
Data61 Trustworthy Systems
https://ts.data61.csiro.au/projects/TS/

seL4 Reference Manual
Version 12.0.0-dev

Trustworthy Systems Team, Data61
https://sel4.systems/contact/

25 May 2021

https://ts.data61.csiro.au/projects/TS/
https://sel4.systems/contact/

© 2021 General Dynamics C4 Systems.

All rights reserved.

Acknowledgements

The primary authors of this document are Matthew Grosvenor and Adam Walker,
with contributions from Adrian Danis, Andrew Boyton, Anna Lyons, David Green-
away, Etienne Le Sueur, Gernot Heiser, Gerwin Klein, Godfrey van der Linden, Kevin
Elphinstone, Matthew Fernandez, Matthias Daum, Michael von Tessin, Peter Chubb,
Simon Winwood, Thomas Sewell, Timothy Bourke and Toby Murray. All authors and
contributors can be contacted at firstname.lastname@data61.csiro.au.

Contents

1 Introduction 1

2 Kernel Services and Objects 2

2.1 Capability-based Access Control . 3

2.2 System Calls . 3

2.3 Kernel Objects . 5

2.4 Kernel Memory Allocation . 7

2.4.1 Reusing Memory . 8

2.4.2 Summary of Object Sizes . 8

3 Capability Spaces 10

3.1 Capability and CSpace Management . 11

3.1.1 CSpace Creation . 11

3.1.2 CNode Methods . 11

3.1.3 Capabilities to Newly-Retyped Objects 12

3.1.4 Capability Rights . 12

3.1.5 Capability Derivation Tree . 13

3.2 Deletion and Revocation . 14

3.3 CSpace Addressing . 15

3.3.1 Capability Address Lookup . 15

3.3.2 Addressing Capabilities . 16

3.4 Lookup Failure Description . 18

3.4.1 Invalid Root . 18

3.4.2 Missing Capability . 18

3.4.3 Depth Mismatch . 19

3.4.4 Guard Mismatch . 19

1

2 CONTENTS

4 Message Passing (IPC) 20

4.1 Message Registers . 20

4.2 Endpoints . 21

4.2.1 Endpoint Badges . 22

4.2.2 Capability Transfer . 22

4.2.3 Errors . 23

4.2.4 Calling and Replying . 23

5 Notifications 25

5.1 Notification Objects . 25

5.2 Signalling, Polling and Waiting . 25

5.3 Binding Notifications . 26

6 Threads and Execution 27

6.1 Threads . 27

6.1.1 Thread control blocks . 27

6.1.2 Thread Creation . 27

6.1.3 Thread Deactivation . 28

6.1.4 Scheduling . 28

6.1.5 MCS Scheduling . 28

6.1.6 Scheduling Contexts . 28

6.1.7 Passive Threads . 30

6.1.8 Scheduling Context Creation . 30

6.1.9 Scheduling Context Donation . 31

6.1.10 Scheduling algorithm . 32

6.1.11 Exceptions . 32

6.1.11.1 Standard Exceptions . 32

6.1.11.2 Timeout Exceptions (MCS Only) 33

6.1.12 Message Layout of the Read-/Write-Registers Methods 33

6.2 Faults . 33

6.2.1 Capability Faults . 34

6.2.2 Unknown Syscall . 34

6.2.3 User Exception . 34

6.2.4 Debug Exception: Breakpoints and Watchpoints 35

CONTENTS 3

6.2.5 Debug Exception: Single-stepping 36

6.2.6 Timeout Fault (MCS only) . 37

6.2.7 VM Fault . 37

6.3 Domains . 38

6.4 Virtualisation . 38

6.4.1 ARM . 39

6.4.2 x86 . 39

7 Address Spaces and Virtual Memory 40

7.1 Objects . 40

7.1.1 Hardware Virtual Memory Objects 40

7.1.1.1 IA-32 . 41

7.1.1.2 x64 . 41

7.1.1.3 AArch32 . 41

7.1.1.4 AArch64 . 42

7.1.2 RISC-V . 42

7.1.2.1 RISC-V 32-bit . 42

7.1.2.2 RISC-V 64-bit . 42

7.1.3 Page . 42

7.1.3.1 AArch32 page sizes . 43

7.1.3.2 AArch64 page sizes . 43

7.1.3.3 IA-32 page sizes . 43

7.1.3.4 X64 page sizes . 44

7.1.3.5 RISC-V 32-bit page sizes 44

7.1.3.6 RISC-V 64-bit page sizes 44

7.1.4 ASID Control . 44

7.1.5 ASID Pool . 44

7.2 Mapping Attributes . 45

7.3 Sharing Memory . 45

7.4 Page Faults . 45

8 Hardware I/O 46

8.1 Interrupt Delivery . 46

8.2 x86-Specific I/O . 46

4 CONTENTS

8.2.1 Interrupts . 46

8.2.2 I/O Ports . 47

8.2.3 I/O Space . 47

8.3 Arm-Specific I/O . 48

8.3.1 Arm SMMU version 2.0 . 48

8.3.1.1 Creating seL4_ARM_SID capabilities 50

8.3.1.2 Creating seL4_ARM_CB capabilities 50

8.3.1.3 Configuring context banks 51

8.3.1.4 Configuring streams (transactions) 51

8.3.1.5 Copying and Deleting caps 51

8.3.1.6 TLB invalidation . 52

8.3.1.7 Fault handling . 53

9 System Bootstrapping 55

9.1 Initial Thread’s Environment . 55

9.2 BootInfo Frame . 55

9.3 Boot Command-line Arguments . 58

10 seL4 API Reference 60

10.1 Error Codes . 60

10.1.1 Invalid Argument . 60

10.1.2 Invalid Capability . 60

10.1.3 Illegal Operation . 60

10.1.4 Range Error . 61

10.1.5 Alignment Error . 61

10.1.6 Failed Lookup . 61

10.1.7 Truncated Message . 61

10.1.8 Delete First . 61

10.1.9 Revoke First . 62

10.1.10Not Enough Memory . 62

10.2 System Calls . 62

10.2.1 General System Calls . 62

10.2.1.1 Send . 62

10.2.1.2 Recv . 63

CONTENTS 5

10.2.1.3 Call . 63

10.2.1.4 Reply . 63

10.2.1.5 Non-Blocking Send . 64

10.2.1.6 Reply Recv . 64

10.2.1.7 NBRecv . 65

10.2.1.8 Yield . 65

10.2.1.9 Signal . 66

10.2.1.10 Wait . 66

10.2.1.11 Poll . 67

10.2.2 General System Calls (MCS) . 68

10.2.2.1 Send . 68

10.2.2.2 Recv . 68

10.2.2.3 Call . 69

10.2.2.4 Non-Blocking Send . 69

10.2.2.5 Reply Recv . 70

10.2.2.6 NBRecv . 70

10.2.2.7 NBSend Recv . 71

10.2.2.8 NBSend Wait . 71

10.2.2.9 Yield . 72

10.2.2.10 Wait . 72

10.2.2.11 NBWait . 73

10.2.2.12 Poll . 73

10.2.2.13 Signal . 74

10.2.3 Debugging System Calls . 75

10.2.3.1 Put Char . 75

10.2.3.2 Dump scheduler . 75

10.2.3.3 Halt . 76

10.2.3.4 Snapshot . 76

10.2.3.5 Cap Identify . 76

10.2.3.6 Name Thread . 77

10.2.3.7 Send SGI 0-15 . 77

10.2.3.8 Run . 78

10.2.4 Benchmarking System Calls . 79

6 CONTENTS

10.2.4.1 Reset Log . 79

10.2.4.2 Finalize Log . 80

10.2.4.3 Set Log Buffer . 80

10.2.4.4 Null Syscall . 81

10.2.4.5 Flush Caches . 81

10.2.4.6 Flush L1 Caches . 81

10.2.4.7 Get Thread Utilisation 82

10.2.4.8 Reset Thread Utilisation 82

10.2.4.9 Dump All Threads Utilisation 82

10.2.4.10 Reset All Threads Utilisation 83

10.2.5 X86 System Calls . 84

10.2.5.1 VMEnter . 84

10.3 Architecture-Independent Object Methods 86

10.3.1 seL4_CNode . 86

10.3.1.1 Cancel Badged Sends 86

10.3.1.2 Copy . 87

10.3.1.3 Delete . 88

10.3.1.4 Mint . 89

10.3.1.5 Move . 90

10.3.1.6 Mutate . 91

10.3.1.7 Revoke . 92

10.3.1.8 Rotate . 93

10.3.1.9 Save Caller . 94

10.3.2 seL4_DomainSet . 94

10.3.2.1 Set . 94

10.3.3 seL4_IRQControl . 95

10.3.3.1 Get . 95

10.3.4 seL4_IRQHandler . 95

10.3.4.1 Acknowledge . 95

10.3.4.2 Clear . 96

10.3.4.3 Set Notification . 96

10.3.5 seL4_SchedContext . 97

10.3.5.1 Bind . 97

CONTENTS 7

10.3.5.2 Consumed . 97

10.3.5.3 Unbind . 98

10.3.5.4 UnbindObject . 98

10.3.5.5 YieldTo . 99

10.3.6 seL4_SchedControl . 100

10.3.6.1 ConfigureFlags . 100

10.3.7 seL4_TCB . 101

10.3.7.1 Bind Notification . 101

10.3.7.2 Configure (MCS) . 101

10.3.7.3 Configure Single Stepping 102

10.3.7.4 Configure . 103

10.3.7.5 Copy Registers . 104

10.3.7.6 Get Breakpoint . 105

10.3.7.7 Read Registers . 106

10.3.7.8 Resume . 106

10.3.7.9 Set Breakpoint . 107

10.3.7.10 Set CPU Affinity . 108

10.3.7.11 Set IPC Buffer . 108

10.3.7.12 Set Maximum Controlled Priority 109

10.3.7.13 Set Priority . 109

10.3.7.14 Set Sched Params (MCS) 110

10.3.7.15 Set Sched Params . 111

10.3.7.16 Set Space . 111

10.3.7.17 Set TLS Base . 112

10.3.7.18 Set Timeout Endpoint 112

10.3.7.19 Suspend . 113

10.3.7.20 Unbind Notification . 113

10.3.7.21 Unset Breakpoint . 114

10.3.7.22 Write Registers . 114

10.3.8 seL4_Untyped . 115

10.3.8.1 Retype . 115

10.4 x86-Specific Object Methods . 116

10.4.1 seL4_IRQControl . 116

8 CONTENTS

10.4.1.1 Get I/O APIC . 116

10.4.1.2 Get MSI . 117

10.4.2 seL4_TCB . 118

10.4.2.1 Set EPT Root . 118

10.4.3 seL4_X86_ASIDControl . 119

10.4.3.1 Make Pool . 119

10.4.4 seL4_X86_ASIDPool . 120

10.4.4.1 Assign . 120

10.4.5 seL4_X86_EPTPD . 121

10.4.5.1 Map . 121

10.4.5.2 Unmap . 121

10.4.6 seL4_X86_EPTPDPT . 122

10.4.6.1 Map . 122

10.4.6.2 Unmap . 122

10.4.7 seL4_X86_EPTPT . 123

10.4.7.1 Map . 123

10.4.7.2 Unmap . 123

10.4.8 seL4_X86_IOPageTable . 124

10.4.8.1 Map . 124

10.4.8.2 Unmap . 124

10.4.9 seL4_X86_IOPort . 125

10.4.9.1 In16 . 125

10.4.9.2 In32 . 125

10.4.9.3 In8 . 125

10.4.9.4 Out16 . 126

10.4.9.5 Out32 . 126

10.4.9.6 Out8 . 127

10.4.10 seL4_X86_IOPortControl . 127

10.4.10.1 Issue . 127

10.4.11 seL4_X86_Page . 128

10.4.11.1 Get Address . 128

10.4.11.2 Map EPT . 128

10.4.11.3 Map I/O . 129

CONTENTS 9

10.4.11.4 Map . 130

10.4.11.5 Unmap . 130

10.4.12 seL4_X86_PageDirectory . 131

10.4.12.1 Get Status Bits . 131

10.4.12.2 Map . 131

10.4.12.3 Unmap . 132

10.4.13 seL4_X86_PageTable . 132

10.4.13.1 Map . 132

10.4.13.2 Unmap . 133

10.4.14 seL4_X86_VCPU . 133

10.4.14.1 Disable IO Port . 133

10.4.14.2 Enable IO Port . 134

10.4.14.3 Read VMCS . 134

10.4.14.4 Set TCB . 135

10.4.14.5 Write Registers . 135

10.4.14.6 Write VMCS . 136

10.5 IA32-Specific Object Methods . 137

10.6 x86_64-Specific Object Methods . 138

10.6.1 seL4_X86_PDPT . 138

10.6.1.1 Map . 138

10.6.1.2 Unmap . 138

10.7 ARM-Specific Object Methods . 139

10.7.1 seL4_ARM_ASIDControl . 139

10.7.1.1 Make Pool . 139

10.7.2 seL4_ARM_ASIDPool . 140

10.7.2.1 Asid Pool Assign . 140

10.7.3 seL4_ARM_CB . 140

10.7.3.1 AssignVspace . 140

10.7.3.2 CBClearFault . 141

10.7.3.3 CBGetFault . 141

10.7.3.4 TLBInvalidate . 142

10.7.3.5 UnassignVspace . 142

10.7.4 seL4_ARM_CBControl . 143

10 CONTENTS

10.7.4.1 GetCB . 143

10.7.4.2 TLBInvalidateAll . 143

10.7.5 seL4_ARM_IOPageTable . 144

10.7.5.1 Map . 144

10.7.5.2 Unmap . 144

10.7.6 seL4_ARM_Page . 145

10.7.6.1 Clean Data . 145

10.7.6.2 Clean and Invalidate Data 145

10.7.6.3 Get Address . 146

10.7.6.4 Invalidate Data . 146

10.7.6.5 Map I/O . 147

10.7.6.6 Map . 147

10.7.6.7 Unify Instruction . 148

10.7.6.8 Unmap . 148

10.7.7 seL4_ARM_PageTable . 149

10.7.7.1 Map . 149

10.7.7.2 Unmap . 150

10.7.8 seL4_ARM_SID . 150

10.7.8.1 BindCB . 150

10.7.8.2 UnbindCB . 151

10.7.9 seL4_ARM_SIDControl . 151

10.7.9.1 ClearFault . 151

10.7.9.2 GetFault . 152

10.7.9.3 GetSID . 152

10.7.10 seL4_ARM_VCPU . 153

10.7.10.1 Acknowledge Virtual PPI IRQ 153

10.7.10.2 Inject IRQ . 153

10.7.10.3 Read Registers . 154

10.7.10.4 Set TCB . 154

10.7.10.5 Write Registers . 155

10.7.11 seL4_IRQControl . 155

10.7.11.1 GetTrigger . 155

10.7.11.2 GetTriggerCore . 156

CONTENTS 11

10.8 Aarch32-Specific Object Methods . 157

10.8.1 seL4_ARM_PageDirectory . 157

10.8.1.1 Clean Data . 157

10.8.1.2 Clean and Invalidate Data 157

10.8.1.3 Invalidate Data . 158

10.8.1.4 Unify Instruction . 158

10.9 Aarch64-Specific Object Methods . 159

10.9.1 seL4_ARM_PageDirectory . 159

10.9.1.1 Map . 159

10.9.1.2 Unmap . 159

10.9.2 seL4_ARM_PageUpperDirectory 160

10.9.2.1 Map . 160

10.9.2.2 Unmap . 160

10.9.3 seL4_ARM_VSpace . 161

10.9.3.1 Clean Data . 161

10.9.3.2 Clean and Invalidate Data 161

10.9.3.3 Invalidate Data . 162

10.9.3.4 Unify Instruction . 162

10.10RISCV-Specific Object Methods . 163

10.10.1General RISCV Object Methods 163

10.10.2 seL4_IRQControl . 163

10.10.3 seL4_RISCV_ASIDControl . 163

10.10.3.1 MakePool . 163

10.10.4 seL4_RISCV_ASIDPool . 164

10.10.4.1 Assign . 164

10.10.5 seL4_RISCV_Page . 164

10.10.5.1 GetAddress . 164

10.10.5.2 Map . 165

10.10.5.3 Unmap . 165

10.10.6 seL4_RISCV_PageTable . 166

10.10.6.1 Map . 166

10.10.6.2 Unmap . 166

List of Tables

2.1 Meaning of size_bits for object types of variable size 9

3.1 seL4 access rights: What a specific right entitles a capability to do . . . 12

3.2 Capability derivation. 13

4.1 Fields of the seL4_IPCBuffer structure. Note that badges and caps
use the same area of memory in the structure. 21

6.1 Contents of an IPC message. 34

6.2 Debug fault message layout. The register API-ID is not returned in the
fault message from the kernel on single-step faults. 36

6.3 Single-step fault message layout. 37

6.4 Timeout fault outcome on 32-bit architectures. 37

6.5 VM Fault outcome on all architectures. 38

7.1 Virtual memory attributes for ARM page table entries. 45

7.2 Virtual memory attributes for x86 page table entries. 45

9.1 Initial thread’s CNode content. 56

9.2 BootInfo struct. 57

9.3 BootInfoHeader struct. 58

9.4 seL4_UntypedDesc struct . 58

9.5 IA-32 boot command-line arguments. 59

12

List of Figures

3.1 Example capability derivation tree. 13

3.2 An example CSpace demonstrating object references at all levels, various
guard and radix sizes and internal CNode references. 16

3.3 An arbitrary CSpace layout. 17

13

14 LIST OF FIGURES

Chapter 1

Introduction

The seL4 microkernel is an operating-system kernel designed to be a secure, safe, and
reliable foundation for systems in a wide variety of application domains. As a microker-
nel, it provides a small number of services to applications, such as abstractions to create
and manage virtual address spaces, threads, and inter-process communication (IPC).
