COMP9242 Advanced OS

T2/2019 WO01: Introduction to sel4
AUSTRALIA @GernotHeiser

Never Stand Still Engineering Computer Science and Engineering

Copyright Notice

These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
— to share—to copy, distribute and transmit the work
— to remix—to adapt the work

« under the following conditions:

— Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work)
as follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

2 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

IPC Message Format

gRaw data J

T S Caps (on Send) CSpace reference for receiving
ag Message Badges (on Receive) | caps (Receive only)

Y
Caps # Msg
Label
- unw/Lapped Ce}ps Length
Meaning defined Bitmap indicating
by IPC protocol caps which had Caps sent
(Kernel or user) badges or received

extracted

Note: Don'’t need to deal with this explicitly for project

3 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

UNSW

i 2 A USTRALILA

“ Client-Server IPC Example

Message
length is 1

Load into
tag reqgister

Set message

Allocate slot & retype to EP

Server

Implicit use

“ Server Saving Reply Cap

Server

ut t *ut = ut alloc(sel4 EndpointBits, &cspace);
selLd CPtr ep = cspace alloc slot (&cspace);
err = cspace untyped retype (&cspace, ut->cap, ep,

selL4 EndpointObject, selL4 EndpointBits);
selL4d CPtr badged ep = cspace alloc slot (&cspace);
cspace mint (&cspace, badged ep, &cspace, ep, selL4 AllRights,
Oxff);

selL4d Word badge; nge reply cap
seL4 MessageInfo t msg = selL4 Recv(cptr, &badge); in CSpace

selL4 MessagelInfo t reply = selL4 MessageInfo new (0,

% Derived Capabilities

« Badging is an example of capability derivation
 The Mint operation creates a new, less powerful cap
— Can add a badge
o Mint w) 4)_.dwv
— Can strip access rights
o eg WR—=R/O O
« Granting transfers caps over an Endpoint ©
— Delivers copy of sender’s cap(s) to receiver
o reply caps are a special case of this
— Sender needs Endpoint cap with Grant permission
— Receiver needs Endpoint cap with Write permission
o else Write permission is stripped from new cap
* Relyping
— Fundamental operation of seL4 memory management
— Details later...

Remember,
caps are
kernel objects!

6 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

C w9 sel4 System Calls

* Notionally, seL4 has 6 syscalls:
— Yield(): invokes scheduler

Will change
soon

o ©

o only syscall which doesn’t require a cap!’
— Send(), Recv() and 3 variants/combinations thereof
o Signal() is actually not a separate syscall but same as Send()

— This is why | earlier said “approximately 3 syscalls” ©

« All other kernel operations are invoked by “messaging”
— Invoking Cal1() on an object cap
o Logically sending a message to the kernel
— Each object has a set of kernel protocols
o operations encoded in message tag
o parameters passed in message words
— Mostly hidden behind “syscall” wrappers

7 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

seL4 Memory-Management Principles

« Memory (and caps referring to it) is typed:
— Untyped memory:
o unused, free to Retype into something else
— Frames:
o (can be) mapped to address spaces, no kernel semantics
— Rest: TCBs, address spaces, CNodes, EPs
o used for specific kernel data structures
« After startup, kernel never allocates memory!
— All remaining memory made Untyped, handed to initial address space
« Space for kernel objects must be explicitly provided to kernel
— Ensures strong resource isolation
« Extremely powerful tool for shooting oneself in the foot!
— We hide much of this behind the cspace and ut allocation libraries

8 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

% Capability Derivation

e Copy,Mint, Mutate, Revoke are invoked on CNodes

Mint(% , dest, src, rights,V)

— CNode cap must provide appropriate rights
 Copy takes a cap for destination

— Allows copying of caps between Cspaces
— Alternative to granting via IPC (if you have privilege to access Cspace!)

9 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

cspace and ut libraries

Manages
<4KiB
Untyped

11

COMP9242 T2/2019 W01

Wraps messy
Cspace tree &
Extend for slot management

own needs!

