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Overview

* Multiprocessor OS (Background and Review)
- How does it work? (Background)
- Scalability (Review)

* Multiprocessor Hardware
- Contemporary systems (Intel, AMD, ARM, Oracle/Sun)
- Experimental and Future systems (Intel, MS, Polaris)

* OS Design for Multiprocessors

- Guidelines

- Design approaches
« Divide and Conquer (Disco, Tesselation)
+ Reduce Sharing (K42, Corey, Linux, FlexSC, scalable commutativity)
* No Sharing (Barrelfish, fos)
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Uniprocessor OS
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Key design challenges:
Correctness of (shared) data structures
Scalability (performance doesn’t suffer)
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Correctness of Shared Data Scalability

 Concurrency control Speedup as more processors added
- Locks |deal
- Semaphores
- Transactions T,
- Lock-free data structures S(N) = T_
N

* We know how to do this:
- In the application
- Inthe OS

peedup (S]

number of processors (n)
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Scalability Scalability and Serialisation

Processor 1 Processor 2 Processor 3
Speedup as more processors added Parallel

Reality Parallel Parallel Parallel

Program Parallel Parallel Parallel
Parallel Parallel Parallel
Parallel Parallel Parallel

N

S(N) =

—L

TN Parallel
Parallel
Parallel Serial
Parallel
Serial Serial
Parallel
Parallel

speedup

Parallel Parallel Parallel
Parallel Parallel Parallel

number of processors
e
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Scalability and Serialisation Serialisation
Remember Amdahl’s law o
- Serial (non-parallel) portion: when application not running on all cores Where does serialisation show up?

- Application (e.g. access shared app data)

- _Serialisation prevents scalability - 0S (e.g. performing syscall for app) How much time is spent in 0S?

Amdahi's Law T =1=(1-P)+ P s .

T T T 1 ¢ ) Sources of Serialisation

e Paraliel portion Ty=0-P)+ £ Locking (explicit serialisation)

16 —50% 4 N * Waiting for a lock 9 stalls self

4 4| T 1 * Lock implementation:

S(N)=—"t=— « Atomic operations lock bus < stalls everyone waiting for memory

o Ty a-pPy+ P + Cache coherence traffic loads bus = stalls others waiting for memory
‘fg 1o — Memory access (implicit)

8. 1 - Relatively high latency to memory = stalls self

6. S(e0) = a-r) Cache (implicit)

a. l— - Processor stalled while cache line is fetched or invalidated

2 1| - Affected by latency of interconnect

o | - Performance depends on data size (cache lines) and contention (number of cores)

Number
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More Cache-related Serialisation

False sharing
- Unrelated data structs share the same cache line
- Accessed from different processors
=> Cache coherence traffic and delay
Cache line bouncing
- Shared R/W on many processors

- E.g: bouncing due to locks: each processor spinning on a lock brings it into its own cache d
=>» Cache coherence traffic and delay H a r Wa re

Multiprocessor

Cache misses
- Potentially direct memory access = stalls self
- When does cache miss occur?
+ Application accesses data for the first time, Application runs on new core
+ Cached memory has been evicted
+ Cache footprint too big, another app ran, OS ran

-
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Multi-What? Interesting Properties of Multiprocessors

* Terminology: * Scale and Structure
- core, die (chip), package (module, processor, CPU) - How many cores and processors are there

* Multiprocessor, SMP - What kinds of cores and processors are there
- >1separate processors, connected by off-processor interconnect - How are they organised (access to 10, etc.)

* Multithread, SMT « Interconnect

- >1 hardware threads in a single processing core

* Multicore, CMP
- >1 processing cores in a single die, connected by on-die interconnect

* Multicore + Multiprocessor
- >1 multicore dies in a package (multi-chip module), on-processor interconnect
- >1 multicore processors, off-processor interconnect * Interprocessor Communication

* Manycore - How do cores and processors send messages to each other
- Lots (>100) of cores

- How are the cores and processors connected

* Memory Locality and Caches
- Where is the memory
- What is the cache architecture

~
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Contemporary Multiprocessor Hardware Scale and Structure