The small number of services provided by seL4 directly translates to a small imple-
mentation of approximately 8700 lines of C code. This has allowed the ARMv6 version
of the kernel to be formally proven in the Isabelle/HOL theorem prover to adhere to
its formal specification [Boy09,CKS08,DEK+06,EKE08,KEH+09,TKN07,WKS+09],
which in turn enabled proofs of the kernel’s enforcement of integrity [SWG+11] and
confidentiality [MMB+13]. The kernel’s small size was also instrumental in performing
a complete and sound analysis of worst-case execution time [BSC+11,BSH12].

This manual describes the seL4 kernel’s API from a user’s point of view. The document
starts by giving a brief overview of the seL4 microkernel design, followed by a reference
of the high-level API exposed by the seL4 kernel to userspace.

While we have tried to ensure that this manual accurately reflects the behaviour of the
seL4 kernel, this document is by no means a formal specification of the kernel. When
the precise behaviour of the kernel under a particular circumstance needs to be known,
users should refer to the seL4 abstract specification, which gives a formal description
of the seL4 kernel.

1

Chapter 2

Kernel Services and Objects

A limited number of service primitives are provided by the microkernel; more complex
services may be implemented as applications on top of these primitives. In this way, the
functionality of the system can be extended without increasing the code and complexity
in privileged mode, while still supporting a potentially wide number of services for
varied application domains.

Note that some services are available only when the kernel is configured for MCS1

support.

The basic services seL4 provides are as follows:

Threads are an abstraction of CPU execution that supports running software;

Scheduling contexts (MCS only) are an abstraction of CPU execuion time.

Address spaces are virtual memory spaces that each contain an application. Appli-
cations are limited to accessing memory in their address space;

Inter-process communication (IPC) via endpoints allows threads to communicate
using message passing;

Reply objects (MCS only) are used to store single-use reply capabilities, and are
provided by the receiver during message passing.

Notifications provide a non-blocking signalling mechanism similar to binary semaphores;

Device primitives allow device drivers to be implemented as unprivileged applica-
tions. The kernel exports hardware device interrupts via IPC messages; and

Capability spaces store capabilities (i.e., access rights) to kernel services along with
their book-keeping information.

This chapter gives an overview of these services, describes how kernel objects are
accessed by userspace applications, and describes how new objects can be created.

1“mixed-criticality system”

2

2.1. CAPABILITY-BASED ACCESS CONTROL 3

2.1 Capability-based Access Control

The seL4 microkernel provides a capability-based access-control model. Access control
governs all kernel services; in order to perform an operation, an application must invoke
a capability in its possession that has sufficient access rights for the requested service.
With this, the system can be configured to isolate software components from each
other, and also to enable authorised, controlled communication between components
by selectively granting specific communication capabilities. This enables software-
component isolation with a high degree of assurance, as only those operations explicitly
authorised by capability possession are permitted.

A capability is an unforgeable token that references a specific kernel object (such as
a thread control block) and carries access rights that control what methods may be
invoked. Conceptually, a capability resides in an application’s capability space; an
address in this space refers to a slot which may or may not contain a capability. An
application may refer to a capability—to request a kernel service, for example—using
the address of the slot holding that capability. This means, the seL4 capability model
is an instance of a segregated (or partitioned) capability system, where capabilities are
managed by the kernel.

Capability spaces are implemented as a directed graph of kernel-managed capability
nodes (CNodes). A CNode is a table of slots, where each slot may contain further CNode
capabilities. An address of a capability in a capability space is the concatenation of
the indices of slots within CNodes forming the path to the destination slot; we discuss
CNode objects in detail in Chapter 3.

Capabilities can be copied and moved within capability spaces, and also sent via IPC.
This allows creation of applications with specific access rights, the delegation of au-
thority to another application, and passing to an application authority to a newly
created (or selected) kernel service. Furthermore, capabilities can be minted to create
a derived capability with a subset of the rights of the original capability (never with
more rights). A newly minted capability can be used for partial delegation of authority.

Capabilities can also be revoked to withdraw authority. Revocation recursively removes
any capabilities that have been derived from the original capability being revoked.
The propagation of capabilities through the system is controlled by a take-grant-based
model [EKE08,Boy09].

2.2 System Calls

The seL4 kernel provides a message-passing service for communication between threads.
This mechanism is also used for communication with kernel-provided services. There
is a standard message format, each message containing a number of data words and
possibly some capabilities. The structure and encoding of these messages are described
in detail in Chapter 4.

Threads send messages by invoking capabilities within their capability space. When
an endpoint, notification or reply capability is invoked in this way, the message will be
transferred through the kernel to another thread. When other capabilities to kernel

4 CHAPTER 2. KERNEL SERVICES AND OBJECTS

objects are invoked, the message will be interpreted as a method invocation in a manner
specific to the type of kernel object. For example, invoking a thread control block
(TCB) capability with a correctly formatted message will suspend the target thread.

Fundamentally, we can regard the kernel as providing three system calls: Send, Receive
and Yield. However, there are also combinations and variants of the basic Send and
Receive calls. An important variant is the Call operation, which consists of a standard
Send operation atomically followed by a variant of Receive which waits for a Reply. A
reply message is always delivered via a special resource instead of using the standard
IPC mechanism; see seL4_Call() below for details.

Invoking methods on kernel objects other than endpoints and notifications is done with
Send or Call, depending on whether the invoker wants a reply from the kernel (Call)
or not (Send). By using functions provided by the libsel4 API you are guaranteed to
always use the more appropriate one. The Yield system call is not associated with
any kernel object and is the only operation that does not invoke a capability. In the
MCS configuration, Wait is a variant of Receive that does not require a reply object to
be provided—on non-MCS configurations, Wait is synonymous with Receive, because
neither call takes a reply object.

The fundamental system calls are:

seL4_Yield() is the only system call that does not require a capability to be used.
It forfeits the remainder of the calling thread’s timeslice and causes invocation
of the kernel’s scheduler. If there are no other runnable threads with the same
priority as the caller, the calling thread will immediately be scheduled with a
fresh timeslice. In the MCS configuration, this behaviour depends on the state
of the scheduling context; see Section 6.1.6.

seL4_Send() delivers a message through the named capability. If the invoked capabil-
ity is an endpoint, and no receiver is ready to receive the message immediately,
the sending thread will block until the message can be delivered. No error code
or response will be returned by the receiving object.

seL4_Recv() (“receive”) is used by a thread to receive messages through endpoints or
notifications. If no sender or notification is pending, the caller will block until a
message or notification can be delivered. This system call works only on Endpoint
or Notification capabilities, raising a fault (see section 6.2) when attempted with
other capability types.

In the MCS configuration, Receive takes a reply capability—a capability to a
reply object–as a parameter.

The remaining system calls are variants and combinations of seL4_Send() and seL4_-
Recv() efficiently accommodate common use cases in systems programming.

seL4_NBSend() performs a polling send on an endpoint. If the message cannot be de-
livered immediately, i.e., there is no receiver waiting on the destination Endpoint,
the message is silently dropped. The sending thread continues execution. As
with seL4_Send(), no error code or response will be returned.

2.3. KERNEL OBJECTS 5

seL4_NBRecv() is used by a thread to check for signals pending on a notification object
or messages pending on an endpoint without blocking. This system call works
only on endpoints and notification object capabilities, raising a fault (see section
6.2) when attempted with other capability types.

seL4_Call() combines seL4_Send() and seL4_Recv() with some important differ-
ences. The call blocks the sending thread until its message is delivered and a
reply message is received.
When invoking capabilities to kernel services other than endpoints, using seL4_-
Call() allows the kernel to return an error code or other response through the
reply message.
When the sent message is delivered to another thread via an Endpoint, the kernel
does the same operation as seL4_Send(). What happens next depends on the
kernel configuration. For MCS configurations, the kernel then updates the reply
object provided by the receiver. A reply object is a vessel for tracking reply
messages, used to send a reply message and wake up the caller. In non-MCS
configurations, the kernel then deposits a special reply capability in a dedicated
slot in the receiver’s TCB. This reply capability is a single-use right to send a reply
message and wake up the caller, meaning that the kernel invalidates it as soon
as it has been invoked. For both variants, the calling thread is blocked until a
capability to the reply object is invoked. For more information, see Section 4.2.4.

seL4_Reply() is used to respond to a seL4_Call(), by invoking the reply capability
generated by the seL4_Call() system call and stored in a dedicated slot in the
replying thread’s TCB. It has exactly the same behaviour as invoking the reply
capability with seL4_Send() which is described in Section 4.2.4.

seL4_ReplyRecv() combines seL4_Reply() and seL4_Recv(). It exists mostly for
efficiency reasons, namely the common case of replying to a request and waiting
for the next can be performed in a single kernel system call instead of two. The
transition from the reply to the receive phase is also atomic.

seL4_Wait() works like seL4_Recv(); on non-MCS configurations, they are in fact
synonymous. In the MCS configuration, seL4_Wait() is used when no reply is
expected. Unlike seL4_Recv(), seL4_Wait() takes no reply capability.

seL4_NBWait() (MCS only) is used by a thread to poll for messages through endpoints
or notifications. If no sender or notification is pending, the system call returns
immediately.

seL4_NBSendWait() (MCS only) combines an seL4_NBSend() and seL4_Wait() into
one atomic system call.

seL4_NBSendRecv() (MCS only) combines an seL4_NBSend() and seL4_Recv() into
one atomic system call.

2.3 Kernel Objects

In this section we give a brief overview of the kernel-implemented object types whose
instances (also simply called objects) can be invoked by applications. The interface to

6 CHAPTER 2. KERNEL SERVICES AND OBJECTS

these objects forms the interface to the kernel itself. The creation and use of kernel
services is achieved by the creation, manipulation, and combination of these kernel
objects:

CNodes (see Chapter 3) store capabilities, giving threads permission to invoke methods
on particular objects. Each CNode has a fixed number of slots, always a power
of two, determined when the CNode is created. Slots can be empty or contain a
capability.

