
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2019 T2 Week 09b
Local OS Research
@GernotHeiser

© Gernot Heiser 2019 – CC Attribution License

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 3.0 License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

1 COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License

Quantifying Security Impact of
Operating-System Design

2 COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License

Quantifying OS-Design Security Impact
Approach:
• Examine all critical Linux CVEs (vulnerabilities & exploits database)

• For each establish how microkernel-based design would change impact

COMP9242 2019T2 W09b: Local OS Research3

• easy to exploit
• high impact
• no defence available
• confirmed

115 critical
Linux CVEs
to Nov’17

© Gernot Heiser 2019 – CC Attribution License

Hypothetical seL4-based OS

Operating system

Hardware

xyz

Process
ServerMemory

Server
File
Server NW

Stack
Device
Driver

Auth.
ServerName

ServerAcc.
Control

Functionality
comparable

to Linux

OS structured in isolated components, minimal
inter-component dependencies, least privilege

COMP9242 2019T2 W09b: Local OS Research4

© Gernot Heiser 2019 – CC Attribution License

Operating system

Hypothetical Security-Critical App

Hardware

xyz

Process
ServerMemory

Server
File
Server NW

Stack
Device
Driver

Auth.
ServerName

ServerAcc.
Control

Application

Operating system

Hardware

xyz

Process
Server

Memory
Server

File
Server IP

Stack

GPU

NIC
Driver

Auth.
ServerName

ServerAcc.
Control

Trusted
computing
base

App requires:
• IP networking
• File storage
• Display output

COMP9242 2019T2 W09b: Local OS Research5

© Gernot Heiser 2019 – CC Attribution License

Analysing CVEs

Hardware

xyz

Process
ServerMemory

Server
File
Server

microkernel

NW
Stack

Device
Driver

Auth.
ServerName

ServerAcc.
Control

Application

Operating system

Hardware

xyz

Process
Server

Memory
Server

File
Server IP

Stack

GPU

NIC
Driver

Auth.
ServerName

ServerAcc.
Control

Map compromised component
to hypothetical OS

Not in TCB:
Attack defeated

Example:
USB driver bug

COMP9242 2019T2 W09b: Local OS Research6

© Gernot Heiser 2019 – CC Attribution License

Analysing CVEs

Hardware

xyz

Process
ServerMemory

Server
File
Server

microkernel

NW
Stack

Device
Driver

Auth.
ServerName

ServerAcc.
Control

Application

Operating system

Hardware

xyz

Process
Server

Memory
Server

File
Server IP

Stack

GPU

NIC
Driver

Auth.
ServerName

ServerAcc.
Control

Map compromised component
to hypothetical OS

In microkernel:
Attack defeated
by verifiation

Example:
Bug in page-table
management

COMP9242 2019T2 W09b: Local OS Research7

© Gernot Heiser 2019 – CC Attribution License

Analysing CVEs

Hardware

xyz

Process
ServerMemory

Server
File
Server

microkernel

NW
Stack

Device
Driver

Auth.
ServerName

ServerAcc.
Control

Application

Operating system

Hardware

xyz

Process
Server

Memory
Server

File
Server IP

Stack

GPU

NIC
Driver

Auth.
ServerName

ServerAcc.
Control

Map compromised component
to hypothetical OS Only crash essential

service (DoS):
Strongly mitigated

Example:
File system
compromised

COMP9242 2019T2 W09b: Local OS Research8

© Gernot Heiser 2019 – CC Attribution License

Analysing CVEs

Hardware

xyz

Process
ServerMemory

Server
File
Server

microkernel

NW
Stack

Device
Driver

Auth.
ServerName

ServerAcc.
Control

Application

Operating system

Hardware

xyz

Process
Server

Memory
Server

File
Server IP

Stack

GPU

NIC
Driver

Auth.
ServerName

ServerAcc.
Control

Map compromised component
to hypothetical OS

No full compromise
but integrity or confi-
dentiality violation:
Weakly mitigated