© 2017 Gernot Heiser. Distributed under CC Attribution License

% seL4 Memory Management Approach

Resources fully
delegated, allows
autonomous
operation

Strong isolation,
Addr No shared kernel
Space resources

Addr Addr Addr

RAM

Space Space | | Space

Resource Manager Resource Manager

RM RM
Data Data
Global Resource Manager
Kernel | GRM
Data Data

12 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

E UNSW

i 2 A USTRALILA

Memory Management Mechanics: Retype
Q=

Retype (Untyped, 27)

OOQ

Actually more
general
(incremental

retype)

Cw
Retype (Frame, 22) Retype (Untyped,
21)
rLw I, ,
Cwe G Coe G Cwe Cwe

Retype (TCB, 2")

Retype (CNode, 2M, 2")
Mint (r)

Revoke ()

A seL4 Address Spaces (VSpaces)

* Very thin wrapper around hardware page tables

— Architecture-dependent
— ARM & x86 similar (32-bit 2-level, 64-bit 4-5 level)

 ARM 64-bit ISA (AARCHG4): Z
— page global directory (PGD)
— page upper directory (PUD) C
_ page directory (PD) ~ \ﬂ
— page table (PT)

Page Map(PT)

« AVSpace is represented ?_
by a PGD obiject:

— Creating a PGD (by Retype)

creates the VSpace o

— Deleting the PGD deletes
the VSpace

"

PageTable Map(PD)

14 comP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

A Address Space Operations

cap to top-level
age table

Poor AP
choicel!

Each mapping has:
« virtual address, phys address, address_space and frame_cap
« address_space struct identifies the level 1 page directory cap

« you need to keep track of (frame cap, PD cap, v_adr,
p adr)!

A Multiple Frame Mappings: Shared Memory

Each mapping requires its own frame cap even for the same frame

A Memory Management Caveats

 The UT table handles allocation for you
« Asimple list-based allocator, you need to understand how it works:

— Freeing an object of size n: you can allocate new objects <= size n

— Freeing 2 objects of size n does not mean that you can allocate an
object of size 2n.

Object Size (B), Alignment (B),
AARCHG64 AARCH64

Frame 212 212

PT/PD/PUD/PGD 212 212

Endpoint 24 24

Notification 25 25 Implementation

Cslot 2 4 02 cholee

Cnode > 212 212

TCB 211 211

17 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

A Memory-Management Caveats

« Objects are allocated by Retype() of Untyped memory
« The kernel will not allow you to overlap objects- o

« ut_alloc and ut_free() manage user-level’'s view of
Untyped allocation.
— Major pain if kernel and user’s view diverge
— TIP: Keep objects address and CPtr together.

But debugging
nightmare if

you try!!

/ \ Be careful with allocations!
. « Don’t try to allocate all of physical
Untyped Memory 2~ B memory as frames, you need more
memory for TCBs, endpoints etc.

« We provide a frametable that
— ¢ ¢ ‘ integrates with ut_alloc to manage
- 4 the 4KiB untyped size.

\

8 frames * You can modify as required

18 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

2 Threads

 Theads are represented by TCB objects

« They have a number of attributes (recorded in TCB):
— VSpace: a virtual address space
o page global directory (PGD) reference
o multiple threads can belong to the same VSpace
— CSpace: capability storage
o CNode reference (CSpace root) plus a few other bits
— Fault endpoint
o Kernel sends message to this EP if the thread throws an exception
— IPC buffer (backing storage for virtual registers)
— stack pointer (SP), instruction pointer (IP), user-level registers
— Scheduling priority and maximum controlled priority (MCP)
— Time slice length (presently fixed)o

 These must be explicitly managed
— ... we provide an example you can modify

O
O Yes, this is

19 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

Threads

Creating a thread

Obtain a TCB object
Set attributes: Configure()
— associate with VSpace, CSpace, fault EP, prio, define IPC buffer
Set scheduling parameters
— priority (maybe MCP)
Set SP, IP (and optionally other registers): WriteRegisters()

— this results in a completely initialised thread
— will be able to run if resume target is setin call, else still inactive

Activated (made schedulable): Resume()

20 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

Creating a Thread in Own AS and Cspace

If you use threads, write a library to create and destroy them.

y Threads and Stacks

« Stacks are completely user-managed, kernel doesn'’t care!