Thread Control Blocks (TCBs; see Chapter 6) represent a thread of execution in
seL4. Threads are the unit of execution that is scheduled, blocked, unblocked,
etc., depending on the application’s interaction with other threads.

Scheduling contexts (MCS only) (SchedulingContexts; see Chapter 6) represent CPU
time in seL4. Users can create scheduling contexts from untyped objects, however
on creation scheduling contexts are empty and do not represent any time. Ini-
tially, there is a capability to SchedControl for each node, which allows scheduling
context to be populated with parameters, which combined with priority control
thread’s access to CPU time.

Endpoints (see Chapter 4) facilitate message-passing communication between threads.
IPC is synchronous: A thread trying to send or receive on an endpoint blocks until
the message can be delivered. This means that message delivery only happens
if a sender and a receiver rendezvous at the endpoint, and the kernel can deliver
the message with a single copy (or without copying for short messages using only
registers).
A capability to an endpoint can be restricted to be send-only or receive-only.
Additionally, Endpoint capabilities can have the grant right, which allows sending
capabilities as part of the message.

Reply objects (MCS only) (see Chapter 4) track scheduling context donation and pro-
vide a container for single-use reply capabilities. They are provided by seL4_-
Recv().

Notification Objects (see Chapter 5) provide a simple signalling mechanism. A Notifi-
cation is a word-size array of flags, each of which behaves like a binary semaphore.
Operations are signalling a subset of flags in a single operation, polling to check
any flags, and blocking until any are signalled. Notification capabilities can be
signal-only or wait-only.

Virtual Address Space Objects (see Chapter 7) are used to construct a virtual
address space (or VSpace) for one or more threads. These objects largely directly
correspond to those of the hardware, and as such are architecture-dependent. The
kernel also includes ASID Pool and ASID Control objects for tracking the status of
address spaces.

Interrupt Objects (see Chapter 8) give applications the ability to receive and ac-
knowledge interrupts from hardware devices. Initially, there is a capability to
IRQControl, which allows for the creation of IRQHandler capabilities. An IRQHandler
capability permits the management of a specific interrupt source associated with

2.4. KERNEL MEMORY ALLOCATION 7

a specific device. It is delegated to a device driver to access an interrupt source.
The IRQHandler object allows threads to wait for and acknowledge individual
interrupts.

Untyped Memory (see Section 2.4) is the foundation of memory allocation in the
seL4 kernel. Untyped memory capabilities have a single method which allows
the creation of new kernel objects. If the method succeeds, the calling thread
gains access to capabilities to the newly-created objects. Additionally, untyped
memory objects can be divided into a group of smaller untyped memory objects
allowing delegation of part (or all) of the system’s memory. We discuss memory
management in general in the following sections.

2.4 Kernel Memory Allocation

The seL4 microkernel does not dynamically allocate memory for kernel objects. In-
stead, objects must be explicitly created from application-controlled memory regions
via Untyped Memory capabilities. Applications must have explicit authority to memory
(through these Untyped Memory capabilities) in order to create new objects, and all
objects consume a fixed amount of memory once created. These mechanisms can be
used to precisely control the specific amount of physical memory available to appli-
cations, including being able to enforce isolation of physical memory access between
applications or a device. There are no arbitrary resource limits in the kernel apart from
those dictated by the hardware2, and so many denial-of-service attacks via resource
exhaustion are avoided.

At boot time, seL4 pre-allocates the memory required for the kernel itself, including the
code, data, and stack sections (seL4 is a single kernel-stack operating system). It then
creates an initial user thread (with an appropriate address and capability space). The
kernel then hands all remaining memory to the initial thread in the form of capabilities
to Untyped Memory, and some additional capabilities to kernel objects that were required
to bootstrap the initial thread. These Untyped Memory regions can then be split into
smaller regions or other kernel objects using the seL4_Untyped_Retype() method; the
created objects are termed children of the original untyped memory object.

The user-level application that creates an object using seL4_Untyped_Retype() re-
ceives full authority over the resulting object. It can then delegate all or part of the
authority it possesses over this object to one or more of its clients.

Untyped memory objects represent two different types of memory: general purpose
memory, or device memory. General purpose memory can be untyped into any other
object type and used for any operation on untyped memory provided by the kernel.
Device memory covers memory regions reserved for devices as determined by the hard-
ware platform, and usage of these objects is restricted by the kernel in the following
ways:

• Device untyped objects can only be retyped into frames or other untyped objects;
developers cannot, for example, create an endpoint from device memory.

2The treatment of virtual ASIDs imposes a fixed number of address spaces. This limitation is to
be removed in future versions of seL4.

8 CHAPTER 2. KERNEL SERVICES AND OBJECTS

• Frame objects retyped from device untyped objects cannot be set as thread IPC
buffers, or used in the creation of an ASID pool

The type attribute (whether it represents general purpose or device memory) of a child
untyped object is inherited from its parent untyped object. That is, any child of a
device untyped will also be a device untyped. Developers cannot change the type
attribute of an untyped.

2.4.1 Reusing Memory

The model described thus far is sufficient for applications to allocate kernel objects,
distribute authority among client applications, and obtain various kernel services pro-
vided by these objects. This alone is sufficient for a simple static system configuration.

The seL4 kernel also allows Untyped Memory regions to be reused. Reusing a region
of memory is allowed only when there are no dangling references (i.e., capabilities)
left to the objects inside that memory. The kernel tracks capability derivations, i.e.,
the children generated by the methods seL4_Untyped_Retype(), seL4_CNode_Mint(),
seL4_CNode_Copy(), and seL4_CNode_Mutate().

The tree structure so generated is termed the capability derivation tree (CDT).3 For
example, when a user creates new kernel objects by retyping untyped memory, the
newly created capabilities would be inserted into the CDT as children of the untyped
memory capability.

For each Untyped Memory region, the kernel keeps a watermark recording how much
of the region has previously been allocated. Whenever a user requests the kernel to
create new objects in an untyped memory region, the kernel will carry out one of two
actions: if there are already existing objects allocated in the region, the kernel will
allocate the new objects at the current watermark level, and increase the watermark.
If all objects previously allocated in the region have been deleted, the kernel will reset
the watermark and start allocating new objects from the beginning of the region again.

Finally, the seL4_CNode_Revoke() method provided by CNode objects destroys all
capabilities derived from the argument capability. Revoking the last capability to a
kernel object triggers the destroy operation on the now unreferenced object. This
simply cleans up any in-kernel dependencies between it, other objects and the kernel.

By calling seL4_CNode_Revoke() on the original capability to an untyped memory
object, the user removes all of the untyped memory object’s children—that is, all ca-
pabilities pointing to objects in the untyped memory region. Thus, after this invocation
there are no valid references to any object within the untyped region, and the region
may be safely retyped and reused.

2.4.2 Summary of Object Sizes

When retyping untyped memory it is useful to know how much memory the object will
require. Object sizes are defined in libsel4.

3Although the CDT conceptually is a separate data structure, it is implemented as part of the
CNode object and so requires no additional kernel meta-data.

2.4. KERNEL MEMORY ALLOCATION 9

Note that CNodes, SchedContexts (MCS only), and Untyped Objects have variables sizes.
When retyping untyped memory into CNodes or SchedContexts, or breaking an Untyped
Object into smaller Untyped Objects, the size_bits argument to seL4_Untyped_Re-
type() is used to specify the size of the resulting objects. For all other object types,
the size is fixed, and the size_bits argument to seL4_Untyped_Retype() is ignored.

Type Meaning of size_bits Size in Bytes

CNode log2 number of slots 2size_bits · 2seL4_SlotBits

seL4_SlotBits is:
on 32-bit architectures: 4
on 64-bit architectures: 5

SchedContext
(MCS only)

log2 size in bytes 2size_bits

Untyped log2 size in bytes 2size_bits

Table 2.1: Meaning of size_bits for object types of variable size

A single call to seL4_Untyped_Retype() can retype a single Untyped Object into multi-
ple objects. The number of objects to create is specified by its num_objects argument.
All created objects must be of the same type, specified by the type argument. In the
case of variable-sized objects, each object must also be of the same size. If the size
of the memory area needed (calculated by the object size multiplied by num_objects)
is greater than the remaining unallocated memory of the Untyped Object, an error will
result.

Chapter 3

Capability Spaces

Recall from Section 2.1 that seL4 implements a capability-based access control model.
Each userspace thread has an associated capability space (CSpace) that contains the
capabilities that the thread possesses, thereby governing which resources the thread
can access.

Recall that capabilities reside within kernel-managed objects known as CNodes. A
CNode is a table of slots, each of which may contain a capability. This may include
capabilities to further CNodes, forming a directed graph. Conceptually a thread’s
CSpace is the portion of the directed graph that is reachable starting with the CNode
capability that is its CSpace root.

A CSpace address refers to an individual slot (in some CNode in the CSpace), which
may or may not contain a capability. Threads refer to capabilities in their CSpaces
(e.g. when making system calls) using the address of the slot that holds the capa-
bility in question. An address in a CSpace is the concatenation of the indices of the
CNode capabilities forming the path to the destination slot; we discuss this further in
Section 3.3.

Recall that capabilities can be copied and moved within CSpaces, and also sent in
messages (message sending will be described in detail in Section 4.2.2). Furthermore,
new capabilities can be minted from old ones with a subset of their rights. Recall,
from Section 2.4.1, that seL4 maintains a capability derivation tree (CDT) in which it
tracks the relationship between these copied capabilities and the originals. The revoke
method removes all capabilities (in all CSpaces) that were derived from a selected
capability. This mechanism can be used by servers to restore sole authority to an
object they have made available to clients, or by managers of untyped memory to
destroy the objects in that memory so it can be retyped.

seL4 requires the programmer to manage all in-kernel data structures, including CSpaces,
from userspace. This means that the userspace programmer is responsible for con-
structing CSpaces as well as addressing capabilities within them. This chapter first
discusses capability and CSpace management, before discussing how capabilities are
addressed within CSpaces, i.e. how applications can refer to individual capabilities
within their CSpaces when invoking methods.

10

3.1. CAPABILITY AND CSPACE MANAGEMENT 11

3.1 Capability and CSpace Management

3.1.1 CSpace Creation

CSpaces are created by creating and manipulating CNode objects. When creating a
CNode the user must specify the number of slots that it will have, and this determines
the amount of memory that it will use. Each slot requires 2seL4_SlotBits bytes of
physical memory and has the capacity to hold exactly one capability. This is 16 bytes
on 32-bit architectures and 32 bytes on 64-bit architectures. Like any other object, a
CNode must be created by calling seL4_Untyped_Retype() on an appropriate amount
of untyped memory (see Section 2.4.2). The caller must therefore have a capability to
enough untyped memory as well as enough free capability slots available in existing
CNodes for the seL4_Untyped_Retype() invocation to succeed.

3.1.2 CNode Methods

Capabilities are managed largely through invoking CNode methods.

CNodes support the following methods:

seL4_CNode_Mint() creates a new capability in a specified CNode slot from an existing
capability. The newly created capability may have fewer rights than the original
and a different guard (see Section 3.3.1). seL4_CNode_Mint() can also create a
badged capability (see Section 4.2.1) from an unbadged one.

seL4_CNode_Copy() is similar to seL4_CNode_Mint(), but the newly created capabil-
ity has the same badge and guard as the original.

seL4_CNode_Move() moves a capability between two specified capability slots. You
cannot move a capability to the slot in which it is currently.

seL4_CNode_Mutate() can move a capability similarly to seL4_CNode_Move() and
also reduce its rights similarly to seL4_CNode_Mint(), although without an orig-
inal copy remaining.

seL4_CNode_Rotate() moves two capabilities between three specified capability slots.
It is essentially two seL4_CNode_Move() invocations: one from the second spec-
ified slot to the first, and one from the third to the second. The first and third
specified slots may be the same, in which case the capability in it is swapped
with the capability in the second slot. The method is atomic; either both or
neither capabilities are moved.

seL4_CNode_Delete() removes a capability from the specified slot.

seL4_CNode_Revoke() is equivalent to calling seL4_CNode_Delete() on each derived
child of the specified capability. It has no effect on the capability itself, except
in very specific circumstances outlined in Section 3.2.

seL4_CNode_SaveCaller() moves a kernel-generated reply capability of the current
thread from the special TCB slot it was created in, into the designated CSpace
slot (non-MCS only).

12 CHAPTER 3. CAPABILITY SPACES

seL4_CNode_CancelBadgedSends() cancels any outstanding sends that use the same
badge and object as the specified capability.

3.1.3 Capabilities to Newly-Retyped Objects

When retyping untyped memory into objects with seL4_Untyped_Retype(), capabil-
ities to the newly-retyped objects are placed in consecutive slots in a CNode specified
by its root, node_index, and node_depth arguments. The node_offset argument
specifies the index into the CNode at which the first capability will be placed. The
num_objects argument specifies the number of capabilities (and, hence, objects) to
create. All slots must be empty or an error will result. All resulting capabilities will
be placed in the same CNode.

3.1.4 Capability Rights

As mentioned previously, some capability types have access rights associated with
them. Currently, access rights are associated with capabilities for Endpoints (see Chap-
ter 4), Notifications (see Chapter 5), Pages (see Chapter 7) and Replying (see Chapter 4).
The access rights associated with a capability determine the methods that can be in-
voked. seL4 supports four access rights, which are Read, Write, Grant and GrantReply.
Read, Write and Grant are orthogonal to each other. GrantReply is a less powerful
form of Grant e.g. if you already have Grant, having GrantReply or not is irrelevant.
The meaning of each right is interpreted relative to the various object types, as detailed
in Table 3.1.

When an object is first created, the initial capability that refers to it carries the
maximum set of access rights. Other, less-powerful capabilities may be manufactured
from this original capability, using methods such as seL4_CNode_Mint() and seL4_-
CNode_Mutate(). If a greater set of rights than the source capability is specified for the
destination capability in either of these invocations, the destination rights are silently
downgraded to those of the source.