Example:
GPU
compromised

COMP9242 2019T2 W09b: Local OS Research9

© Gernot Heiser 2019 – CC Attribution License

Analysing CVEs

Hardware

xyz

Process
ServerMemory

Server
File
Server

microkernel

NW
Stack

Device
Driver

Auth.
ServerName

ServerAcc.
Control

Application

Operating system

Hardware

xyz

Process
Server

Memory
Server

File
Server IP

Stack

GPU

NIC
Driver

Auth.
ServerName

ServerAcc.
Control

Map compromised component
to hypothetical OS

Full system
compromise:
No effect

Example:
Driver exploit hijacks
I2C bus, allowing
firmware reflush

COMP9242 2019T2 W09b: Local OS Research10

© Gernot Heiser 2019 – CC Attribution License 11

All Critical Linux CVEs to 2017

COMP9242 2019T2 W09b: Local OS Research

30%

11%

17%

38%

4%

In microkernel:
Attack defeated
by verification

Not in TCB:
Attack defeated

Only crash essential
service (availability):
Strongly mitigated

No full compromise,
but violates integrity
or confidentiality:
Weakly mitigated

Still full system
compromise:
No effect

• 41% eliminated
• 58% low severity
• 96% not critical

© Gernot Heiser 2019 – CC Attribution License

Summary
OS structure matters!

• Microkernels definitely improve security

• Monolithic OS design is fundamentally
flawed from security point of view

Use of a monolithic OS in
security- or safety-
critical scenarios is
professional malpractice!

COMP9242 2019T2 W09b: Local OS Research12

[Biggs et al., APSys’18]

© Gernot Heiser 2019 – CC Attribution License

Cogent

13 COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License

Beyond the Kernel

14 COMP9242 2019T2 W09b: Local OS Research

Control

Uncritical/
untrusted

Linux

AppsAppsApps

Device
driver

NW
stack

10 kLOC
11 py

100 kLOC?

5 kLOC?

1 kLOC?

File
system

10 kLOC?

Aim: Verified TCB at affordable cost!

© Gernot Heiser 2019 – CC Attribution License

Cogent: Code & Proof Co-Generation

15 |

• Restricted, purely functional
systems language

• Type- and memory safe, not
managed

• Turing incomplete
• File system case-studies:

BilbyFs, ext2, F2FS, VFAT

[O’Connor et al, ICFP’16;
Amani et al, ASPLOS’16]

Abstract Spec
Isabelle/HOL

Pr
oo

f
Pr

oo
f

ADTs (C)C

Cogent

Pr
oo

f

Auto-
matic

Manual,
one-off

Manual,
equational

Aim: Reduce cost of
verified systems code

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License

BilbyFS
functions

Effort Isabelle
LoP

Cogent
SLoC

Cost
$/SLoC

LoP/
SLOC

isync()
iget()
library

9.25
pm

13,000 1,350 150 10

sync()-
specific

3.75
pm

5,700 300 260 19

iget()-
specific

1 pm 1,800 200 100 9

seL4 12 py 180,000 8,700 C 350 20

Manual Proof Effort

16 |

BilbyFS
functions

Effort Isabelle
LoP

Cogent
SLoC

Cost
$/SLoC

isync()
iget()
library

9.25 pm 13,000 1,350 150

sync()-
specific

3.75 pm 5,700 300 260

iget()-
specific

1 pm 1,800 200 100

seL4 12 py 180,000 8,700 C 350

BilbyFS
functions

Effort Isabelle
LoP

Cogent
SLoC

Cost
$/SLoC

isync()/
iget()
library

9.25 pm 13,000 1,350 150

sync()-
specific

3.75 pm 5,700 300 260

iget()-
specific

1 pm 1,800 200 100

BilbyFS: 4,200 LoC Cogent

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License

Addressing Verification Cost

17 COMP9242 2019T2 W09b: Local OS Research

8 py

0 py

Executable
Spec

C

Pr
oo

f
Abstract

Spec

Pr
oo

f

Cogent

C

Pr
oo

f
Pr

oo
f?

Abstract
Spec

Work in progress:
• Language expressiveness

• Reduce boiler-plate code
• Network stacks

• Device drivers

Dependability-cost tradeoff:
• Reduced faults through safe language

• Property-based testing (QuickCheck)
• Model checking

• Full functional correctness proof

Spec
reuse!
Spec

reuse!

3 py

© Gernot Heiser 2019 – CC Attribution License

Time Protection

18 COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License

Refresh: Microarchitectural Timing Channels

19 COMP9242 2019T2 W09b: Local OS Research

Shared resources

High Low
Contention for shared hardware
resources affects execution speed,
leading to timing channels

© Gernot Heiser 2019 – CC Attribution License

OS Must Enforce Time Protection

High Low

Shared hardware

Preventing interference is core duty of the OS!
• Memory protection is well established
• Time protection is completely absent

COMP9242 2019T2 W09b: Local OS Research20

© Gernot Heiser 2019 – CC Attribution License

Time Protection: No Sharing of HW State

21 COMP9242 2019T2 W09b: Local OS Research

High Low

Cache

High Low

CacheFlush

Temporally
partition

Spatially
partition

High Low

Cache

What are the OS
mechanisms?