[ N W N NN NN NN NN

* Intel: .
- Nehalem, Westmere: 10 core, QPI ARM Cortex A
- Sandy Bridge, Ivy Bridge: 5 core, ring bus, integrated GPU, L3, I0
- Haswell (Broadwell): 18+ core, ring bus, transactional memory, slices (EP)

- Skylake (SP): mesh architecture
* AMD:
- K10 (Opteron: Barcelona, Magny Cours): 12 core, Hypertransport
- Bulldozer, Piledriver, Steamroller (Opteron, FX)
16 core, Clustered Multithread: module with 2 integer cores
- Zen: on die NUMA: CPU Complex (CCX) (4 core, private L3)
- Zen 2: chiplets (2xCCX) chiplets, IO die (incl mem controller)

 Oracle (Sun) UltraSparc T1,T2,T3,T4,T5 (Niagara), M5,M7
- T5:16 cores, 8 threads/core (2 simultaneous), crossbar, 8 sockets,

- MB8:32 core, 8 threads, on chip network, 8 sockets, 5GHz

* ARM Cortex A9, A15 MPCore, big.LITTLE, DynamlQ
- 4-8cores, big LITTLE: A7 + A15, dynamIQ: A75 + A55
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Scale and Structure

+ ARM big.LITTLE
[ GIC-400 ‘

Interrupts

Interrupts

Memory Controller
Ports
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System Port

Scale and Structure

* Intel Nehalem
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Scale and Structure

Conventional
big.LITTLE

DynamlQ
big.LITTLE

Quad 1b+2L 1b+3L
Cortex-A53

Octa 1b+aL 1b+7L
Cortex-A53
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Memory Locality and Caches

* NUMA (Non-Uniform Memory Access)
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Interconnect (Latency)
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Interconnect (Bandwidth)
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Interconnect

Haswell EP Die Configurations

10-12 Core (MCC)

14-18 Core (HCC)

Not representative of actual die-sizes, orientation and layouts —for informational use only.

chop Columns Home Agents Cores. Power (W) Transitors (8) _ Die Area (mm?)

Heo a 2 1118 110 145 5.69 e62

mMCC 3 2 oz 65 160 Saa 202

Lo B 1 a8 55140 260 354 =
inteD

I&™
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Experimental/Future/Non-mainstream Multiprocessor
Hardware

* Microsoft Beehive
- Ring bus, no cache coherence

« Tilera (now Mellanox) Tile64, Tile-Gx
- 100 cores, mesh network

* Intel Polaris

- 80 cores, mesh network
* Intel SCC

- 48 cores, mesh network, no cache coherency
* Intel MIC (Multi Integrated Core)

- Knight's Corner/Landing - Xeon Phi

- 60+ cores, ring bus/mesh

& &
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|nterconnect FB DIMM FB DIIIIM FB DIIVIM FB DIlMM
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Interconnect/Structure/Memory

Cluster on Die (COD) Mode

COD Mode for 18C E5-2600 v3

= Supported on 1S & 2S SKUs with 2 Home Agents
(10+ cores)

- In memory directory bits & directory cache used on
25 to reduce coherence traffic and cache-to-cache
transfer latencies

-

316

= Targeted at NUMA optimized workloads where
latency is more important than sharing across

Caching Agents [

- Reduces average LLC hit and local memory latencies I

5|58

= HA sees most requests from reduced set of threads
potentially offering higher effective memory bandwidth

= OS/VMM own NUMA and process affinity decisions

Scale and Structure

* Tilera Tile64 (newest: Mellanox TILE-Gx), Intel Polaris

DDR2 Controller 0 DDR2 Controller 1

T
DDR2 Controller 3 DDR2 Controller 2
1r = %
DATA
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Cache and Memory and IPC Interprocessor Communication

* Intel SCC )
* Beehive
Mosuis RISCN Modulo RISCN _ Moduio RISCN __ Modue RISCN
Core
To
Router tosute Memntn
e Lock
Saroturm (32 515)
RA from aisplay etined bus 1o
e P ol core
0w
Oropiay
cormeener
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Interconnect Skylake SP

* Intel MIC (Multi Integrated Core) (Knight’s Corner/Landing - Xeon Phi)
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Summary

* Scalability
- 100+ cores
- Amdahl’s law really kicks in
* Heterogeneity
- Heterogeneous cores, memory, etc.