Type Read Write Grant GrantReply

Endpoint Receiving Sending Sending any
capabilities

Sending reply
capabilities

Notification Waiting Signaling N/A N/A

Page Mapping the
page readable.

Mapping the
page writable.

N/A N/A

Reply N/A N/A Sending any
capabilities in
reply message

N/A

Table 3.1: seL4 access rights: What a specific right entitles a capa-
bility to do

3.1. CAPABILITY AND CSPACE MANAGEMENT 13

3.1.5 Capability Derivation Tree

As mentioned in Section 2.4.1, seL4 keeps track of capability derivations in a capability
derivation tree.

Various methods, such as seL4_CNode_Copy() or seL4_CNode_Mint(), may be used
to create derived capabilities. Not all capabilities support derivation. In general, only
original capabilities support derivation invocations, but there are exceptions. Table 3.2
summarises the conditions that must be met for capability derivation to succeed for
the various capability types, and how capability-derivation failures are reported in each
case. The capability types not listed can be derived once.

Cap Type Conditions for Derivation Error Code on Derivation
Failure

ReplyCap Cannot be derived Dependent on syscall
IRQControl Cannot be derived Dependent on syscall
Untyped Must not have children (Sec-

tion 3.2)
seL4_RevokeFirst

Page Table Must be mapped seL4_IllegalOperation
Page Directory Must be mapped seL4_IllegalOperation
IO Page Table (IA-32
only)

Must be mapped seL4_IllegalOperation

Table 3.2: Capability derivation.

Untyped

Untyped Untyped

Untyped

original original

derived derived derived

original
unbadged

derived
unbadged

original
badged

derived
badged

derived
badged

Endpoint

Object 2

Object 1

Figure 3.1: Example capability derivation tree.

Figure 3.1 shows an example capability derivation tree that illustrates a standard sce-
nario: the top level is a large untyped capability, the second level splits this capability
into two regions covered by their own untyped caps, both are children of the first
level. The third level on the left is a copy of the level 2 untyped capability. Untyped
capabilities when copied always create children, never siblings. In this scenario, the
untyped capability was typed into two separate objects, creating two capabilities on
level 4, both are the original capability to the respective object, both are children of

14 CHAPTER 3. CAPABILITY SPACES

the untyped capability they were created from.

Ordinary original capabilities can have one level of derived capabilities. Further copies
of these derived capabilities will create siblings, in this case remaining on level 5. There
is an exception to this scheme for Endpoint and Notification capabilities — they support
an additional layer of depth though badging. The original Endpoint or Notification ca-
pability will be unbadged. Using the mint method, a copy of the capability with a
specific badge can be created (see Section 4.2.1, Section 5.1). This new, badged ca-
pability to the same object is treated as an original capability (the “original badged
endpoint capability”) and supports one level of derived children like other capabilities.

3.2 Deletion and Revocation

Capabilities in seL4 can be deleted and revoked. Both methods primarily affect capa-
bilities, but they can have side effects on objects in the system where the deletion or
revocation results in the destruction of the last capability to an object.

As described above, seL4_CNode_Delete() will remove a capability from the specified
CNode slot. Usually, this is all that happens. If, however, it was the last typed
capability to an object, this object will now be destroyed by the kernel, cleaning up all
remaining in-kernel references and preparing the memory for re-use.

If the object to be destroyed was a capability container, i.e. a TCB or CNode, the
destruction process will delete each capability held in the container, prior to destroying
the container. This may result in the destruction of further objects if the contained
capabilities are the last capabilities.1

The seL4_CNode_Revoke() method will seL4_CNode_Delete() all CDT children of
the specified capability, but will leave the capability itself intact. If any of the re-
voked child capabilities were the last capabilities to an object, the appropriate destroy
operation is triggered.

Note: seL4_CNode_Revoke() may only partially complete in two specific circum-
stances. The first being where a CNode containing the last capability to the TCB
of the thread performing the revoke (or the last capability to the TCB itself) is deleted
as a result of the revoke. In this case the thread performing the revoke is destroyed
during the revoke and the revoke does not complete. The second circumstance is where
the storage containing the capability that is the target of the revoke is deleted as a
result of the revoke. In this case, the authority to perform the revoke is removed during

1The recursion is limited as if the last capability to a CNode is found within the container, the
found CNode is not destroyed. Instead, the found CNode is made unreachable by moving the capability
pointing to the found CNode into the found cnode itself, by swapping the capability with the first
capability in the found cnode, and then trying to delete the swapped capability instead. This breaks
the recursion.
The result of this approach is that deleting the last cap to the root CNode of a CSpace does

not recursively delete the entire CSpace. Instead, it deletes the root CNode, and the branches of
the tree become unreachable, potentially including the deleting of some of the unreachable CNode’s
caps to make space for the self-referring capability. The practical consequence of this approach is that
CSpace deletion requires user-level to delete the tree leaf first if unreachable CNodes are to be avoided.
Alternatively, any resulting unreachable CNodes can be cleaned up via revoking a covering untyped
capability, however this latter approach may be more complex to arrange by construction at user-level.

3.3. CSPACE ADDRESSING 15

the operation and the operation stops part way through. Both these scenarios can be
and should be avoided at user-level by construction.

Note that for page tables and page directories seL4_CNode_Revoke() will not revoke
frame capabilities mapped into the address space. They will only be unmapped from
the space.

3.3 CSpace Addressing

When performing a system call, a thread specifies to the kernel the capability to be
invoked by giving an address in its CSpace. This address refers to the specific slot in
the caller’s CSpace that contains the capability to be invoked.

CSpaces are designed to permit sparsity, and the process of looking-up a capability
address must be efficient. Therefore, CSpaces are implemented as guarded page tables.

As explained earlier, a CSpace is a directed graph of CNode objects, and each CNode is
a table of slots, where each slot can either be empty, or contain a capability, which may
refer to another CNode. Recall from Section 2.3 that the number of slots in a CNode
must be a power of two. A CNode is said to have a radix, which is the power to which
two is raised in its size. That is, if a CNode has 2k slots, its radix would be k. The
kernel stores a capability to the root CNode of each thread’s CSpace in the thread’s
TCB. Conceptually, a CNode capability stores not only a reference to the CNode to
which it refers, but also carries a guard value, explained in Section 3.3.1.

3.3.1 Capability Address Lookup

Like a virtual memory address, a capability address is simply an integer. Rather
than referring to a location of physical memory (as does a virtual memory address),
a capability address refers to a capability slot. When looking up a capability address
presented by a userspace thread, the kernel first consults the CNode capability in the
thread’s TCB that defines the root of the thread’s CSpace. It then compares that
CNode’s guard value against the most significant bits of the capability address. If
the two values are different, lookup fails. Otherwise, the kernel then uses the next
most-significant radix bits of the capability address as an index into the CNode to
which the CNode capability refers. The slot s identified by these next radix bits might
contain another CNode capability or contain something else (including nothing). If s
contains a CNode capability c and there are remaining bits (following the radix bits)
in the capability address that have yet to be translated, the lookup process repeats,
starting from the CNode capability c and using these remaining bits of the capability
address. Otherwise, the lookup process terminates successfully; the capability address
in question refers to the capability slot s.

Figure 3.2 demonstrates a valid CSpace with the following features:

• a top level CNode object with a 12-bit guard set to 0x000 and 256 slots;

• a top level CNode with direct object references;

• a top level CNode with two second-level CNode references;

16 CHAPTER 3. CAPABILITY SPACES

Guard

0x00

0x0

0x00

0x000 (12 bits)

0x0 (4 bits)

0x0 (3 bits)

CNode

CNode

CNode

0xFF

0xF
CNode

CNode

Object

Object

Object

Object

Object

Object 0xFF

Guard

Guard

12 bit guard + 8 bit radix* = 20 bits
translated. 32 bit word - 20 bits = 12
bits remaining
*(2^8 = 256 slots)

4 bit guard + 8 bit radix = 12 bits
translated
32 - 20 - 12 = 0 bits remaining

CNode

3 bit guard + 4 bit radix = 7 bits
translated
32 - 20 - 7 = 5 bits remaining

Figure 3.2: An example CSpace demonstrating object references at
all levels, various guard and radix sizes and internal CNode references.

• second level CNodes with different guards and slot counts;

• a second level CNode that contains a reference to a top level CNode;

• a second level CNode that contains a reference to another CNode where there
are some bits remaining to be translated;

• a second level CNode that contains a reference to another CNode where there
are no bits remaining to be translated; and

• object references in the second level CNodes.

It should be noted that Figure 3.2 demonstrates only what is possible, not what is
usually practical. Although the CSpace is legal, it would be reasonably difficult to
work with due to the small number of slots and the circular references within it.

3.3.2 Addressing Capabilities

A capability address is stored in a CPointer (abbreviated CPTR), which is an un-
signed integer variable. Capabilities are addressed in accordance with the translation
algorithm described above. Two special cases involve addressing CNode capabilities
themselves and addressing a range of capability slots.

Recall that the translation algorithm described above will traverse CNode capabilities
while there are address bits remaining to be translated. Therefore, in order to address a

3.3. CSPACE ADDRESSING 17

L1 CNode Cap

0x0 (4 bits)

L2 CNode Cap

Cap A

Guard

0x00

0x0F

0x60

0xFF

0x0 (4 bits)

L3 CNode Cap

Cap B

Guard

0x00

0x60

0xFF

Cap C, D, E, F, G

Guard 0 bits

0x00

0x60

0x64

0xFF

Figure 3.3: An arbitrary CSpace layout.

capability which may be a CNode capability, the user must supply not only a capability
address but also specify the maximum number of bits of the capability address that
are to be translated, called the depth limit. When a CPointer is paired with depth
limit depth, only its depth least significant bits are used in translation.

Certain methods, such as seL4_Untyped_Retype(), require the user to provide a range
of capability slots. This is done by providing a base capability address, which refers
to the first slot in the range, together with a window size parameter, specifying the
number of slots (with consecutive addresses, following the base slot) in the range.

Figure 3.3 depicts an example CSpace. In order to illustrate these ideas, we determine
the address of each of the 10 capabilities in this CSpace.

Cap A. The first CNode has a 4-bit guard set to 0x0, and an 8-bit radix. Cap
A resides in slot 0x60 so, provided that it is not a CNode capability, it may
be referred to by any address of the form 0x060nnnnn (where nnnnn is any
sequence of 5 hexadecimal digits, because the translation process terminates
after translating the first 12 bits of the address). For simplicity, we usually set
unused address bits to 0, which in this case yields the address 0x06000000.

Cap B. Again, the first CNode has a 4-bit guard set to 0x0, and an 8-bit radix. The
second CNode is reached via the L2 CNode Cap. It also has a 4-bit guard of
0x0 and Cap B resides at index 0x60. Hence, Cap B’s address is 0x00F06000.
Translation of this address terminates after the first 24 bits.

Cap C. This capability is addressed via both CNodes. The third CNode is reached
via the L3 CNode Cap, which resides at index 0x00 of the second CNode. The
third CNode has no guard and Cap C is at index 0x60. Hence, its address is
0x00F00060. Translation of this address leaves 0 bits untranslated.

Caps C–G. This range of capability slots is addressed by providing a base address
(which refers to the slot containing Cap C) of 0x00F00060 and a window size of
5.

18 CHAPTER 3. CAPABILITY SPACES

L2 CNode Cap. Recall that to address a CNode capability, the user must supply not
only a capability address but also specify the depth limit, which is the maximum
number of bits to be translated. L2 CNode Cap resides at offset 0x0F of the
first CNode, which has a 4-bit guard of 0x0. Hence, it may be referred to by any
address of the form 0xnnnnn00F with a depth limit of 12 bits, where nnnnn is
any sequence of 5 hexadecimal digits.

L3 CNode Cap. This capability resides at index 0x00 of the second CNode, which
is reached by the L2 CNode Cap. The second CNode has a 4-bit guard of 0x0.
Hence, the capability may be referred to by any address of the form 0xnn00F000
with a depth limit of 24 bits, where nn is any sequence of 2 hexadecimal digits.

In summary, to refer to any capability (or slot) in a CSpace, the user must supply its
address. When the capability might be a CNode, the user must also supply a depth
limit. To specify a range of capability slots, the user supplies a starting address and a
window size.

3.4 Lookup Failure Description

When a capability lookup fails, a description of the failure is given to either the calling
thread or the thread’s exception handler in its IPC buffer. The format of the descrip-
tion is always the same but may occur at varying offsets in the IPC buffer depending
on how the error occurred. The description format is explained below. The first word
indicates the type of lookup failure and the meaning of later words depend on this.

3.4.1 Invalid Root

A CSpace CPTR root (within which a capability was to be looked up) is invalid. For
example, the capability is not a CNode cap.

Data Meaning

Offset + 0 seL4_InvalidRoot

3.4.2 Missing Capability

A capability required for an invocation is not present or does not have sufficient rights.

Data Meaning

Offset + 0 seL4_MissingCapability
Offset + seL4_CapFault_BitsLeft Bits left

3.4. LOOKUP FAILURE DESCRIPTION 19

3.4.3 Depth Mismatch

When resolving a capability, a CNode was traversed that resolved more bits than was
left to decode in the CPTR or a non-CNode capability was encountered while there
were still bits remaining to be looked up.

Data Meaning

Offset + 0 seL4_DepthMismatch
Offset + seL4_CapFault_BitsLeft Bits of CPTR remaining to decode
Offset + seL4_CapFault_DepthMis-
match_BitsFound

Bits that the current CNode being tra-
versed resolved

3.4.4 Guard Mismatch

When resolving a capability, a CNode was traversed with a guard size larger than the
number of bits remaining or the CNode’s guard did not match the next bits of the
CPTR being resolved.