© Gernot Heiser 2019 – CC Attribution License 22 |

Spatial Partitioning: Cache Colouring

Initial process

RAM
I+D

Init
I+D

High

SD
I+D

Low

SD
I+D

Partitions
restricted to

coloured memory
System permanently
coloured

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 23 |

Spatial Partitioning: Cache Colouring

Cache

RAM

• Partitions get frame pools of disjoint colours
• seL4: userland supplies kernel memory
⇒ colouring userland colours kernel memory

High Low

TCB PT PTTCB

Shared kernel image

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 24 |

Channel Through Kernel Code

 300

 400

 500

 600

 700

 0 1 2 3

L
L

C
 m

is
se

s�
�� datafile using 1:2:3

0.000010

0.000100

0.001000

0.010000

0.100000

Raw
channel

Channel matrix: Conditional probability
of observing output signal (time) given
input signal (system-call number)

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 25 |

Colouring the Kernel

Global Resource Manager

RAM
I+D

Init
I+D

Resource Manager

RM
I+D

Resource Manager

RM
I+D

Each partition has
own kernel image

Kernel
clone!

I+DI+D

Remaining shared kernel data:
• Scheduler queue array & bitmap

• Few pointers to current thread state

Ensure deterministic
access!

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License

• Partitions get frame pools of disjoint colours
• seL4: userland supplies kernel memory
⇒ colouring userland colours kernel memory

26 |

Spatial Partitioning: Cache Colouring

Cache

RAM

High Low

TCB PT PTTCB

• Partitions get frame pools of disjoint colours
• seL4: userland supplies kernel memory
⇒ colouring userland colours kernel memory

• Per-partition kernel image to colour kernel

Remaining shared kernel data:
• Scheduler queue array & bitmap

• Few pointers to current thread state

Ensure deterministic
access!

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 27 |

Channel Through Kernel Code

 300

 400

 500

 600

 700

 0 1 2 3

L
L

C
 m

is
se

s�
�� datafile using 1:2:3

0.000010

0.000100

0.001000

0.010000

0.100000

 2220

 2240

 2260

 2280

 2300

 0 1 2 3

L
L

C
 m

is
se

s�
��

seL4 system call���

datafile using 1:2:3

0.000010

0.000100

0.001000

0.010000

0.100000

Raw
channel

Channel with
cloned kernel

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License

Must remove any
history dependence!

28 |

Temporal Partitioning: Flush on Switch

1.
2. Switch user context

3. Flush on-core state

4.

5.
6. Reprogram timer

7. return

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 29 |

D-Cache Channel

 4000
 4500
 5000
 5500
 6000
 6500

 0 10 20 30 40 50 60
O

u
tp

u
t
(c

yc
le

s)
Input (sets)

datafile using 1:2:3

 0.001

 0.01

 0.1

 7650
 7700
 7750
 7800
 7850
 7900

 0 10 20 30 40 50 60

O
u
tp

u
t
(c

yc
le

s)

Input (sets)

datafile using 1:2:3

 0.001

 0.01

Raw
channel

Channel with
flushing

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 30 |

Flush-Time Channel

 3.223x106
 3.224x106
 3.225x106
 3.226x106
 3.227x106

 0 200 400 600 800 1000O
ff

lin
e

 t
im

e
 (

cy
cl

e
s)

Input (sets)

datafile using 1:2:3

 0.001

 0.01Raw
channel

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License

Must remove any
history dependence!

31 |

Temporal Partitioning: Flush on Switch

1. T0 = current_time()
2. Switch user context

3. Flush on-core state

4. Touch all shared data needed for return

5. while (T0+WCET < current_time()) ;
6. Reprogram timer

7. return

Latency depends
on prior execution!