- Properties of similar systems may vary wildly (e.g. interconnect topology and latencies between
diffgrent AMD platforYns) vvary vies pology os D ES l G N fo r

* NUMA .

- Also variable latencies due to topology and cache coherence M u Itl p rocesso rs
* Cache coherence may not be possible

- Can’tuse it for locking

- Shared data structures require explicit work
« Computer is a distributed system

- Message passing

- Consistency and Synchronisation

- Fault tolerance

7
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Optimisation for Scalability

* Reduce amount of code in critical sections
- Increases concurrency
- Fine grained locking
* Lock data not code
+ Tradeoff: more concurrency but more locking (and locking causes serialisation)
- Lock free data structures

= Avoid expensive memory access
- Avoid uncached memory
- Access cheap (close) memory

-
DATA
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0OS Design Guidelines for Modern (and future)
Multiprocessors

* Avoid shared data

- Performance issues arise less from lock contention than from data locality
* Explicit communication

- Regain control over communication costs (and predictability)

- Sometimes it’s the only option
« Tradeoff: parallelism vs synchronisation

- Synchronisation introduces serialisation

- Make concurrent threads independent: reduce crit sections & cache misses
* Allocate for locality

- E.g. provide memory local to a core
* Schedule for locality

- With cached data

- With local memory
« Tradeoff: uniprocessor performance vs scalability

~
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Divide and Conquer

Disco
- Scalability is too hard!
* Context:
- ca. 1995, large ccNUMA multiprocessors appearing
- Scaling OSes requires extensive modifications
* ldea:
- Implement a scalable VMM
- Run multiple OS instances
* VMM has most of the features of a scalable OS:
- NUMA aware allocator
- Page replication, remapping, etc.
* VMM substantially simpler/cheaper to implement
* Modern incarnations of this
- Virtual servers (Amazon, etc.)
- Research (Cerberus)

-
[ ama
G
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Optimisation for Scalability

* Reduce false sharing
- Pad data structures to cache lines

* Reduce cache line bouncing

- Reduce sharing

- E.g: MCS locks use local data

* Reduce cache misses

- Affinity scheduling: run process on the core where it last ran.

- Avoid cache pollution

_
oo |

G
38 | COMP9242T2/2019 W10 ~

Design approaches

* Divide and conquer

- Divide multiprocessor into smaller bits, use them as normal

- Using virtualisation

- Using exokernel

* Reduced sharing
- Brute force & Heroic Effort

+ Find problems in existing OS and fix them
+ E.gLinux rearchitecting: BKL -> fine grained locking

- By design

+ Avoid shared data as much as possible

* No sharing

- Computer is a distributed system
+ Do extra work to share!

;
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Disco Architecture
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Disco Performance

Space-Time Partitioning

Tessellation
- Space-Time partitioning
- 2-level scheduling

) -C(;z;g?( t:hi " le——Appilication Partitions—>]| k—g::la;;"gaﬁl’:r""s‘—ﬂ
- ey Threads ' Threads ! Threads Threads
parallel multicore 1 1 1
systems SRR 1 §REEE 1 §ESE 1 XL
- Berkeley Par Lab i cati Parallel Network
Runtime Runtime L Soviee
T oS (sp: par

° J—
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= 160t | N Oseo
k] Sy
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& User_stall
s i
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Tessellation

8VM 8VM/nfs

IRIX SplashOS

RADIX
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Partition
Queries/Requests Resizing

Constraints

Scheduling
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K42: Fine-grained objects

Tradi

User-level
requests

tional System

e much sharing

7
@
N

OO Decomposed System

System paths &

data structures

used to satisfy
requests

e much less sharing
e better performance
[Appavoo, 2005]
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Multicore Hardware

e
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Reduce Sharing

K42
* Context:
- 1997-2006: OS for ccNUMA systems
- IBM, U Toronto (Tornado, Hurricane)
* Goals:
- High locality
- Scalability
*+ Object Oriented
- Fine grained objects
+ Clustered (Distributed) Objects
- Datalocality
« Deferred deletion (RCU)
- Avoid locking
* NUMA aware memory allocator
- Memory locality
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K42: Clustered objects