Data Meaning

Offset + 0 seL4_GuardMismatch
Offset + seL4_CapFault_BitsLeft Bits of CPTR remaining to decode
Offset + seL4_CapFault_GuardMis-
match_GuardFound

The CNode’s guard

Offset + seL4_CapFault_GuardMis-
match_BitsFound

The CNode’s guard size

Chapter 4

Message Passing (IPC)

The seL4 microkernel provides a message-passing IPC mechanism for communication
between threads. The same mechanism is also used for communication with kernel-
provided services. Messages are sent by invoking a capability to a kernel object. Mes-
sages sent to Endpoints are destined for other threads, while messages sent to other
objects are processed by the kernel. This chapter describes the common message for-
mat, endpoints, and how they can be used for communication between applications.

4.1 Message Registers

Each message contains a number of message words and optionally a number of capa-
bilities. The message words are sent to or received from a thread by placing them in
its message registers. The message registers are numbered and the first few message
registers are implemented using physical CPU registers, while the rest are backed by a
fixed region of memory called the IPC buffer. The reason for this design is efficiency:
very short messages need not use the memory. The IPC buffer is assigned to the calling
thread (see Section 6.1 and Section 10.3.7.11).

Every IPC message also has a tag (structure seL4_MessageInfo_t). The tag consists of
four fields: the label, message length, number of capabilities (the extraCaps field) and
the capsUnwrapped field. The message length and number of capabilities determine
either the number of message registers and capabilities that the sending thread wishes
to transfer, or the number of message registers and capabilities that were actually
transferred. The label is not interpreted by the kernel and is passed unmodified as
the first data payload of the message. The label may, for example, be used to specify
a requested operation. The capsUnwrapped field is used only on the receive side, to
indicate the manner in which capabilities were received. It is described in Section 4.2.2.

The kernel assumes that the IPC buffer contains a structure of type seL4_IPCBuffer
as defined in Table 4.1. The kernel uses as many physical registers as possible to
transfer IPC messages. When more arguments are transferred than physical message
registers are available, the kernel begins using the IPC buffer’s msg field to transfer
arguments. However, it leaves room in this array for the physical message registers.
For example, if an IPC transfer or kernel object invocation required 4 message registers

20

4.2. ENDPOINTS 21

Type Name Description
seL4_MessageInfo_t tag Message tag
seL4_Word[] msg Message contents
seL4_Word userData Base address of the structure, used by

supporting user libraries
seL4_CPtr[] (in) caps Capabilities to transfer
seL4_CapData_t[]
(out)

badges Badges for endpoint capabilities re-
ceived

seL4_CPtr receiveCNode CPTR to a CNode from which to find
the receive slot

seL4_CPtr receiveIndex CPTR to the receive slot relative to re-
ceiveCNode

seL4_Word receiveDepth Number of bits of receiveIndex to use

Table 4.1: Fields of the seL4_IPCBuffer structure. Note that badges
and caps use the same area of memory in the structure.

(and there are only 2 physical message registers available on this architecture) then
arguments 1 and 2 would be transferred via message registers and arguments 3 and
4 would be in msg[2] and msg[3]. This allows the user-level object-invocation stubs
to copy the arguments passed in physical registers to the space left in the msg array
if desired. The situation is similar for the tag field. There is space for this field in
the seL4_IPCBuffer structure, which the kernel ignores. User level stubs may wish to
copy the message tag from its CPU register to this field, although the user level stubs
provided with the kernel do not do this.

4.2 Endpoints

Endpoints allow a small amount of data and capabilities (namely the IPC buffer) to be
transferred between two threads. Endpoint objects are invoked directly using the seL4
system calls described in Section 2.2.

IPC Endpoints uses a rendezvous model and as such is synchronous and blocking. An
Endpoint object may queue threads either to send or to receive. If no receiver is ready,
threads performing the seL4_Send() or seL4_Call() system calls will wait in a queue
for the first available receiver. Likewise, if no sender is ready, threads performing the
seL4_Recv() system call or the second half of seL4_ReplyRecv() will wait for the
first available sender.

Trying to Send or Call without the Write right will fail and return an error. In the
case of Send the error is ignored (The kernel isn’t allowed to reply). Thus there is
no way of knowing that a send has failed because of missing right. On the other
hand calling seL4_Recv() with a endpoint capability that does not have the Read
right will raise a fault, see Section 6.2. This because otherwise the error message
would be indistinguishable from a normal message received from another thread via
the endpoint.

22 CHAPTER 4. MESSAGE PASSING (IPC)

4.2.1 Endpoint Badges

Endpoint capabilities may be minted to create a new endpoint capability with a badge
attached to it, a data word chosen by the invoker of the mint operation. When a
message is sent to an endpoint using a badged capability, the badge is transferred to
the receiving thread’s badge register.

An endpoint capability with a zero badge is said to be unbadged. Such a capability
can be badged with the seL4_CNode_Mutate() or seL4_CNode_Mint() invocations
on the CNode containing the capability. Endpoint capabilities with badges cannot be
unbadged, rebadged or used to create child capabilities with different badges.

On 32-bit platforms, only the low 28 bits of the badge are available for use. The
kernel will silently ignore any usage of the high 4 bits. On 64-bit platforms, 64 bits
are available for badges.

4.2.2 Capability Transfer

Messages may contain capabilities, which will be copied to the receiver, provided that
the endpoint capability invoked by the sending thread has Grant rights. An attempt
to send capabilities using an endpoint capability without the Grant right will result in
transfer of the raw message, without any capability transfer.

Capabilities to be sent in a message are specified in the sending thread’s IPC buffer
in the caps field. Each entry in that array is interpreted as a CPTR in the send-
ing thread’s capability space. The number of capabilities to send is specified in the
extraCaps field of the message tag.

The receiver specifies the slot in which it is willing to receive a capability, with three
fields within the IPC buffer: receiveCNode, receiveIndex and receiveDepth. These
fields specify the root CNode, capability address and number of bits to resolve, re-
spectively, to find the slot in which to put the capability. Capability addressing is
described in Section 3.3.2.

Note that receiving threads may specify only one receive slot, whereas a sending thread
may include multiple capabilities in the message. Messages containing more than one
capability may be interpreted by kernel objects. They may also be sent to receiv-
ing threads in the case where some of the extra capabilities in the message can be
unwrapped.

If the n-th capability in the message refers to the endpoint through which the message
is sent, the capability is unwrapped: its badge is placed into the n-th position of
the receiver’s badges array, and the kernel sets the n-th bit (counting from the least
significant) in the capsUnwrapped field of the message tag. The capability itself is not
transferred, so the receive slot may be used for another capability.

A capability that is not unwrapped is transferred by copying it from the sender’s CNode
slot to the receiver’s CNode slot. The sender retains access to the sent capability.

If a receiver gets a message whose tag has an extraCaps of 2 and a capsUnwrapped of
2, then the first capability in the message was transferred to the specified receive slot
and the second capability was unwrapped, placing its badge in badges[1]. There may

4.2. ENDPOINTS 23

have been a third capability in the sender’s message which could not be unwrapped.

4.2.3 Errors

Errors in capability transfers can occur at two places: in the send phase or in the
receive phase. In the send phase, all capabilities that the caller is attempting to send
are looked up to ensure that they exist before the send is initiated in the kernel. If the
lookup fails for any reason, seL4_Send() and seL4_Call() system calls immediately
abort and no IPC or capability transfer takes place. The system call will return a
lookup failure error as described in Section 10.1.

In the receive phase, seL4 transfers capabilities in the order that they are found in
the sending thread’s IPC buffer caps array and terminates as soon as an error is
encountered. Possible error conditions are:

• A source capability cannot be looked up. Although the presence of the source
capabilities is checked when the sending thread performs the send system call,
this error may still occur. The sending thread may have been blocked on the
endpoint for some time before it was paired with a receiving thread. During this
time, its CSpace may have changed and the source capability pointers may no
longer be valid.

• The destination slot cannot be looked up. Unlike the send system call, the
seL4_Recv() system call does not check that the destination slot exists and is
empty before it initiates the receive. Hence, the seL4_Recv() system call will
not fail with an error if the destination slot is invalid and will instead transfer
badged capabilities until an attempt to save a capability to the destination slot
is made.

• The capability being transferred cannot be derived. See Section 3.1.5 for details.

An error will not void the entire transfer, it will just end it prematurely. The capa-
bilities processed before the failure are still transferred and the extraCaps field in the
receiver’s IPC buffer is set to the number of capabilities transferred up to failure. No
error message will be returned to the receiving thread in any of the above cases.

4.2.4 Calling and Replying

As explained in Section 2.2, when the user calls seL4_Call() on an endpoint capability,
some specific actions are taken. First a call will do exactly the same action as a normal
seL4_Send(). Then after the rendezvous and all the normal IPC procedure happened,
instead of returning directly to the caller, seL4_Call() will check if either Grant or
GrantReply are present on the invoked endpoint capability:

• If this is not the case, the caller thread is suspended as if seL4_TCB_Suspend()
was called on it. The send part of the call would still have been performed as
usual.

24 CHAPTER 4. MESSAGE PASSING (IPC)

• If this is the case. A reply capability is set in a specific slot of the receiver TCB.
The Grant right of that reply capability is set by copying the Grant right of the
endpoint capability invoked by the receiver in seL4_Recv(). Then, the caller
thread is blocked waiting for the reply.

A reply capability points directly to the caller thread and once the call has been
performed is completely unrelated to the original Endpoint. Even if the latter was
destroyed, the reply capability would still exist and point to the caller who would still
be waiting for a reply.

The generated reply capability can then be either invoked in place (in the specific TCB
slot) with the seL4_Reply() or saved to an addressable slot using seL4_CNode_-
SaveCaller() to be invoked later with seL4_Send(). The specific slot cannot be
directly addressed with any CPtr as it is not part of any CSpace.

A reply capability is invoked in the same way as a normal send on a Endpoint. A
reply capability has implicitly the Write right, so the message will always go through.
Transferring caps in the reply can only happen if the reply capability has the Grant
right and is done in exactly the same way as in a normal IPC transfer as described in
Section 4.2.2.

The main difference with a normal endpoint transfer is that the kernel guarantees
that invoking a reply capability cannot block: If you own a reply capability, then the
thread it points to is waiting for a reply. However a reply capability is a non-owning
reference, contrary to all the other capabilities. That means that if the caller thread
is destroyed or modified in any way that would render a reply impossible (for example
being suspended with seL4_TCB_Suspend()), the kernel would immediately destroy
the reply capability.

Once the reply capability has been invoked, the caller receives the message as if it has
been performing a seL4_Recv() and just received the message. In particular, it starts
running again.

The seL4_Call() operation exists not only for efficiency reasons (combining two op-
erations into a single system call). It differs from seL4_Send() immediately followed
by seL4_Recv() in ways that allow certain system setup to work much more efficiently
with much less setup that with a traditional setup. In particular, it is guaranteed that
the reply received by the caller comes from the thread that received the call without
having to check any kind of badge.

Chapter 5

Notifications

Notifications are a simple, non-blocking signalling mechanism that logically represents
a set of binary semaphores.

5.1 Notification Objects

A Notification object contains a single data word, called the notification word. Such an
object supports two operations: seL4_Signal() and seL4_Wait().

Notification capabilities can be badged, using seL4_CNode_Mutate() or seL4_CNode_-
Mint(), just like Endpoint capabilities (see Section 4.2.1). As with Endpoint capabilities,
badged Notification capabilities cannot be unbadged, rebadged or used to create child
capabilities with different badges.

5.2 Signalling, Polling and Waiting

The seL4_Signal() method updates the notification word by bit-wise or-ing it with
the badge of the invoked notification capability. It also unblocks the first thread waiting
on the notification (if any). As such, seL4_Signal() works like concurrently signalling
multiple semaphores (those indicated by the bits set in the badge). If the signal sender
capability was unbadged or 0-badged, the operation degrades to just waking up the
first thread waiting on the notification (also see below).

The seL4_Wait() method works similarly to a select-style wait on the set of semaphores:
If the notification word is zero at the time seL4_Wait() is called, the invoker blocks.
Else, the call returns immediately, setting the notification word to zero and returning
to the invoker the previous notification-word value.

The seL4_Poll() is the same as seL4_Wait(), except if no signals are pending (the
notification word is 0) the call will return immediately without blocking.

If threads are waiting on the Notification object at the time seL4_Signal() is invoked,
the first queued thread receives the notification. All other threads keep waiting until
the next time the notification is signalled.

25

26 CHAPTER 5. NOTIFICATIONS

5.3 Binding Notifications

Notification objects and TCBs can be bound together in a 1-to-1 relationship through the
seL4_TCB_BindNotification() invocation. When a Notification is bound to a TCB,
signals to that notification object will be delivered even if the thread is receiving from
an IPC endpoint. To distinguish whether the received message was a notification or
an IPC, developers should check the badge value. By reserving a specific badge (or
range of badges) for capabilities to the bound notification — distinct from endpoint
badges — the message source can be determined.

Once a notification has been bound, the only thread that may perform seL4_Wait()
on the notification is the bound thread.

Chapter 6

Threads and Execution

6.1 Threads

seL4 provides threads to represent an execution context. On MCS configurations of
the kernel, scheduling contexts are used to manage processor time. Without MCS,
processor time is also represented by the thread abstraction. A thread is represented
in seL4 by its thread control block object (TCB).

With MCS, a scheduling context is represented by a scheduling context object (SCO),
and threads cannot run unless they are bound to, or receive a scheduling context.

6.1.1 Thread control blocks

Each TCB has an associated CSpace (see Chapter 3) and VSpace (see Chapter 7) which
may be shared with other threads. A TCB may also have an IPC buffer (see Chapter 4),
which is used to pass extra arguments during IPC or kernel object invocation that do
not fit in the architecture-defined message registers. While it is not compulsory that
a thread has an IPC buffer, it will not be able to perform most kernel invocations, as
they require cap transfer. Each thread belongs to exactly one security domain (see
Section 6.3).