Time padding
to remove

dependency

Ensure
deterministic

execution

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 32 |

Flush-Time Channel

 3.223x106
 3.224x106
 3.225x106
 3.226x106
 3.227x106

 0 200 400 600 800 1000O
ff

lin
e

 t
im

e
 (

cy
cl

e
s)

Input (sets)

datafile using 1:2:3

 0.001

 0.01

 3.299x106
 3.2995x106

 3.3x106
 3.3005x106

 3.301x106
 3.3015x106

 3.302x106

 0 200 400 600 800 1000O
ff
lin

e
 t
im

e
 (

cy
cl

e
s)

Input (sets)

datafile using 1:2:3

 0.001

 0.01

 0.1

 1

Raw
channel

Channel with
deterministic

flushing

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 33

Performance Impact of Colouring

COMP9242 2019T2 W09b: Local OS Research

-1%

0%

1%

2%

3%

4%

5%

6%

7%

ba
rn

es

ch
ol
es

ky fft
fm

m lu

oc
ea

n

ra
di
os

ity
ra

di
x

ra
yt
ra

ce

w
at

er
ns

qu
ar

ed

w
at

er
sp

at
ia
l

M
EAN

S
lo

w
d
o
w

n

50% colours base
50% colour clone

Splash-2 benchmarks on Arm A9

Architecture x86 Arm

Mean slowdown 3.4% 1.1%

Arch seL4
clone

Linux
fork+exec

x86 79 µs 257 µs

Arm 608 µs 4,300 µs

• Overhead mostly low
• Not evaluated is cost of

not using super pages
[Ge et al., EuroSys’19]

© Gernot Heiser 2019 – CC Attribution License

A New HW/SW Contract

For all shared microarchitectural resources:

1. Resource must be spatially partitionable or flushable

2. Concurrently shared resources must be spatially partitioned
3. Resource accessed solely by virtual address

must be flushed and not concurrently accessed
4. Mechanisms must be sufficiently specified for OS to partition or reset

5. Mechanisms must be constant time, or of specified, bounded latency
6. Desirable: OS should know if resettable state is derived from data,

instructions, data addresses or instruction addresses

34 | COMP9242 2019T2 W09b: Local OS Research

Cannot share HW threads
across security domains!

aISA: augmented ISA

[Ge et al., APSys’18]

© Gernot Heiser 2019 – CC Attribution License

Can Time Protection Be Verified?
1. Correct treatment of spatially partitioned state:

• Need hardware model that identifies all such state (augmented ISA)
• To prove:

No two domains can access the same physical state

2. Correct flushing of time-shared state
• Not trivial: eg proving all cleanup code/data are forced into cache after flush

• Needs an actual cache model
• Even trickier: need to prove padding is correct

• … without explicitly reasoning about time!

Transforms timing channels
into storage channels!

COMP9242 2019T2 W09b: Local OS Research35

Functional property!

Functional property!

© Gernot Heiser 2019 – CC Attribution License

Verifying Time Padding
• Idea: Minimal formalisation of hardware clocks (abstract time)

• Monotonically-increasing counter
• Can add constants to time values
• Can compare time values

36 COMP9242 2019T2 W09b: Local OS Research

To prove: padding loop terminates
as soon as timer value ≥ T0+WCET

Functional
property

[Heiser et al., HotOS’19]

© Gernot Heiser 2019 – CC Attribution License

Making COTS Hardware
Dependable

37 COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License

Satellites: SWaP vs Dependability

38 COMP9242 2019T2 W09b: Local OS Research

Space is becoming commodisized:
• many, small (micro-) satellites
• increasing cost pressure

NCUBE2 by Bjørn Pedersen, NTNU (CC BY 1.0)

Harsh evironment for electronics:
• temperature fluctuations
• ionising radiation

Radiation-hardened processors
are slow, bulky and expensive

Use redundancy
of cheap COTS

multicores

© Gernot Heiser 2019 – CC Attribution License

Traditional Redundancy Approaches

39 COMP9242 2019T2 W09b: Local OS Research

App

Lib

Master

App

Lib

Slave

Syscall Emulation Layer

OS

Watch-
dog

App

Lib

Slave

CPU(s) Devices

Fault-tolerant HW:
• expensive

SW replication:
• cheap
• incomplete

Sphere of
replication

HW lockstepping/voting infrastructure

App

Lib

OS

Master

CPU Dev

App

Lib

OS

Slave

CPU Dev

App

Lib

OS

Slave

CPU Dev

Sphere of
replication

© Gernot Heiser 2019 – CC Attribution License

Vote & sync

App

Lib

Driver

Core

Secondary

Vote & sync

40

Redundant Co-Execution (RCoE)