* Globally valid object reference
* Resolves to
- Processor local representative
* Sharing, locking strategy local to each object
* Transparency

- Eases complexity
- Controlled introduction of locality

* Shared counter:
- inc, dec: local access
- val: communication
* Fast path:
- Access mostly local structures

48 | COMPI242T2/2019 W10
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K42 Performance Corey

— Linux 2.4.19 - * Context
- - - K42 Shared VM Objects - 2008, high-end multicore servers, MIT
300004 ------ K42 Distributed VM Objects
* Goals:
- Application control of OS sharing
* 0S
- Exokernel-like, higher-level services as libraries
g 20000 - By default only single core access to OS data structures
3 - Calls to control how data structures are shared
= + Address Ranges
- Control private per core and shared address spaces
10000 * Kernel Cores
- Dedicate cores to run specific kernel functions
* Shares
- Lookup tables for kernel objects allow control over which object identifiers are visible to other cores.
o T T

5 10 15 20

-
Processors [ |
61 61
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Linux Brute Force Scalability Linux Brute Force Scalability

+ Apply lessons from parallel computing and past research
- sloppy counters,
per-core data structs,

* Context
- 2010, high-end multicore servers, MIT

- fine-grained lock, lock free, =)
* Goals: - - cache lines 2 z
> _ ! £
_ Scaling commodity 0S M= - 3002 lines of code changed s H
. " 40 g &
* Linux scalability 6 [Mount tables
. O} file tabl X X
- (2010 - scale Linux to 48 cores) s S toppylcotriars I S N —
= X
Lock-free dentry Iookup | 5 5 )y
20 [Super pages
16 DMA buffer allocation
12 Net stack false sharing X
s Par: ccept
o Application modifications
o ot = S ~ - + Conclusion:
Edm TN ache O e TETY et - no scalability reason to give up on traditional operating system organizations just yet.

Y-axis: (throughput with 48 cores) / (throughput with one core)

e
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Scalability of the API Scalable Commutativity Rule

« Context * The Rule
- 2013, previous multicore projects at MIT - Whenever‘mterface o;.reranuns they can be in a way that scales.
* Commutative operations:
* Goals - Cannot distinguish order of operations from results
- How to know if a system is really scalable? - Example:
) + Creat:
* Workload-based evaluation * Requires that lowest available FD be returned
- Run workload, plot scalability, fix problems * Not commutative: can tell which one was run first
- Did we miss any non-scalable workload? * Why are commutative operations scalable?
- Did we find all bottlenecks? - results ind fent of order = ication is y
. - without communication, no conflicts
* Is there something fundamental that makes a system non-scalable? « Informs software design process
- The interface might be a fundamental bottleneck - Design: design guideline for scalable interfaces

- Implementation: clear target
- Test: workload-independent testing

- ~
[an | |0
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Commuter: An Automated Scalability Testing Tool FlexSC

(Linux 3.8, ramfs)

Syscall impact on user-mode IPC

" Al tests * Context: 15,
Symbolic model conflict-free . N 513
- 2010, commodity multicores g2 i
.
- UToronto g 209 Lost performance (cycles)
£S5 o7
* Goal: 85,5
Commutativity N SEg0* Syscall exception
conditions - Reduce context switch overhead of system calls 0.

0 2000 4000 6000 8000 10000 12000 14000 16000
s * Syscall context switch: Time (in cycles)
- Usual mode switch overhead

- But: cache and TLB pollution!
Test cases Alcesis (sv6) P

contiectres Syscall Tnstructions | Cycles | IPC | i-cache | d-cache 2 13 | &-TLB
Linux =] = stat 4972 | 13585 | 0.37 32 186 | 660 | 2559 21
pread 3739 | 12300 | 0.30 32 294 | 679 | 2160 20
[ pwrite 5680 | 31285 | 0.18 50 373 | 985 | 3160 a4
Conflicting cache lines open+close 6631 19162 | 0.34 a7 240 900 | 3534 28
mmap. 8977 | 19079 | 0.47 a1 233 | 869 | 3913 7
opentwritetclose 9921 | 32815 | 0.30 78 481 | 1462 | 5105 a9

