contains the file attributes which can be set from the client.

Data Fields

• uint32_t mode

The access mode encoded as a set of bits.

• uint32_t uid

The user identification number of the owner of the file.

• uint32_t gid

The group identification number of the group of the file.

• uint32_t size

The size in bytes of the file. Zero means that the file should be truncated.

• timeval_t atime

The time when the file was last accessed for either read or write.

• timeval_t mtime

The time when the file data was last modified (written).

Generated on Thu Aug 1 2013 15:54:58 for Network File System (NFS) library by Doxygen

3.4 timeval_t Struct Reference 4

3.3.1 Detailed Description

The "sattr" structure contains the file attributes which can be set from the client.

The fields are the same as for "fattr" above. A "size" of zero means the file should be truncated. A value of -1
indicates a field that should be ignored.

3.3.2 Field Documentation

3.3.2.1 uint32 t mode

The access mode encoded as a set of bits.

The encoding of this field is the same as the mode bits returned by the stat(2) system call in UNIX.

The documentation for this struct was generated from the following file:

• nfs.h

3.4 timeval t Struct Reference

The "timeval" structure is the number of seconds and microseconds since midnight January 1, 1970, Greenwich
Mean Time.

Data Fields

• uint32_t seconds

The seconds portion of the time value.

• uint32_t useconds

The micro seconds portion of the time value.

3.4.1 Detailed Description

The "timeval" structure is the number of seconds and microseconds since midnight January 1, 1970, Greenwich
Mean Time.

It is used to pass time and date information.

The documentation for this struct was generated from the following file:

• nfs.h

4 File Documentation

4.1 nfs.h File Reference

Network File System (NFS) client.

Data Structures

• struct fhandle_t

The "fhandle" is the file handle passed between the server and the client.

• struct timeval_t

Generated on Thu Aug 1 2013 15:54:58 for Network File System (NFS) library by Doxygen

4.1 nfs.h File Reference 5

The "timeval" structure is the number of seconds and microseconds since midnight January 1, 1970, Greenwich Mean
Time.

• struct fattr_t

The "fattr" structure contains the attributes of a file.
• struct sattr_t

The "sattr" structure contains the file attributes which can be set from the client.

Macros

• #define FHSIZE 32

The size in bytes of the opaque file handle.
• #define MAXNAMLEN 255

The maximum number of bytes in a file name argument.
• #define MAXPATHLEN 1024

The maximum number of bytes in a pathname argument.

Typedefs

• typedef uint32_t nfscookie_t

A cookie provided by the server which can be used for subsequent calls.
• typedef void(∗ nfs_getattr_cb_t)(uintptr_t token, enum nfs_stat status, fattr_t ∗fattr)

A call back function provided by the caller of nfs_getattr, executed once a response is received.
• typedef void(∗ nfs_lookup_cb_t)(uintptr_t token, enum nfs_stat status, fhandle_t ∗fh, fattr_t ∗fattr)

A call back function provided by the caller of nfs_lookup, executed once a response is received.
• typedef void(∗ nfs_create_cb_t)(uintptr_t token, enum nfs_stat status, fhandle_t ∗fh, fattr_t ∗fattr)

A call back function provided by the caller of nfs_create, executed once a response is received.
• typedef void(∗ nfs_remove_cb_t)(uintptr_t token, enum nfs_stat status)

A call back function provided by the caller of nfs_remove, executed once a response is received.
• typedef void(∗ nfs_readdir_cb_t)(uintptr_t token, enum nfs_stat status, int num_files, char ∗file_names[],

nfscookie_t nfscookie)

A call back function provided by the caller of nfs_readdir, executed once a response is received.
• typedef void(∗ nfs_read_cb_t)(uintptr_t token, enum nfs_stat status, fattr_t ∗fattr, int count, void ∗data)

A call back function provided by the caller of nfs_read, executed once a response is received.
• typedef void(∗ nfs_write_cb_t)(uintptr_t token, enum nfs_stat status, fattr_t ∗fattr, int count)

A call back function provided by the caller of nfs_write, executed once a response is received.