COMP9242 2019T2 W09b: Local OS Research

Userland transparently replicated

Device
interface

Device

Sphere of
replication

Device access:
• thin shim
• vote outputs
• copy inputs

• Vote on checksums
of arguments & state

• Logical time for sync

App

Lib

Driver

Core

Secondary

App

Lib

Driver

Core

Primary

No master-slave, but peer-to-peer

© Gernot Heiser 2019 – CC Attribution License

RCoE: Two Variants
Loosely-coupled RCoE

• Sync on syscalls & exceptions

• Preemptions in usermode not
further synchronised (imprecise)

Closely-coupled RCoE

• Sync on instruction

• Precise preemptions

41 COMP9242 2019T2 W09b: Local OS Research

• Low overhead
• Cannot support racy apps,

threads, virtual machines

• High overhead
• Supports all apps
• May need re-compile

© Gernot Heiser 2019 – CC Attribution License

Closely-Coupled RCoE Implementation

Vote

Wait on
Barrier

Set Breakpoint on
IP and catch up

Breakpoint
Exception

Compare
<branches, IP>

Leading
Replica?

Clear BreakpointSynced

Next

Yes

No
Precise logical time: Triple of:
• event count
• user-mode branch count
• instruction pointer

x86: Obtained from PMU

Arm v7: Use gcc plugin
to count branches

COMP9242 2019T2 W09b: Local OS Research42

© Gernot Heiser 2019 – CC Attribution License

Performance: Microbenchmarks

Dhrystone Whetstone
Arm x86 Arm x86

Base 146.1 108.1 108.9 120.3
LC 147.0 108.6 109.8 120.4
CC 153.4 111.9 133.5 143.0

Loosely-
coupled

Closely-
coupled

LC has low overhead
for CPU-bound

CC has high overhead
for tight loops

LC has usually low
inherent overhead

for CPU-bound

COMP9242 2019T2 W09b: Local OS Research43

© Gernot Heiser 2019 – CC Attribution License

Performance: SPLASH-2 on x86 VMs
Name N Base CC-D Factor
BARNES 30 61 93 1.52

CHOLESKY 300 66 792 12.08
FFT 100 64 142 2.22

FFM 20 76 160 2.11

LU-C 30 64 437 6.83

LU-NC 20 62 381 6.12

OCEAN-C 1000 64 173 2.71

OCEAN-NC 1000 65 171 2.65

RADIOSITY 25 66 75 1.12

RADIX 20 66 89 1.34

RAYTRACE 1000 60 65 1.09
VOLREND 100 86 133 1.54

WATER-NS 600 66 92 1.41

WATER-S 600 67 84 1.25

Linux VM

VMM

seL4

CPU

Slash-2

Linux VM

VMM

seL4

CPU

Splash-2
Breakpoints in VM

are expensive:
trigger VM exits

COMP9242 2019T2 W09b: Local OS Research44

• Execution time in sec
• DMR configuration
• Base: unreplicated single-coreVM

Geometric mean overhead: 2.3×

© Gernot Heiser 2019 – CC Attribution License

Benchmark: Redis – YCSB

COMP9242 2019T2 W09b: Local OS Research45

System under test

Redis
lwIP

NIC driver

Core

Redis
lwIP

NIC driver

Core

Redis
lwIP

NIC driver

CoreNIC

Load
generator

YCSB
OS

NIC

In-memory
key-value storeYahoo! Cloud

Service Benchmark

© Gernot Heiser 2019 – CC Attribution License

Performance: Redis on Arm

COMP9242 2019T2 W09b: Local OS Research46

LC: loosely-coupled
CC: closely-coupled
D: DMR
T: TMR
A: vote on interrupt
S: also vote on syscall

Overhead is 1.2–3 depending on configuration

1000 transactions/S

10
00

 tr
an

sa
ct

io
ns

/s

© Gernot Heiser 2019 – CC Attribution License

Error Detection on Arm

Base LC-D LC-T LC-D-N LC-T-N CC-D CC-T
Injected faults 243k 202k 184k 224k 214k 205k 185k