6.1.2 Thread Creation

Like other objects, TCBs are created with the seL4_Untyped_Retype() method (see
Section 2.4). A newly created thread is initially inactive. It is configured by setting
its CSpace and VSpace with the seL4_TCB_SetSpace() or seL4_TCB_Configure()
methods and then calling seL4_TCB_WriteRegisters() with an initial stack pointer
and instruction pointer. The thread can then be activated either by setting the re-
sume_target parameter in the seL4_TCB_WriteRegisters() invocation to true or by
seperately calling the seL4_TCB_Resume() method. Both of these methods place the
thread in a runnable state.

On the master kernel, this will result in the thread immediately being added to the
scheduler. On the MCS kernel, the thread will only begin running if it has a scheduling

27

28 CHAPTER 6. THREADS AND EXECUTION

context object.

In a SMP configuration of the kernel, the thread will resume on the core corresponding
to the affinity of the thread. For master, this is set using seL4_TCB_SetAffinity(),
while on the MCS kernel the affinity is derived from the scheduling context object.

6.1.3 Thread Deactivation

The seL4_TCB_Suspend() method deactivates a thread. Suspended threads can later
be resumed. Their suspended state can be retrieved with the seL4_TCB_ReadReg-
isters() and seL4_TCB_CopyRegisters() methods. They can also be reconfigured
and reused or left suspended indefinitely if not needed. Threads will be automatically
suspended when the last capability to their TCB is deleted.

6.1.4 Scheduling

seL4 uses a preemptive, tickless scheduler with 256 priority levels (0 — 255). All
threads have a maximum controlled priority (MCP) and a priority, the latter being
the effective priority of the thread. When a thread modifies a another threads priority
(including itself) it must provide a thread capability from which to use the MCP from.
Threads can only set priorities and MCPs to be less than or equal to the provided
thread’s MCP. The initial task starts with an MCP and priority as the highest priority
in the system (seL4_MaxPrio). Thread priority and MCP can be set with seL4_-
TCB_SetSchedParams() and seL4_TCB_SetPriority(), seL4_TCB_SetMCPriority()
methods.

Of threads eligible for scheduling, the highest priority thread in a runnable state is
chosen.

Thread priority (structure seL4_PrioProps_t) consists of two values as follows:

Priority the priority a thread will be scheduled with.

Maximum controlled priority (MCP) the highest priority a thread can set itself
or another thread to.

6.1.5 MCS Scheduling

This section only applies to configrations with MCS enabled, where threads must have
a scheduling context object available in order to be admitted to the scheduler.

6.1.6 Scheduling Contexts

Access to CPU execution time is controlled through scheduling context objects. Schedul-
ing contexts are configured with a tuple of budget(b) and period (p), both in microsec-
onds, set by seL4_SchedControl_Configure() (see Section 6.1.8). The tuple (b, p)
forms an upper bound on the thread’s execution – the kernel will not permit a thread
to run for more than b out of every p microseconds. However, b

p does not represent a

6.1. THREADS 29

lower bound on execution, as a thread must have the highest or equal highest priority
of all runnable threads to be guaranteed to be scheduled at all, and the kernel does
not conduct an admission test. As a result the set of all parameters is not neccesserily
schedulable. If multiple threads have available budget concurrently they are scheduled
first-in first-out, and round-robin scheduling is applied once the budget is expired.

A scheduling context that is eligible to be picked by the scheduler, i.e has budget
available, is referred to as active. Budget charging and replenishment rules are different
for round-robin and sporadic threads. For round-robin threads, the budget is charged
each time the current node’s scheduling context is changed, until it is depleted and
then refilled immediately.

Threads where b == p are treated as round robin threads, where b acts as a timeslice.
Otherwise the kernel uses sporadic servers to enforce temporal isolation, which enforce
the property that b

p cannot be exceeded for all possible p. In theory, sporadic servers
provide temporal isolation – preventing threads from exceeding their allocated budget
– by using the following algorithm:

• When a thread starts executing at current time T , record Ts

• When a thread stops executing (blocks or is preempted), schedule a replenish-
ment at Ts +p for the amount of time consumed (T −Ts) and subtract that from
the current replenishment being used.

seL4 implements this algorithm by maintaining an ordered list of sporadic replenish-
ments – refills for brevity – in each scheduling context. Each replenishment contains
a tuple of the time it is eligible for use (rTime) and the amount that replenishment
is for (rAmount). While a thread is executing, it constantly drains the budget from
the rAmount at the head of the replenishment list. If the rTime is in the future, the
thread bound to that scheduling context is placed in a queue of threads waiting for
more budget.

Round-robin threads are treated that same as sporadic threads except for one case:
how the budget is charged. Round-robin threads have two refills only, both of which
are always ready to be used. When a round-robin thread stops executing, budget is
moved from the head to the tail replenishment. Once the head budget is consumed,
the thread is removed from the scheduling queue for its priority and appended at the
tail.

Sporadic threads behave differently depending on the amount of replenishments avail-
able, which must be bounded. Developers have two options to configure the size of the
replenishment list:

• The maximum number of refills in a single scheduling context is determined by
the size of the scheduling context when created by seL4_Untyped_Retype().

• A per scheduling context parameter, extra_refills that limits the number of
refills for that specific scheduling context. This value is added to the base value
of 2 and is limited by the size of the scheduling context.

30 CHAPTER 6. THREADS AND EXECUTION

Threads that have short exection times (e.g interrupt handlers) and are not frequently
preempted should have less refills, while longer running threads with long values of b
should have a higher value. Threads bound to a scheduling context with 0 extra refills
will behave periodically – tasks that use their head replenishment, or call yield, will
not be scheduled again until the start of their next period.

Given the number of replenishments is limited, if a node’s SC changes and the outgoing
SC does not have enough space to store the new replenishment, space is created by
removing the current replenishment which can result in preemption if the next replen-
ishment is not yet available. Scheduling contexts with a higher number of configured
refills will consume closer to their whole budget, as they can be preempted or switch
threads more often without filling their replenishment queue. However, the scheduling
overhead will be higher as the replenishment list is subject to fragmentation.

Whenever a thread is executing it consumes the budget from its current scheduling
context. The system call seL4_Yield() can be used to sacrifice any remaining budget
and block until the next replenishment is ready to be used.

Threads can be bound to scheduling contexts using seL4_TCB_Configure() or seL4_-
SchedContext_Bind(), both invocations have the same effect although seL4_TCB_-
Configure() allows more thread fields to be set with only one kernel entry. When a
thread is bound to a scheduling context, if it is in a runnable state and the scheduling
context is active, it will be added to the scheduler.

6.1.7 Passive Threads

Threads can be unbound from a scheduling context with seL4_SchedContext_Un-
bindObject(). This is distinct from suspending a thread, in that threads that are
blocked waiting in an endpoint or notification queue will remain in the queue and can
still recieve messages and signals. However, the unbound thread will not be schedula-
ble again until it receives a scheduling context. Threads without scheduling contexts
are referred to as passive threads, as they cannot execute without the action of another
thread.

6.1.8 Scheduling Context Creation

Like other objects, scheduling contexts are created from untyped memory using seL4_-
UntypedRetype(). On creation, scheduling contexts are empty, representing 0% of
CPU execution time. To populate a scheduling context with parameters, one must
invoke the appropriate SchedControl capability, which provides access to CPU time
management on a single node. A scheduling control cap for each node is provided to
the initial task at run time. Threads run on the node that their scheduling context
is configured for. Scheduling context parameters can then be set and updated using
seL4_SchedControl_ConfigureFlags(), which allows the budget and period to be
specified along with a bitwise OR’d set of the following flags.

seL4_SchedContext_Sporadic : constrain the execution time only according to
the sporadic server algorithm rather than to a continuous constant bandwidth.

6.1. THREADS 31

The kernel does not conduct any schedulability tests, as task admission is left to user-
level policy and can be conducted online or offline, statically or dynamically or not at
all.

6.1.9 Scheduling Context Donation

In addition to explicitly binding and removing scheduling contexts through seL4_-
SchedContext_Bind() and seL4_SchedContext_UnbindObject(), scheduling contexts
can move between threads over IPC. Scheduling contexts are donated implicitly when
the system calls seL4_Call() and seL4_NBSendRecv() are used to communicate with
a passive thread. When an active thread invokes an endpoint with seL4_Call() and
rendezvous with a passive thread, the active thread’s scheduling context is donated to
the passive thread. The generated reply cap ensures that the callee is merely borrowing
the scheduling context: when the reply cap is consumed by a reply message being sent
the scheduling context will be returned to the caller. If the reply cap is revoked, and
the callee holds the scheduling context, the scheduling context will be returned to the
caller. However, if in a deep call chain and a reply cap in the middle of the call chain
is revoked, such that the callee does not possess the scheduling context, the thread
will be removed from the call chain and the scheduling context will remain where it
is. If the receiver does not provide a reply object to track the donation in (i.e uses
seL4_Wait() instead of seL4_Recv() scheduling context donation will not occur but
the message will be delivered. The passive receiver will be set to inactive as it does
not have a scheduling context.

Consider an example where thread A calls thread B which calls thread C. If whilst
C holds the scheduling context, B’s reply cap to A is revoked, then the scheduling
context will remain with C. However, a call chain will remain between A and C, such
that if C’s reply cap is revoked, or invoked, the scheduling context will return to A.

seL4_NBSendRecv() can also result in scheduling context donation. If the non-blocking
send phase of the operation results in message delivery to a passive thread, the schedul-
ing context will be donated to that passive thread and the thread making the system
call becomes passive on the receiving endpoint in the receive phase. No reply capabil-
ity generated, so there is no guarantee that the scheduling context will return, which
increases book keeping complexity but allows for data-flow like architectures rather
than remote-procedure calls. Note that seL4_Call() does not guarantee the return of
a scheduling context: this is an inherently trusted operation as the server could never
reply and return the scheduling context.

Scheduling contexts can also be bound to notification objects using seL4_SchedCon-
text_Bind() and unbound using seL4_SchedContext_UnbindObject(). If a signal is
delivered to a notification object with a passive thread blocked waiting on it, the pas-
sive thread will receive the scheduling context that is bound to the notification object.
The scheduling context is returned when the thread blocks on the notification object.
This feature allows for passive servers to use notification binding (See Section 5.3).

Scheduling contexts can be unbound from all objects (notification objects and TCBs
that are bound or have received a scheduling context through donation) using seL4_-
SchedContext_Unbind().

32 CHAPTER 6. THREADS AND EXECUTION

Passive threads will run on the CPU node that the scheduling context was configured
with, and will be migrated on IPC.

6.1.10 Scheduling algorithm

Threads are only eligible for scheduling if they have an active scheduling context. Of
threads eligible for scheduling, the highest priority thread in a runnable state is chosen.

Threads of sufficient maximum controlled priority and with possession of the appropri-
ate scheduling context capability can manipulate the scheduler and implement user-
level schedulers using IPC.

Scheduling contexts provide access to and an upper bound on exection CPU time,
however when a thread executes is determined by thread priority. Consequently, ac-
cess to CPU is a function of thread MCPs, scheduling contexts and the SchedControl
capability. The kernel will enforce that threads do not exceeed the budget in their
scheduling context for any given period, and that the highest priority thread will al-
ways run, however it is up to the system designer to make sure the entire system is
schedulable.

6.1.11 Exceptions

Each thread has two associated exception-handler endpoints, a standard exception
handler and a timeout exception handler, where the latter is MCS only. If the thread
causes an exception, the kernel creates an IPC message with the relevant details and
sends this to the endpoint. This thread can then take the appropriate action. Fault
IPC messages are described in Section 6.2. Standard exception-handler endpoints
can be set with the seL4_TCB_SetSpace() or seL4_TCB_SetSchedParams() methods
while Timeout exception handlers an be set with seL4_TCB_SetTimeoutEndpoint()
(MCS only). With these methods, a capability address for the exception handler can
be associated with a thread. This address is then used to lookup the handler endpoint,
and the capability to the endpoint is installed into the threads’ kernel CNode. For
threads without an exception handler, a null capability can be used, however the
consequences are different per exeception handler type. Before raising an exception
the handler capability is validated. The kernel does not perform another lookup, but
checks that the capability is an endpoint with the correct rights.

The exception endpoint must have Write and either Grant or GrantReply rights. Re-
plying to the exception message restarts the thread. For certain exception types, the
contents of the reply message may be used to set the values in the registers of the
thread being restarted. See Section 6.2 for details.

6.1.11.1 Standard Exceptions

The standard exception handler is used when a fault is triggered by a thread which
cannot be recovered without action by another thread. For example, if a thread raises
a fault due to an unmapped virtual memory page, the thread cannot make any more
progress until the page is mapped. If a thread experiences a fault that would trigger

6.2. FAULTS 33

the standard exception handler while it is set to a null capability, the kernel will pause
the thread and it will not run again. This is because without action by another thread,
standard exceptions cannot be recovered from. Consequently threads without standard
exception handlers should be trusted not to fault at all.

Standard exception handlers can be passive, in which case they will run on the schedul-
ing context of the faulting thread.

6.1.11.2 Timeout Exceptions (MCS Only)

Timeout faults are raised when a thread attempts to run but has no available budget,
and if that thread has a valid timeout exception handler capability. The handling of
timeout faults is not compulsory: if a thread does not have a timeout fault handler,
a fault will not be raised and the thread will continue running when it’s budget is
replenished. This allows temporally sensitive threads to handle budget overruns while
other threads may ignore them.

Timeout faults are registered per thread, which means that while clients may not have
a timeout fault handler, servers may, allowing single-threaded, time-sensitive, passive
servers to use a timeout exception handler to recover from malicious or untrusted
clients whose budget expires while the server is completing the request. Timeout fault
handlers can access server reply objects and reply with an error to the client, then
reset the server to handle the next client request.

If a reply message is sent to a nested server and a scheduling context without available
budget returned, another timeout fault will be generated if the nested server also has
a timeout fault handler.