Enumerations

• enum nfs_stat_t {
NFS_OK = 0, NFSERR_PERM = 1, NFSERR_NOENT = 2, NFSERR_IO = 5,
NFSERR_NXIO = 6, NFSERR_ACCES = 13, NFSERR_EXIST = 17, NFSERR_NODEV = 19,
NFSERR_NOTDIR = 20, NFSERR_ISDIR = 21, NFSERR_FBIG = 27, NFSERR_NOSPC = 28,
NFSERR_ROFS = 30, NFSERR_NAMETOOLONG = 63, NFSERR_NOTEMPTY = 66, NFSERR_DQUOT =
69,
NFSERR_STALE = 70, NFSERR_WFLUSH = 99, NFSERR_COMM = 200 }

The "nfs_stat" type is returned with every NFS procedure results.
• enum rpc_stat_t {

RPC_OK = 0, RPCERR_NOMEM = 1, RPCERR_NOBUF = 2, RPCERR_COMM = 3,
RPCERR_NOSUP = 4 }

The "rpc_stat" type is returned when an asynchronous response is expected.
• enum ftype_t { ,

NFREG = 1, NFDIR = 2, NFBLK = 3, NFCHR = 4,
NFLNK = 5 }

The enumeration "ftype" gives the type of a file.

Generated on Thu Aug 1 2013 15:54:58 for Network File System (NFS) library by Doxygen

4.1 nfs.h File Reference 6

Functions

• enum rpc_stat nfs_init (const struct ip_addr ∗server)

Initialises the NFS subsystem.

• void nfs_timeout (void)

Handles packet loss and retransmission.

• enum rpc_stat nfs_mount (const char ∗dir, fhandle_t ∗pfh)

A synchronous function used to mount a file system over the network.

• enum rpc_stat nfs_print_exports (void)

Synchronous function used to print the directories exported by the server.

• enum rpc_stat nfs_getattr (const fhandle_t ∗fh, nfs_getattr_cb_t callback, uintptr_t token)

An asynchronous function used for retrieving the attributes of a file.

• enum rpc_stat nfs_lookup (const fhandle_t ∗pfh, const char ∗name, nfs_lookup_cb_t callback, uintptr_t to-
ken)

Asynchronous function used for retrieving an NFS file handle (fhandle_t) of a file located on the server.

• enum rpc_stat nfs_create (const fhandle_t ∗pfh, const char ∗name, const sattr_t ∗sattr, nfs_create_cb_t
callback, uintptr_t token)

An asynchronous function used for creating a new file on the NFS file server.

• enum rpc_stat nfs_remove (const fhandle_t ∗pfh, const char ∗name, nfs_remove_cb_t callback, uintptr_t
token)

An asynchronous function used for removing an existing file from the NFS file server.

• enum rpc_stat nfs_readdir (const fhandle_t ∗pfh, nfscookie_t cookie, nfs_readdir_cb_t callback, uintptr_t
token)

An asynchronous function used for reading the names of the files that are stored within the given directory.

• enum rpc_stat nfs_read (const fhandle_t ∗fh, int offset, int count, nfs_read_cb_t callback, uintptr_t token)

An asynchronous function used for reading data from a file.

• enum rpc_stat nfs_write (const fhandle_t ∗fh, int offset, int count, const void ∗data, nfs_write_cb_t callback,
uintptr_t token)

Asynchronous function used for writing data to a file.

• int nfs_test (char ∗mnt)

Tests the NFS system using the provided path as a scratch directory The tests will not begin unless the scratch
directory is empty but will clean up this directory if tests complete successfully.

4.1.1 Detailed Description

Network File System (NFS) client.

Date

Sun Jul 7 21:03:06 2013

This library implements a wrapper around the NFS version 2 RPC specification. The application is provided with
calls to mount a file system on a remote host and manipulate the files contained within.

The UDP protocol stack provided by the LWIP library is used for all network traffic. Reliable transport is assured
through unique transaction IDs (XIDs) and selective retransmission. Transactions that are sent to the server are
held in a local transaction list until a response is received. Periodic calls to nfs_timeout will trigger retransmissions
as necessary.

This library requires that the server be hosting the UDP time protocol. The time of day is used to encourage the
generation of unique transaction IDs. NFS and the associated services of mountd and portmapper must also be
hosted by the server.

Besides the initialisation process, all communication is asynchronous. It is the combined responsibility of LWIP
and the application to monitor and process network traffic whilst waiting for a response to an NFS transaction.
When the response arrives, the registered callback for the transaction will be called to complete the transaction.

Generated on Thu Aug 1 2013 15:54:58 for Network File System (NFS) library by Doxygen

4.1 nfs.h File Reference 7

Data provided to the call back functions are available only during the execution of the call back function. It is the
applications responsibility to copy this data to an alternate location if this data is required beyond the scope of the
callback.