YCSB corruptions 647 3 1 381 299 3 0

YCSB errors 57 1 0 13 10 3 6

User errors 296 0 0 0 0 0 0

Kernel exceptions 0 0 0 0 0 0 0

Undetected 1000 4 1 394 309 6 6

RCoE detected N/A 996 999 606 691 994 994

Observed errors 1000 1000 1000 1000 1000 1000 1000

COMP9242 2019T2 W09b: Local OS Research47

Checksumming
NW data

Not checksumming
network data

© Gernot Heiser 2019 – CC Attribution License

Comparison to Rad-Hardened Processor

Sabre Lite RAD750
Cores @ clock 4 @ 800 MHz 1 @ 133 MHz
Performance 4 ⨉ 2,000 DMIPS 240 DMIPS
Power < 5 W < 6 W
Energy Efficiency 200 DMIPS/W 40 DMIPS/W
Cost $200 $200,000
Perf/Cost 5 DMIPS/$ 0.0002 DMIPS/$

COMP9242 2019T2 W09b: Local OS Research48

Assuming 2×
overhead, TMR

2002 price

[Shen et al., DSN’19]

© Gernot Heiser 2019 – CC Attribution License

Real-World Use

49 COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 50 |

DARPA HACMS
Retrofit
existing
system!

Retrofit
existing
system!

Develop
technology

Unmanned Little Bird (ULB)

Autonomous trucks

GVR-BotOff-the-shelf
Drone airframe

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 51 |

ULB Architecture

Mission
Computer

Flight
Computer

N
et

w
or

k

Ground
Station

Link

Sensors

GPS

Camera

Motors

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 52 |

Incremental Cyber Retrofit

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Virt-Mach Monitor

Trusted

Miss
Mgr

GS Lk

Cam-
eraGPS

Local
NW

Crypto

Linux

VMM

Linux

VMM

Original
Mission

Computer

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License

Original
Mission

Computer

53 |

Incremental Cyber Retrofit

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Trusted

Miss
Mgr

GS Lk

Cam-
eraGPS

Local
NW

Crypto

Linux

VMM

Linux

VMM

Trusted
Mission
Mngr

Comms GPS
Local
NW

Crypto

Cam-
era

Linux

VMM

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 54 |

Incremental Cyber Retrofit

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto Trusted
Mission
Mngr

Comms GPS
Local
NW

Crypto

Cam-
era

Linux

VMM

[Klein et al, CACM, Oct’18]Original
Mission

Computer
Cyber-secure

Mission Computer

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 55 |

Issue: Capabilities are Low-Level

Thread-ObjectA CNodeA1 EP Thread-ObjectBCNodeB1
CNodeA2

VSpace

VSpace

CSpace CSpace

Se
nd

Re
ce
ive

PDAPTA1
FRAME

FRAME

...

...

... ...

...

...CO
N
TE

XT

CO
N
TE

XT

A B

>50 capabilities
for trivial program!

S
en

d

R
ec

ei
ve

A B

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 56 |

Simple But Non-Trivial System

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 57 |

Component Middleware: CAmkES
Higher-level abstractions of
low-level seL4 constructs

Comp A

Comp C

Comp B

Shared memory

RPC

Interface

Component

Connector

COMP9242 2019T2 W09b: Local OS Research

Semaphore

© Gernot Heiser 2019 – CC Attribution License 58 |

HACMS UAV Architecture

Radio Driver

CAN Driver

Data Link

Crypto

Uncritical/
untrusted,
contained

Linux

Camera

Wifi

Security enforcement:
Linux only sees
encrypted data

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 59 |

Enforcing the Architecture
Architecture
specification
language

A

CNode EP CNode
CSpace CSpace

Se
nd

Re
ce
ive

... ...

CO
N
TE

XT

CO
N
TE

XT

VSpace

component
code+

CAmkES

capDL
glue
code

+ proof

initialised system + proof

+ proof
Thread
Object

Thread
Object

VSpace

A B

B

Low-level access rights

driver.c VMM.cglue.c

Compiler/
Linker

binaryinit.c

Conditions
apply

Radio Driver

Crypto

CAN Driver

Data Link Uncritical/
untrusted,
contained

Linux

Camera

Wifi

COMP9242 2019T2 W09b: Local OS Research

© Gernot Heiser 2019 – CC Attribution License 60 |

Architecture Analysis

Binary
G

enerate

Generate

Compile

CAmkESComponent
Description

.h, .c
Glue
Code

Eclipse-based
IDE

Design

Analysis
Tools Safety �

Architecture Analysis &
Description Language

AADL

COMP9242 2019T2 W09b: Local OS Research

Architecture analysis
and design language

© Gernot Heiser 2019 – CC Attribution License

Real-World Use
Courtesy Boeing, DARPA

COMP9242 2019T2 W09b: Local OS Research62