6.1.12 Message Layout of the Read-/Write-Registers Methods

The registers of a thread can be read and written with the seL4_TCB_ReadRegisters()
and seL4_TCB_WriteRegisters() methods. For some registers, the kernel will silently
mask certain bits or ranges of bits off, and force them to contain certain values to ensure
that they cannot be maliciously set to values that would compromise the running
system, or to respect values that the architecture specifications have mandated to be
certain values. The register contents are transferred via the IPC buffer.

6.2 Faults

A thread’s actions may result in a fault. Faults are delivered to the thread’s excep-
tion handler so that it can take the appropriate action. The fault type is specified
in the message label and is one of: seL4_Fault_CapFault, seL4_Fault_VMFault,
seL4_Fault_UnknownSyscall, seL4_Fault_UserException, seL4_Fault_DebugEx-
ception, seL4_Fault_TimeoutFault, or seL4_Fault_NullFault (indicating no fault
occurred and this is a normal IPC message).

Faults are delivered in such a way as to imitate a Call from the faulting thread. This
means that to send a fault message the fault endpoint must have Write and either

34 CHAPTER 6. THREADS AND EXECUTION

Grant or GrantReply permissions. If this is not the case, a double fault happens
(generally the thread is simply suspended).

6.2.1 Capability Faults

Capability faults may occur in two places. Firstly, a capability fault can occur when
lookup of a capability referenced by a seL4_Call() or seL4_Send() system call failed
(seL4_NBSend() calls on invalid capabilities silently fail). In this case, the capability
on which the fault occurred may be the capability being invoked or an extra capability
passed in the caps field in the IPC buffer.

Secondly, a capability fault can occur when seL4_Recv() or seL4_NBRecv() is called
on a capability that does not exist, is not an endpoint or notification capability or does
not have receive permissions.

Replying to the fault IPC will restart the faulting thread. The contents of the IPC
message are given in Table 6.1.

Meaning IPC buffer location
Address at which to restart execution seL4_CapFault_IP
Capability address seL4_CapFault_Addr
In receive phase (1 if the fault happened
during a receive system call, 0 otherwise)

seL4_CapFault_InRecvPhase

Lookup failure description. As described
in Section 3.4

seL4_CapFault_LookupFailureType

Table 6.1: Contents of an IPC message.

6.2.2 Unknown Syscall

This fault occurs when a thread executes a system call with a syscall number that
is unknown to seL4. The register set of the faulting thread is passed to the thread’s
exception handler so that it may, for example, emulate the system call if a thread is
being virtualised.

Replying to the fault IPC allows the thread to be restarted and/or the thread’s register
set to be modified. If the reply has a label of zero, the thread will be restarted.
Additionally, if the message length is non-zero, the faulting thread’s register set will
be updated. In this case, the number of registers updated is controlled with the length
field of the message tag.

6.2.3 User Exception

User exceptions are used to deliver architecture-defined exceptions. For example, such
an exception could occur if a user thread attempted to divide a number by zero.

6.2. FAULTS 35

Replying to the fault IPC allows the thread to be restarted and/or the thread’s register
set to be modified. If the reply has a label of zero, the thread will be restarted.
Additionally, if the message length is non-zero, the faulting thread’s register set will
be updated. In this case, the number of registers updated is controlled with the length
field of the message tag.

6.2.4 Debug Exception: Breakpoints and Watchpoints

Debug exceptions are used to deliver trace and debug related events to threads. Break-
points, watchpoints, trace-events and instruction-performance sampling events are ex-
amples. These events are supported for userspace threads when the kernel is configured
to include them (when CONFIG_HARDWARE_DEBUG_API is set). The hardware
debugging extensions API is supported on the following subset of the platforms that
the kernel has been ported to:

• PC99: IA-32 and x86_64

• Sabrelite (i.MX6)

• Jetson TegraK1

• HiSilicon Hikey

• Raspberry Pi 3

• Odroid-X (Exynos4)

• Xilinx zynq7000

Information on the available hardware debugging resources is presented in the form of
the following constants:

seL4_NumHWBreakpoints : Defines the total number of hardware break registers
available, of all types available on the hardware platform. On the ARM Cortex
A7 for example, there are 6 exclusive instruction breakpoint registers, and 4
exclusive data watchpoint registers, for a total of 10 monitor registers. On this
platform therefore, seL4_NumHWBreakpoints is defined as 10. The instruction
breakpoint registers will always be assigned the lower API-IDs, and the data
watchpoints will always be assigned following them.
Additionally, seL4_NumExclusiveBreakpoints, seL4_NumExclusiveWatchpoints
and seL4_NumDualFunctionMonitors are defined for each target platform to re-
flect the number of available hardware breakpoints/watchpoints of a certain type.

seL4_NumExclusiveBreakpoints : Defines the number of hardware registers ca-
pable of generating a fault only on instruction execution. Currently this will be
set only on ARM platforms. The API-ID of the first exclusive breakpoint is given
in seL4_FirstBreakpoint. If there are no instruction-break exclusive registers,
seL4_NumExclusiveBreakpoints will be set to 0 and seL4_FirstBreakpoint
will be set to -1.

36 CHAPTER 6. THREADS AND EXECUTION

seL4_NumExclusiveWatchpoints : Defines the number of hardware registers ca-
pable of generating a fault only on data access. Currently this will be set only
on ARM platforms. The API-ID of the first exclusive watchpoint is given in
seL4_FirstWatchpoint. If there are no data-break exclusive registers, seL4_-
NumExclusiveWatchpoints will be set to 0 and seL4_FirstWatchpoint will be
set to -1.

seL4_NumDualFunctionMonitors : Defines the number of hardware registers ca-
pable of generating a fault on either type of access – i.e, the register supports both
instruction and data breaks. Currently this will be set only on x86 platforms.
The API-ID of the first dual-function monitor is given in seL4_FirstDualFunc-
tionMonitor. If there are no dual-function break registers, seL4_NumDualFunc-
tionMonitors will be set to 0 and seL4_FirstDualFunctionMonitor will be set
to -1.

Value sent IPC buffer location
Breakpoint instruction address IPCBuffer[0]
Exception reason IPCBuffer[1]
Watchpoint data access address IPCBuffer[2]
Register API-ID IPCBuffer[3]

Table 6.2: Debug fault message layout. The register API-ID is not
returned in the fault message from the kernel on single-step faults.

6.2.5 Debug Exception: Single-stepping

The kernel provides support for the use of hardware single-stepping of userspace
threads when configured to do so (when CONFIG_HARDWARE_DEBUG_API is
set). To this end it exposes the invocation, seL4_TCB_ConfigureSingleStepping.

The caller is expected to select an API-ID that corresponds to an instruction break-
point, to use when setting up the single-stepping functionality (i.e, API-ID from 0 to
seL4_NumExclusiveBreakpoints - 1). However, not all hardware platforms require
an actual hardware breakpoint register to provide single-stepping functionality. If the
caller’s hardware platform requires the use of a hardware breakpoint register, it will use
the breakpoint register given to it in bp_num, and return true in bp_was_consumed.
If the underlying platform does not need a hardware breakpoint to provide single-
stepping, seL4 will return false in bp_was_consumed and leave bp_num unchanged.

If bp_was_consumed is true, the caller should not attempt to re-configure bp_num
for Breakpoint or Watchpoint usage until the caller has disabled single-stepping and
released that register, via a subsequent call to seL4_TCB_ConfigureSingleStepping,
or a fault-reply with n_instr being 0. Setting num_instructions to 0 disables single
stepping.

On architectures that require an actual hardware registers to be configured for single-
stepping functionality, seL4 will restrict the number of registers that can be configured
as single-steppers, to one at any given time. The register that is currently configured

6.2. FAULTS 37

(if any) for single-stepping will be the implicit bp_num argument in a single-step debug
fault reply.

The kernel’s single-stepping, also supports skipping a certain number of instructions
before delivering the single-step fault message. Num_instructions should be set to
1 when single-stepping, or any non-zero integer value to skip that many instructions
before resuming single-stepping. This skip-count can also be set in the fault-reply to
a single-step debug fault.

Value sent Register set by reply IPC buffer location
Breakpoint instruc-
tion address

num_instructions to
skip

IPCBuffer[0]

Exception reason — IPCBuffer[1]

Table 6.3: Single-step fault message layout.

6.2.6 Timeout Fault (MCS only)

Timeout faults are raised when a thread consumes all of its budget and has a timeout
fault handler that is not a null capability. They allow a timeout exception handler to
take some action to restore the thread, and deliver a message containing the scheduling
context data word, as well as the amount of time consumed since the last timeout fault
occured on this scheduling context, or since seL4_SchedContext_YieldTo() or seL4_-
SchedContext_Consumed() was last called. Timeout exception handlers can reply to
a temporal fault with the registers set in the same format as outlined in Section 6.1.12.

Meaning IPC buffer location
Data word from the scheduling context
object that the thread was running on
when the fault occured.

seL4_TimeoutFault_Data

Upper 32-bits of microseconds consumed
since last reset

seL4_TimeoutFault_Consumed

Lower 32-bits of microseconds consumed
since last reset

seL4_TimeoutFault_Consumed_Low-
Bits

Table 6.4: Timeout fault outcome on 32-bit architectures.

6.2.7 VM Fault

The thread caused a page fault. Replying to the fault IPC will restart the thread. The
contents of the IPC message are given below.

38 CHAPTER 6. THREADS AND EXECUTION

Meaning IPC buffer location
Program counter to restart execution at. seL4_VMFault_IP
Address that caused the fault. seL4_VMFault_SP
Instruction fault (1 if the fault was
caused by an instruction fetch).

seL4_VMFault_PrefetchFault

Fault status register (FSR). Contains in-
formation about the cause of the fault.
Architecture dependent.

seL4_VMFault_FSR

Table 6.5: VM Fault outcome on all architectures.

6.3 Domains

Domains are used to isolate independent subsystems, so as to limit information flow be-
tween them. The kernel switches between domains according to a fixed, time-triggered
schedule. The fixed schedule is compiled into the kernel via the constant CONFIG_-
NUM_DOMAINS and the global variable ksDomSchedule.

A thread belongs to exactly one domain, and will only run when that domain is active.
The seL4_DomainSet_Set() method changes the domain of a thread. The caller must
possess a Domain cap and the thread’s TCB cap. The initial thread starts with a Domain
cap (see Section 4.1).

6.4 Virtualisation

Hardware execution virtualisation is supported on specific arm and x86 platforms. The
interface is exposed through a series of kernel objects, invocations and syscalls that
allow the user to take advantage of hardware virtualisation features.

Hardware virtualisation allows for a thread to perform instructions and operations
as if it were running at a higher privilege level. As higher privilege levels typically
have access to additional machine registers and other pieces of state a VCPU object is
introduced to act as storage for this state. For simplicity we refer to this virtualised
higher privileged level as ’guest mode’. VCPUs are bound in a one-to-one relationship
with a TCB in order to provide a thread with this ability to run in higher privilege
mode. See the section on ARM or x86 for more precise details.

VCPU objects also have additional, architecture specific, invocations for manipulating
the additional state or other virtualisation controls provided by the hardware. Binding
of a VCPU to a TCB is done by an invocation on the VCPU only, and not the TCB.

The provided objects and invocations are, generally speaking, the thinnest possible
shim over the underlying hardware primitives and operations. As a result an in depth
familiarity with the underlying architecture specific harwdare mechanisms is required
to use these objects, and such familiarity is therefore assumed in description.

6.4. VIRTUALISATION 39

6.4.1 ARM

When a TCB has a bound VCPU it is allowed to have the mode portion of the cpsr
register set to values other than user. Specifically it may have any value other than
hypervisor.

TODO: this section needs more detail

6.4.2 x86

A TCB with a bound VCPU has two execution modes; one is the original thread just
as if there was no bound VCPU, and the other is the guest mode execution using the
VCPU. Switching from regular execution mode into the guest execution mode is done by
using the seL4_VMEnter() syscall. Executing this syscall causes the thread, whenever
it is scheduled thereafter, to execute using the higher privileged mode controlled by
the VCPU. Should the guest execution mode generate any kind of fault, or if a message
arrives on the TCBs bound notification, the TCB will be switched back to regular mode
and the seL4_VMEnter() syscall will return with a message indicating the reason for
return.

VCPU state and execution is controlled through the seL4_VCPU_ReadVMCS() and seL4_-
VCPU_WriteVMCS() invocations. These are very thin wrappers around the hardware
vmread and vmwrite instructions and the kernel merely does enough validation on the
parameters to ensure the VCPU is not configured to run in such a way as to violate
any kernel properties. For example, it is not possible to disable the use of External
Interrupt Exiting, as this would prevent the kernel from receiving timer interrupts and
allow the thread to monopolise CPU time.

Memory access of the guest execution mode is controlled by requiring the use of Ex-
tended Page Tables (EPT). A series of EPT related paging structure objects (EPTPML4,
EPTPDPT, EPTPD, EPTPT) exist and are manipulated in exactly the same manner as
the objects for the regular virtual address space. Once constructed a TCB can be
given an EPTPML4 as an EPT root with seL4_TCB_SetEPTRoot(), which serves as
the vspace root when executing in guest mode, with the vspace root set with seL4_-
TCB_SetSPace() or seL4_TCB_Configure() continuing to provide translation when
the TCB is executing in its normal mode.

Direct access to I/O ports can be given to the privileged execution mode through
the seL4_X86_VCPU_EnableIOPort() invocation and allows the provided I/O port
capability to be linked to the VCPU, and a subset of its I/O port range to be made
accessible to the VCPU. Linking means that an I/O port capability can only be used
in a single seL4_X86_VCPU_EnableIOPort() invocation and a second invocation will
undo the previous one. The link also means that if the I/O port capability is deleted
for any reason the access will be correspondingly removed from the VCPU.