This NFS client library will authenticate using UNIX_AUTH credentials. All transactions are will originate from the
"root" user. For this reason, it is recommended that the server does not export the file system with the "no_root_-
squash" flag. The "all_squash" flag should be used with anonuid and anongid optionally set as required.

4.1.2 Typedef Documentation

4.1.2.1 typedef void(∗ nfs getattr cb t)(uintptr t token, enum nfs stat status, fattr_t ∗fattr)

A call back function provided by the caller of nfs_getattr, executed once a response is received.

Parameters
in token The unmodified token provided to the nfs_getattr call.
in status The NFS call status.
in fattr If status is NFS_OK, fattr will contain the attributes of the file in question. The

contents of "fattr" will be invalid once this call back returns. It is the applications
responsibility to copy this data to a more permanent location if it is required
after this call back completes.

4.1.2.2 typedef void(∗ nfs lookup cb t)(uintptr t token, enum nfs stat status, fhandle_t ∗fh, fattr_t ∗fattr)

A call back function provided by the caller of nfs_lookup, executed once a response is received.

Parameters
in token The unmodified token provided to the nfs_lookup call.
in status The NFS call status.
in fh If status is NFS_OK, fh will contain a handle to the file in question. The contents

of "fh" will be invalid once this call back returns. It is the applications respon-
sibility to copy this data to a more permanent location if it is required after this
call back completes.

in fattr If status is NFS_OK, fattr will contain the attributes of the file in question. The
contents of "fattr" will be invalid once this call back returns. It is the applications
responsibility to copy this data to a more permanent location if it is required
after this call back completes.

4.1.2.3 typedef void(∗ nfs create cb t)(uintptr t token, enum nfs stat status, fhandle_t ∗fh, fattr_t ∗fattr)

A call back function provided by the caller of nfs_create, executed once a response is received.

Parameters
in token The unmodified token provided to the nfs_create call.
in status The NFS call status.
in fh If status is NFS_OK, fh will contain a handle to the file created. The contents of

"fh" will be invalid once this call back returns. It is the applications responsibility
to copy this data to a more permanent location if it is required after this call back
completes.

in fattr If status is NFS_OK, fattr will contain the attributes of the file created. The
contents of "fattr" will be invalid once this call back returns. It is the applications
responsibility to copy this data to a more permanent location if it is required
after this call back completes.

Generated on Thu Aug 1 2013 15:54:58 for Network File System (NFS) library by Doxygen

4.1 nfs.h File Reference 8

4.1.2.4 typedef void(∗ nfs remove cb t)(uintptr t token, enum nfs stat status)

A call back function provided by the caller of nfs_remove, executed once a response is received.

Parameters
in token The unmodified token provided to the nfs_remove call.
in status The NFS call status.

4.1.2.5 typedef void(∗ nfs readdir cb t)(uintptr t token, enum nfs stat status, int num files, char ∗file names[], nfscookie_t
nfscookie)

A call back function provided by the caller of nfs_readdir, executed once a response is received.

Parameters
in token The unmodified token provided to the nfs_readdir call.
in status The NFS call status.
in num_files The number of file names read.
in file_names An array of NULL terminated file names that were read from the directory in

question. The contents of "file_names" will be invalid once this call back re-
turns. It is the applications responsibility to copy this data to a more permanent
location if it is required after this call back completes.

in nfscookie A cookie to be used for subsequent calls to nfs_readdir in order to read the
remaining file names from the directory The value of nfscookie will be given as
0 when there are no more file entries to read.

4.1.2.6 typedef void(∗ nfs read cb t)(uintptr t token, enum nfs stat status, fattr_t ∗fattr, int count, void ∗data)

A call back function provided by the caller of nfs_read, executed once a response is received.

Parameters
in token The unmodified token provided to the nfs_read call.
in status The NFS call status.
in fattr If status is NFS_OK, fattr will contain the attributes. of the file that was read

from. The contents of "fattr" will be invalid once this call back returns. It is the
applications responsibility to copy this data to a more permanent location if it is
required after this call back completes.

in count If status is NFS_OK, provides the number of bytes that were read from the file.
in data The memory address of the "count" bytes that were read from the file. The

contents of "data" will be invalid once this call back returns. It is the applications
responsibility to copy this data to a more permanent location if it is required after
this call back completes.