— Kernel only preserves SP, IP on context switch
» Stack location, allocation, size must be managed by userland
« Beware of stack overflow!

— Easy to grow stack into other data

o Pain to debug!
— Take special care with automatic arrays!

Stack 1 | Stack 2 |
h

£ 0 |
int
buf[100007;

}

22 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

Creating a Thread in New AS and CSpace

err = sel4 TCB Configure(tcb, fault ep, , selL4 NilData,
, selL4NilDbata,
PROCESS IPC BUFFER, ipc buffer cap);

2 selL4 Scheduling

Better model in
*“MCS” branch —
merge soon

« Present seL4 scheduling model is fairly naive
« 256 hard priorities (0—255) .00
— Priorities are strictly observed
— The scheduler will always pick the highest-prio runnable thread
— Round-robin scheduling within prio level
« Aim is real-time performance, not fairness
— Kernel itself will never change the prio of a thread
— Achieving fairness (if desired) is the job of user-level servers

0 r:%:prlio:é‘]:r 255

24 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

2 Exception Handling

« Athread can trigger different kinds of exceptions:
— invalid syscall
o may require instruction emulation or result from virtualization
— capability fault
o cap lookup failed or operation is invalid on cap
— page fault
o attempt to access unmapped memory
o may have to grow stack, grow heap, load dynamic library, ...
— architecture-defined exception
o divide by zero, unaligned access, ...

» Results in kernel sending message to fault endpoint

— exception protocol defines state info that is sent in message
* Replying to this message restarts the thread

— endless loop if you don’t remove the cause for the fault first!

25 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

% Interrupt Handling

IRQ triggered.
Kernel fakes signal
on Notification

Handler performs
appropriate action.

Interrupt
handler
? (driver)

AE

Handler waits
on Notification

{ Kernel ACKs IRQ}

26 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

Bl) AuUsSTRALIA

% Interrupt Management

« selL4 models IRQs as messages sent to a Notification
— Interrupt handler has Receive cap on that Naotification

« 2 special objects used for managing and acknowledging interrupts:
— Single IRQControl object
o single IRQControl cap provided by kernel to initial VSpace
o only purpose is to create IRQHandler caps
— Per-IRQ-source IRQHandler object
o Iinterrupt association and dissociation
o interrupt acknowledgment
o edge-triggered flag

= IRQControl

Cwm® Get(usb)

%« ;
IRQHandler

27 COMP9242 T2/2019 W01

[% Interrupt Handling

« |RQHandler cap allows driver to bind Notification to interrupt

« Afterwards:
— Notification is used to receive interrupt
— IRQHandler is used to acknowledge interrupt

IRQHandler

SetEndpoint(notification)

Wait(notification)

Ack(handler)

2 Device Drivers

* Insel4 (and all other L4 kernels) drivers are usermode processes

« Drivers do three things:
— Handle interrupts (already explained)
— Communicate with rest of OS (IPC + shared memory)
— Access device registers
« Device register access
— Devices are memory-mapped on ARM
— Have to find frame cap from bootinfo structure
— Map the appropriate page in the driver’s VSpace

device vaddr = sos map device (&cspace, 0xA0000000, BIT (selL4 PageBits));

*((void *) device vaddr= ..;

Magic device
register access

29 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

Project Platform: ODROID-C2

ODROID-C2 Board

-

~

seL4 DebugPutChar()

/

MO: serial over LAN

for userlevel apps

30 COMP9242 T2/2019 W01

Armlogic S905 SoC
Serial

ARMvS ARMvS Timer connector

Cortex-A53 Cortex-A53
Core Core Serial

Ethernet — Ethernet

ARMv8 ARMvS8 e
Cortex-A53 Cortex-A53

\\ Core Core Other.y

2 GiB Memory

© 2017 Gernot Heiser. Distributed under CC Attribution License

M6: Network File
System (NFS)

in the Real World (Courtesy Boeing, DARPA)

31 COMP9242 T2/2019 W01 © 2017 Gernot Heiser. Distributed under CC Attribution License