et

:
emwrie confictea

W 18!
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FlexSC FlexSC Results

— 450 . 45000
£ 40000 Wflexsc £ 40000 =fexsc
= Asynchronous system calls % 35000 “F-syne % 300001 e
- Batch system calls E 25000 i 25000
- Run them on dedicated cores 5 ‘oom] 3 fissed
2 2
* FlexSC-Threads g oo 2 ’m
- MonN = ° 200 400 600 800 1000 = o 200 400 600 800 1000
- M>>N Request Concurrency Request Concurrency
2 = (a) 1 Core (b) 2 Cores
User sys H doom0
e ————— = call E 30000
H
Kernel page Apache g
FlexSC: batching, S 1000
v sys call core redirect f=, 10000 [ e—
£ ! sync
= o 200 400 800 800 1000
Request Concurrency E‘m |
N7 B & (c) 4 Cores ‘
No sharing Barrelfish
. i + Context:
Multi ke_mel - 2007 large multicore machines appearing
- Barrelfish - 100s of cores on the horizon
- fos: factored operating system = NUMA (cc and non-cc)
- ETH Zurich and Microsoft
* Goals:

- Scale to many cores

[ Traditi OSes > - Support and manage heterogeneous hardware
* Approach:

- Structure OS as distributed system
+ Design principles:

- Interprocessor communication is explicit

- OS structure hardware neutral

- State is replicated

Shared state, Finer-grained Clustered objects, Distributed state,
one-big-lock locking

replica maintenance

* Microkernel
- Similar to seL4: capabilities
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Barrelfish Barrelfish: Replication

* Kernel + Monitor:

‘ App ‘ ‘ App ‘ ‘ App ‘ ‘ App ‘ - Only memory shared for message channels
- E EEEEEEEEEEEEEEEEEE ... ... - Monitor:
User 1 i i <:> i 1 - Collectively coordinate system-wide state
space: : Monitor Monitor RPC Monitor : - System-wide state:
e e e e EEE eSS EEEEEEEEEEE ... - Memory allocation tables
Kernel CPU ‘ CPU ‘ - Address space mappings
space: driver driver Send IPI - Capability lists
v * What state is replicated in Barrelfish
Hardware: | X86-64 X86-64 < | 86 - Capabilty lists
GRU /AR CPU/APIC Cache-coherence SRS * Consistency and Coordination
MMU MMU ' MMU v

Interrupts - Retype: two-phase commit to globally execute operation in order
- Page (re/un)mapping: one-phase commit to synchronise TLBs

-
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Barrelfish: Communication Barrelfish: Results

« Different mechanisms: : Messa:gze passing vs caching
- Intra-core SHM8 —=— i

= Kernel endpoints ?':‘ill\\/\/\z]. —a—

- 2 ——

- Inter-core 10 SHM1
* URRC MSG8 —v—
8 F MSGr ——

* URPC sender b

- Uses cache coherence + polling
- Shared bufffer

Server

Latency (cycles x 1000)

6
* Sender writes a cache line
* Receiver polls on cache line v
+ (last word so no part message) 4
- Polling?
+ Cache only changes when sender writes, so poll is cheap 2

+ Switch to block and IPI if wait is too long.

- -
@ | bama 2 4 6 8 10 12 14 16 & | dama
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Barrelfish: Results Barrelfish: Results
* Broadcast vs Multicast * TLB shootdown
Broadcast —— 60 Windows
Unicast Linux ————
12 Multicast L Barrelfish ————
NUMA-Aware Multicast 50
8 =
10
g S sof
5 8 5
= ° =y
54 & 20
E=1 =
= 4 =
10
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Summary

* Trends in multicore
- Scale (100+ cores)
- NUMA
No cache coherence
- Distributed system
Heterogeneity
+ OS design guidelines
- Avoid shared data
- Explicit communication
- Locality
« Approaches to multicore OS
- Partition the machine (Disco, Tessellation)
- Reduce sharing (K42, Corey, Linux, FlexSC, scalable commutativity)
- No sharing (Barrelfish, fos)

-
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Summary