4.1.2.7 typedef void(∗ nfs write cb t)(uintptr t token, enum nfs stat status, fattr_t ∗fattr, int count)

A call back function provided by the caller of nfs_write, executed once a response is received.

Parameters
in token The unmodified token provided to the nfs_write call.
in status The NFS call status.
in fattr If status is NFS_OK, fattr will contain the new attributes of the file that was

written. The contents of "fattr" will be invalid once this call back returns. It is the
applications responsibility to copy this data to a more permanent location if it is
required after this call back completes.

in count If status is NFS_OK, provides the number of bytes that were written to the file.

Generated on Thu Aug 1 2013 15:54:58 for Network File System (NFS) library by Doxygen

4.1 nfs.h File Reference 9

4.1.3 Enumeration Type Documentation

4.1.3.1 enum nfs_stat_t

The "nfs_stat" type is returned with every NFS procedure results.

A value of NFS_OK indicates that the call completed successfully and the results are valid. The other values indicate
some kind of error occurred on the server side during the servicing of the procedure. The error values are derived
from UNIX error numbers.

Enumerator:

NFS_OK The call completed successfully and the results are valid.

NFSERR_PERM Not owner. The caller does not have correct ownership to perform the requested operation.

NFSERR_NOENT No such file or directory. The file or directory specified does not exist.

NFSERR_IO Some sort of hard error occurred when the operation was in progress. This could be a disk error,
for example.

NFSERR_NXIO No such device or address.

NFSERR_ACCES Permission denied. The caller does not have the correct permission to perform the re-
quested operation.

NFSERR_EXIST File exists. The file specified already exists.

NFSERR_NODEV No such device.

NFSERR_NOTDIR Not a directory. The caller specified a non-directory in a directory operation.

NFSERR_ISDIR Is a directory. The caller specified a directory in a non-directory operation.

NFSERR_FBIG File too large. The operation caused a file to grow beyond the servers limit.

NFSERR_NOSPC No space left on device. The operation caused the servers file system to reach its limit.

NFSERR_ROFS Read-only file system. Write attempted on a read-only file system.

NFSERR_NAMETOOLONG File name too long. The file name in an operation was too long.

NFSERR_NOTEMPTY Directory not empty. Attempted to remove a directory that was not empty.

NFSERR_DQUOT Disk quota exceeded. The clients disk quota on the server has been exceeded.

NFSERR_STALE The "fhandle" given in the arguments was invalid. That is, the file referred to by that file
handle no longer exists, or access to it has been revoked.

NFSERR_WFLUSH The servers write cache used in the "WRITECACHE" call got flushed to disk.

NFSERR_COMM A communication error occurred at the RPC layer.

4.1.3.2 enum rpc_stat_t

The "rpc_stat" type is returned when an asynchronous response is expected.

A value of RPC_OK indicated that the transaction was successfully sent. Note that this does not always mean that
the transaction was successfully delivered.

Enumerator:

RPC_OK The call completed successfully.

RPCERR_NOMEM Out of memory.

RPCERR_NOBUF No network buffers available for communication.

RPCERR_COMM Communication error in send phase.

RPCERR_NOSUP The host rejected the request.

Generated on Thu Aug 1 2013 15:54:58 for Network File System (NFS) library by Doxygen

4.1 nfs.h File Reference 10

4.1.3.3 enum ftype_t

The enumeration "ftype" gives the type of a file.

Enumerator:

NFREG indicates a non-file.

NFDIR a regular file.

NFBLK a directory.

NFCHR a block-special device.

NFLNK a character-special device.

4.1.4 Function Documentation

4.1.4.1 enum rpc stat nfs init (const struct ip addr ∗ server)

Initialises the NFS subsystem.

This function should be called once at startup with the address of your NFS server. The UDP time protocol will be
used to obtain a seed for transaction ID numbers.

Parameters
in server The IP address of the NFS server that we should connect to

Returns

RPC_OK if the NFS subsystem was successfully initialised. Otherwise an appropriate error code will be re-
turned.

4.1.4.2 void nfs timeout (void)

Handles packet loss and retransmission.

Since this NFS library runs over the unreliable UDP protocol, it is possible that packets may be dropped. To allow N-
FS to retransmit packets that might have been dropped you must arrange for nfs_timeout to be called every 100ms.
This could be achieved by using a timer.

4.1.4.3 enum rpc stat nfs mount (const char ∗ dir, fhandle_t ∗ pfh)

A synchronous function used to mount a file system over the network.

This function will mount a file system and return a cookie to it in pfh. The returned cookie should be used on
subsequent NFS transactions.

Parameters
in dir The path that NFS should mount.
out pfh The returned file handle if the call was successful.

Returns

RPC_OK if the call was successful and pfh was updated. Otherwise, an appropriate error code will be returned.

4.1.4.4 enum rpc stat nfs print exports (void)

Synchronous function used to print the directories exported by the server.

This function is primarily used for the purpose of debugging.

Generated on Thu Aug 1 2013 15:54:58 for Network File System (NFS) library by Doxygen

4.1 nfs.h File Reference 11

Returns

RPC_OK if the call was successful and the export list was printed. Otherwise, an appropriate error code is
returned.

4.1.4.5 enum rpc stat nfs getattr (const fhandle_t ∗ fh, nfs_getattr_cb_t callback, uintptr t token)

An asynchronous function used for retrieving the attributes of a file.

This function is the equivalent of the UNIX "stat" function. It will find the current attributes on a given file handle.
The attributes are passed back through the provided callback function (nfs_getattr_cb_t) with the provided token
passed, unmodified, as an argument.

Parameters
in fh An NFS handle to the file in question.
in callback An nfs_getattr_cb_t callback function to call once a response arrives.
in token A token to pass, unmodified, to the callback function.

Returns

RPC_OK if the request was successfully sent. Otherwise an appropriate error code will be returned. "callback"
will be called once the response to this request has been received.

4.1.4.6 enum rpc stat nfs lookup (const fhandle_t ∗ pfh, const char ∗ name, nfs_lookup_cb_t callback, uintptr t token)

Asynchronous function used for retrieving an NFS file handle (fhandle_t) of a file located on the server.

Before you are able to complete any operation on a file you must obtain a handle to it. This function will find
a file named "name" in the specified directory. The directory is given in the form of a handle which may have
been provided by nfs_mount. When the transaction has completed, the provided callback (nfs_lookup_cb_t) will be
executed with the provided token passed, unmodified, as an argument. as an argument

Parameters
in pfh An NFS file handle (fhandle_t) to the directory that contains the requested file.
in name The NULL terminated file name to look up.
in callback An nfs_lookup_cb_t callback function to call once a response arrives.
in token A token to pass, unmodified, to the callback function.

Returns

RPC_OK if the request was successfully sent. Otherwise an appropriate error code will be returned. "callback"
will be called once the response to this request has been received.

4.1.4.7 enum rpc stat nfs create (const fhandle_t ∗ pfh, const char ∗ name, const sattr_t ∗ sattr, nfs_create_cb_t
callback, uintptr t token)

An asynchronous function used for creating a new file on the NFS file server.

This function is used to create a new file named "name" with the attributes "sattr". On completion, the provided
callback (nfs_create_cb_t) will be executed with "token" passed, unmodified, as an argument.

Parameters
in pfh An NFS file handle (fhandle_t) to the directory that should contain the newly

created file.
in name The NULL terminated name of the file to create.
in sattr The attributes which the file should posses after creation.
in callback An nfs_create_cb_t callback function to call once a response arrives.
in token A token to pass, unmodified, to the callback function.

Generated on Thu Aug 1 2013 15:54:58 for Network File System (NFS) library by Doxygen

4.1 nfs.h File Reference 12

Returns

RPC_OK if the request was successfully sent. Otherwise an appropriate error code will be returned. "callback"
will be called once the response to this request has been received.

4.1.4.8 enum rpc stat nfs remove (const fhandle_t ∗ pfh, const char ∗ name, nfs_remove_cb_t callback, uintptr t token
)

An asynchronous function used for removing an existing file from the NFS file server.

This function will remove a file named "name" from the provided directory. The directory takes the form of a handle
that may be acquired through nfs_mount or nfs_lookup. When the transaction has completed, the provided callback
function (nfs_remove_cb_t) will be executed with "token" passed, unmodified, as an argument.

Parameters
in pfh An NFS file handle (fhandle_t) to the directory that contains the file to remove.
in name The name of the file to remove.
in callback An nfs_remove_cb_t callback function to call once a response arrives.
in token A token to pass, unmodified, to the callback function.

Returns

RPC_OK if the request was successfully sent. Otherwise an appropriate error code will be returned. "callback"
will be called once the response to this request has been received.

4.1.4.9 enum rpc stat nfs readdir (const fhandle_t ∗ pfh, nfscookie_t cookie, nfs_readdir_cb_t callback, uintptr t
token)

An asynchronous function used for reading the names of the files that are stored within the given directory.

This function reads the contents, that is the filenames, from the directory provided by "pfh". When the transaction
is complete, the provided callback function (nfs_readdir_cb_t) will be executed with the unmodified "token" passed
as an argument. The number of file names that this transaction can return is of course limited by the Maximum
Transmission Unit (MTU) of the network link. To compensate for this limitation, a "cookie" is passed as an argument
to the transaction. The cookie should be initially be provided with the value zero. The callback function will be
provided with a cookie value to use if subsequent calls are required.

Parameters
in pfh An NFS handle to the directory to read.
in cookie An NFS cookie to be used in the case of a continuation. When this is the first

call to this function, "cookie" should be provided as 0. Otherwise, the submitted
value should be the value that was returned from the previous call.

in callback An nfs_readdir_cb_t callback function to call once a response arrives.
in token A token to pass, unmodified, to the callback function.

Returns

RPC_OK if the request was successfully sent. Otherwise an appropriate error code will be returned. "callback"
will be called once the response to this request has been received.

4.1.4.10 enum rpc stat nfs read (const fhandle_t ∗ fh, int offset, int count, nfs_read_cb_t callback, uintptr t token)

An asynchronous function used for reading data from a file.

nfs_read will start at "offset" bytes within the file provided as "fh" and read a maximum of "count" bytes of data.
When the transaction has completed, the provided callback function (nfs_read_cb_t) will be called with "token"
passed, unmodified, as an argument. The file data and the actual number of bytes read is passed to the callback

Generated on Thu Aug 1 2013 15:54:58 for Network File System (NFS) library by Doxygen

4.1 nfs.h File Reference 13

but the data will only be available for the scope of the callback. It is the applications responsibility to ensure that any
data that is required outside of this scope is moved to a more permanent location before returning from the callback.

Parameters
in fh An NFS file handle (fhandle_t) to the file which should be read from.
in offset The position, in bytes, at which to begin reading data.
in count The number of bytes to read from the file.
in callback An nfs_read_cb_t callback function to call once a response arrives.
in token A token to pass, unmodified, to the callback function.

Returns

RPC_OK if the request was successfully sent. Otherwise an appropriate error code will be returned. "callback"
will be called once the response to this request has been received.

4.1.4.11 enum rpc stat nfs write (const fhandle_t ∗ fh, int offset, int count, const void ∗ data, nfs_write_cb_t callback,
uintptr t token)

Asynchronous function used for writing data to a file.

nfs_write will start at "offset" bytes within the file provided as "fh" and write a maximum of "count" bytes of the
provided "data". When the transaction has completed, the provided callback function (nfs_write_cb_t) will be called
with "token" passed, unmodified, as an argument. The callback will also be provided with the actual number of bytes
written.

Parameters
in fh An NFS file handle (fhandle_t) to the file which should be written to.
in offset The position, in bytes, at which to begin writing data.
in count The number of bytes to write to the file.
in data The start address of the data that is to be written.
in callback An nfs_write_cb_t callback function to call once a response arrives.
in token A token to pass, unmodified, to the callback function.

Returns

RPC_OK if the request was successfully sent. Otherwise an appropriate error code will be returned. "callback"
will be called once the response to this request has been received.

4.1.4.12 int nfs test (char ∗ mnt)

Tests the NFS system using the provided path as a scratch directory The tests will not begin unless the scratch
directory is empty but will clean up this directory if tests complete successfully.

Parameters
mnt The mount point to use when generating test files.

Returns

0 if all tests completed successfully. Otherwise, returns the number of errors recorded.

Generated on Thu Aug 1 2013 15:54:58 for Network File System (NFS) library by Doxygen

Index

ctime
fattr_t, 2

fattr_t, 1
ctime, 2
mode, 2
nlink, 2

fhandle_t, 2
ftype_t

nfs.h, 9

mode
fattr_t, 2
sattr_t, 3

NFBLK
nfs.h, 9

NFCHR
nfs.h, 9

NFDIR
nfs.h, 9

NFLNK
nfs.h, 9

NFREG
nfs.h, 9

NFS_OK
nfs.h, 8

NFSERR_ACCES
nfs.h, 8

NFSERR_COMM
nfs.h, 9

NFSERR_DQUOT
nfs.h, 9

NFSERR_EXIST
nfs.h, 8

NFSERR_FBIG
nfs.h, 8

NFSERR_IO
nfs.h, 8

NFSERR_ISDIR
nfs.h, 8

NFSERR_NAMETOOLONG
nfs.h, 8

NFSERR_NODEV
nfs.h, 8

NFSERR_NOENT
nfs.h, 8

NFSERR_NOSPC
nfs.h, 8

NFSERR_NOTDIR
nfs.h, 8

NFSERR_NOTEMPTY
nfs.h, 8

NFSERR_NXIO
nfs.h, 8

NFSERR_PERM

nfs.h, 8
NFSERR_ROFS

nfs.h, 8
NFSERR_STALE

nfs.h, 9
NFSERR_WFLUSH

nfs.h, 9
nfs.h

NFBLK, 9
NFCHR, 9
NFDIR, 9
NFLNK, 9
NFREG, 9
NFS_OK, 8
NFSERR_ACCES, 8
NFSERR_COMM, 9
NFSERR_DQUOT, 9
NFSERR_EXIST, 8
NFSERR_FBIG, 8
NFSERR_IO, 8
NFSERR_ISDIR, 8
NFSERR_NAMETOOLONG, 8
NFSERR_NODEV, 8
NFSERR_NOENT, 8
NFSERR_NOSPC, 8
NFSERR_NOTDIR, 8
NFSERR_NOTEMPTY, 8
NFSERR_NXIO, 8
NFSERR_PERM, 8
NFSERR_ROFS, 8
NFSERR_STALE, 9
NFSERR_WFLUSH, 9
RPC_OK, 9
RPCERR_COMM, 9
RPCERR_NOBUF, 9
RPCERR_NOMEM, 9
RPCERR_NOSUP, 9

nfs.h, 4
ftype_t, 9
nfs_create, 11
nfs_create_cb_t, 7
nfs_getattr, 10
nfs_getattr_cb_t, 6
nfs_init, 9
nfs_lookup, 10
nfs_lookup_cb_t, 6
nfs_mount, 10
nfs_print_exports, 10
nfs_read, 12
nfs_read_cb_t, 7
nfs_readdir, 11
nfs_readdir_cb_t, 7
nfs_remove, 11
nfs_remove_cb_t, 7
nfs_stat_t, 8

INDEX 15

nfs_test, 13
nfs_timeout, 9
nfs_write, 12
nfs_write_cb_t, 8
rpc_stat_t, 9

nfs_create
nfs.h, 11

nfs_create_cb_t
nfs.h, 7

nfs_getattr
nfs.h, 10

nfs_getattr_cb_t
nfs.h, 6

nfs_init
nfs.h, 9

nfs_lookup
nfs.h, 10

nfs_lookup_cb_t
nfs.h, 6

nfs_mount
nfs.h, 10

nfs_print_exports
nfs.h, 10

nfs_read
nfs.h, 12

nfs_read_cb_t
nfs.h, 7

nfs_readdir
nfs.h, 11

nfs_readdir_cb_t
nfs.h, 7

nfs_remove
nfs.h, 11

nfs_remove_cb_t
nfs.h, 7

nfs_stat_t
nfs.h, 8

nfs_test
nfs.h, 13

nfs_timeout
nfs.h, 9

nfs_write
nfs.h, 12

nfs_write_cb_t
nfs.h, 8

nlink
fattr_t, 2

RPC_OK
nfs.h, 9

RPCERR_COMM
nfs.h, 9

RPCERR_NOBUF
nfs.h, 9

RPCERR_NOMEM
nfs.h, 9

RPCERR_NOSUP
nfs.h, 9

rpc_stat_t

nfs.h, 9

sattr_t, 3
mode, 3

timeval_t, 3

Generated on Thu Aug 1 2013 15:54:58 for Network File System (NFS) library by Doxygen

	Data Structure Index
	Data Structures

	File Index
	File List

	Data Structure Documentation
	fattr_t Struct Reference
	Detailed Description
	Field Documentation

	fhandle_t Struct Reference
	Detailed Description

	sattr_t Struct Reference
	Detailed Description
	Field Documentation

	timeval_t Struct Reference
	Detailed Description

	File Documentation
	nfs.h File Reference
	Detailed Description
	Typedef Documentation
	Enumeration Type Documentation
	Function Documentation