Chapter 7

Address Spaces and Virtual
Memory

A virtual address space in seL4 is called a VSpace. In a similar way to a CSpace
(see Chapter 3), a VSpace is composed of objects provided by the microkernel. Unlike
CSpaces, these objects for managing virtual memory largely correspond to those of
the hardware. Consequently, each architecture defines its own objects for the top-level
VSpace and further intermediate paging structures. Common to every architecture is
the Page, representing a frame of physical memory. The kernel also includes ASID Pool
and ASID Control objects for tracking the status of address spaces.

These VSpace-related objects are sufficient to implement the hardware data struc-
tures required to create, manipulate, and destroy virtual memory address spaces. It
should be noted that, as usual, the manipulator of a virtual memory space needs the
appropriate capabilities to the required objects.

7.1 Objects

7.1.1 Hardware Virtual Memory Objects

Each architecture has a top-level paging structure (level 0) and a number of inter-
mediate levels. The top-level paging structure corresponds directly to the higher-level
concept of a VSpace in seL4. For each architecture, the VSpace is realised as a different
object, as determined by the architectural details.

In general, each paging structure at each level contains slots where the next level paging
structure, or a specifically sized frame of memory, can be mapped. If the previous level
is not mapped, a mapping operation will fail. Developers need to manually create and
map all paging structures. The size and type of structure at each level, and the number
of bits in the virtual address resolved for that level, is hardware defined.

seL4 provides methods for operating on these hardware paging structures including
mapping and cache operations. Mapping operations are invoked on the capability
being mapped, e.g. to map a level 1 paging structure at a specific virtual address,
the capability to the corresponding object is invoked with a map operation, where the

40

7.1. OBJECTS 41

top-level structure is passed as an argument.

In general, the top-level structure has no invocations for mapping, but is used as
an argument to several other virtual-memory related object invocations. For some
architectures, the top-level page table can be invoked for cache operations. By making
these cache related operations invocations on page directory capabilities in addition to
the page capabilities themselves, the API allows users more flexible policy options. For
example, a process that has delegated a page directory can conduct cache operations
on all frames mapped from that capability without access to those capabilities directly.

The rest of this section details the paging structures for each architecture.

7.1.1.1 IA-32

On IA-32, the VSpace is realised as a PageDirectory, which covers the entire 4GiB
range in the 32-bit address space, and forms the top-level paging structure. Second
level page-tables (PageTable objects) each cover a 4MiB range. Structures at both
levels are indexed by 10 bits in the virtual address.

Object Address Bits Level Methods

PageDirectory 22—31 0 Section 10.4.12
PageTable 12—21 1 Section 10.4.13

7.1.1.2 x64

On x86-64, the VSpace is realised as a PML4. Three further levels of paging structure
are defined, as shown in the table below. All structures are indexed with 9 bits of the
virtual address.

Object Address Bits Level Methods

PML4 39—47 0 None
PDPT 30—38 1 Section 10.6.1
PageDirectory 21—29 2 Section 10.4.12
PageTable 12—20 3 Section 10.4.13

7.1.1.3 AArch32

Like IA-32, ARM AArch32 realise the VSpace as a PageDirectory, which covers the
entire 4GiB address range, and a second-level PageTable. The second-level structures
on AArch32 cover 1MiB address ranges.

ARM AArch32 processors have a two-level page-table structure. The top-level page
directory covers a range of 4GiB and each page table covers a 1MiB range.

Object Address Bits Level Methods

PageDirectory 20—31 0 Section 10.8.1
PageTable 12—19 1 Section 10.7.7

42 CHAPTER 7. ADDRESS SPACES AND VIRTUAL MEMORY

7.1.1.4 AArch64

ARM AArch64 processors have a four-level page-table structure, where the VSpace is
realised as a PageGlobalDirectory. All paging structures are index by 9 bits of the
virtual address.

Object Address Bits Level Methods

PageGlobalDirectory 39—47 0 ??
PageUpperDirectory 30—38 1 Section 10.9.2
PageDirectory 21—29 2 Section 10.9.1
PageTable 12—20 3 Section 10.7.7

7.1.2 RISC-V

RISC-V provides the same paging structure for all levels, PageTable. The VSpace is
then realised as a PageTable.

7.1.2.1 RISC-V 32-bit

32-bit RISC-V PageTables are indexed by 10 bits of virtual address.

Object Address Bits Level Methods

PageTable 22—31 0 Section 10.10.6
PageTable 12—21 1 Section 10.10.6

7.1.2.2 RISC-V 64-bit

64-bit RISC-V follows the SV39 model, where PageTables are indexed by 9 bits of
virtual address. Although RISC-V allows for multiple different numbers of paging
levels, currently seL4 only supports exactly three levels of paging structures.

Object Address Bits Level Methods

PageTable 30—38 0 Section 10.10.6
PageTable 21—29 1 Section 10.10.6
PageTable 12—20 2 Section 10.10.6

7.1.3 Page

A Page object corresponds to a frame of physical memory that is used to implement
virtual memory pages in a virtual address space.

The virtual address for a Page mapping must be aligned to the size of the Page and must
be mapped to a suitable VSpace, and every intermediate paging structure required. To
map a page readable, the capability to the page that is being invoked must have read
permissions. To map the page writeable, the capability must have write permissions.

7.1. OBJECTS 43

The requested mapping permissions are specified with an argument of type seL4_-
CapRights given to the mapping function. If the capability does not have sufficient
permissions to authorise the given mapping, then the mapping permissions are silently
downgraded. Specific mapping permissions are dependant on the architecture and are
documented in the Chapter 10 for each function.

At minimum, each architecture defines Map, Unmap and GetAddress methods for pages.
Methods for page objects for each architecture can be found in the Chapter 10, and
are indexed per architecture in the table below.

Architectures Methods

IA32, X64 Section 10.4.11
AArch32, AArch64 Section 10.7.6
RISC-V Section 10.10.5

Each architecture also defines a range of page sizes. In the next section we show the
available page sizes, as well as the mapping level, which refers to the level of the paging
structure at which this page must be mapped.

7.1.3.1 AArch32 page sizes

Constant Size Mapping level

seL4_PageBits 4KiB 1
seL4_LargePageBits 64KiB 1
seL4_SectionBits 1MiB 0
seL4_SuperSectionBits 16MiB 0

Mappings for sections and super sections consume 16 slots in the page table and page
directory respectively.

7.1.3.2 AArch64 page sizes

Constant Size Mapping level

seL4_PageBits 4KiB 3
seL4_LargePageBits 2MiB 2
seL4_HugePageBits 1GiB 1

7.1.3.3 IA-32 page sizes

Constant Size Mapping level

seL4_PageBits 4KiB 1
seL4_LargePageBits 4MiB 0

44 CHAPTER 7. ADDRESS SPACES AND VIRTUAL MEMORY

7.1.3.4 X64 page sizes

Constant Size Mapping level

seL4_PageBits 4KiB 3
seL4_LargePageBits 2MiB 2
seL4_HugePageBits 1GiB 1

7.1.3.5 RISC-V 32-bit page sizes

Constant Size Mapping level

seL4_PageBits 4KiB 1
seL4_LargePageBits 4MiB 0

7.1.3.6 RISC-V 64-bit page sizes

Constant Size Mapping level

seL4_PageBits 4KiB 2
seL4_LargePageBits 2MiB 1
seL4_HugePageBits 1GiB 0

7.1.4 ASID Control

For internal kernel book-keeping purposes, there is a fixed maximum number of ap-
plications the system can support. In order to manage this limited resource, the
microkernel provides an ASID Control capability. The ASID Control capability is used
to generate a capability that authorises the use of a subset of available address-space
identifiers. This newly created capability is called an ASID Pool. ASID Control only has
a single MakePool method for each architecture, listed in the table below.

Architectures Methods

IA32, X64 Section 10.4.3
AArch32, AArch64 Section 10.7.1
RISC-V Section 10.10.3

7.1.5 ASID Pool

An ASID Pool confers the right to create a subset of the available maximum applications.
For a VSpace to be usable by an application, it must be assigned to an ASID. This
is done using a capability to an ASID Pool. The ASID Pool object has a single method,
Assign, for each architecture:

7.2. MAPPING ATTRIBUTES 45

Architectures Methods

IA32, X64 Section 10.4.4
AArch32, AArch64 Section 10.7.2
RISC-V Section 10.10.4

7.2 Mapping Attributes

A parameter of type seL4_ARM_VMAttributes or seL4_x86_VMAttributes is used to
specify the cache behaviour of the page being mapped; possible values for ARM that
can be bitwise OR’d together are shown in Table 7.1 and an enumeration of valid
values for IA-32 are shown in Table 7.2. Mapping attributtes can be updated on
existing mappings using the Map invocation with the same virtual address.

Attribute Meaning

seL4_ARM_PageCacheable Enable data in this mapping to be cached
seL4_ARM_ParityEnabled Enable parity checking for this mapping
seL4_ARM_ExecuteNever Map this memory as non-executable

Table 7.1: Virtual memory attributes for ARM page table entries.

Attribute Meaning

seL4_x86_WriteBack Read and writes are cached
seL4_x86_CacheDisabled Prevent data in this mapping from being cached
seL4_x86_WriteThrough Enable write through cacheing for this mapping
seL4_x86_WriteCombining Enable write combining for this mapping

Table 7.2: Virtual memory attributes for x86 page table entries.

7.3 Sharing Memory

seL4 does not allow Page Tables to be shared, but does allow pages to be shared between
address spaces. To share a page, the capability to the Page must first be duplicated
using the seL4_CNode_Copy() method and the new copy must be used in the seL4_-
ARM_Page_Map() or seL4_x86_Page_Map() method that maps the page into the second
address space. Attempting to map the same capability twice will result in an error.

7.4 Page Faults

Page faults are reported to the exception handler of the executed thread. See Sec-
tion 6.2.7.

Chapter 8

Hardware I/O

8.1 Interrupt Delivery

Interrupts are delivered as notifications. A thread may configure the kernel to signal
a particular Notification object each time a certain interrupt triggers. Threads may
then wait for interrupts to occur by calling seL4_Wait() or seL4_Poll() on that
Notification.

IRQHandler capabilities represent the ability of a thread to configure a certain interrupt.
They have three methods:

seL4_IRQHandler_SetNotification() specifies the Notification the kernel should sig-
nal() when an interrupt occurs. A driver may then call seL4_Wait() or seL4_-
Poll() on this notification to wait for interrupts to arrive.

seL4_IRQHandler_Ack() informs the kernel that the userspace driver has finished
processing the interrupt and the microkernel can send further pending or new
interrupts to the application.

seL4_IRQHandler_Clear() de-registers the Notification from the IRQHandler object.

When the system first starts, no IRQHandler capabilities are present. Instead, the initial
thread’s CSpace contains a single IRQControl capability. This capability may be used
to produce a single IRQHandler capability for each interrupt available in the system.
Typically, the initial thread of a system will determine which IRQs are required by
other components in the system, produce an IRQHandler capability for each interrupt,
and then delegate the resulting capabilities as appropriate. Methods on IRQControl can
be used for creating IRQHandler capabilities for interrupt sources.

8.2 x86-Specific I/O

8.2.1 Interrupts

In addition to managing IRQHandler capabilities, x86 platforms require the delivery
location in the CPU vectors to be configured. Regardless of where an interrupt comes

46

8.2. X86-SPECIFIC I/O 47

from (IOAPIC, MSI, etc) it must be assigned a unique vector for delivery, ranging from
VECTOR_MIN to VECTOR_MAX. The rights to allocate a vector are effectively
given through the IRQControl capability and can be considered as the kernel outsourcing
the allocation of this namespace to user level.

seL4_IRQControl_GetIOAPIC() creates an IRQHandler capability for an IOAPIC in-
terrupt

seL4_IRQControl_GetMSI() creates an IRQHandler capability for an MSI interrupt

8.2.2 I/O Ports

On x86 platforms, seL4 provides access to I/O ports to user-level threads. Access to
I/O ports is controlled by IO Port capabilities. Each IO Port capability identifies a range
of ports that can be accessed with it. Reading from I/O ports is accomplished with the
seL4_X86_IOPort_In8(), seL4_X86_IOPort_In16(), and seL4_X86_IOPort_In32()
methods, which allow for reading of 8-, 16- and 32-bit quantities. Similarly, writing to
I/O ports is accomplished with the seL4_X86_IOPort_Out8(), seL4_X86_IOPort_-
Out16(), and seL4_X86_IOPort_Out32() methods. Each of these methods takes as
arguments an IO Port capability and an unsigned integer port, which indicates the I/O
port to read from or write to, respectively. In each case, port must be within the
range of I/O ports identified by the given IO Port capability in order for the method to
succeed.

The I/O port methods return error codes upon failure. A seL4_IllegalOperation
code is returned if port access is attempted outside the range allowed by the IO Port
capability. Since invocations that read from I/O ports are required to return two values
– the value read and the error code – a structure containing two members, result and
error, is returned from these API calls.

At system initialisation, the initial thread’s CSpace contains the IOPortControl capability,
which can be used to seL4_X86_IOPort_Issue() IO Port capabilities to sub ranges of
I/O ports. Any range that is issued may not have overlap with any existing issued IO
Port capability.

8.2.3 I/O Space

I/O devices capable of DMA present a security risk because the CPU’s MMU is by-
passed when the device accesses memory. In seL4, device drivers run in user space to
keep them out of the trusted computing base. A malicious or buggy device driver may,
however, program the device to access or corrupt memory that is not part of its address
space, thus subverting security. To mitigate this threat, seL4 provides support for the
IOMMU on Intel x86-based platforms. An IOMMU allows memory to be remapped
from the device’s point of view. It acts as an MMU for the device, restricting the
regions of system memory that it can access. More information can be obtained from
Intel’s IOMMU documentation [Int11].

Two new objects are provided by the kernel to abstract the IOMMU:

48 CHAPTER 8. HARDWARE I/O

IOSpace This object represents the address space associated with a hardware device
on the PCI bus. It represents the right to modify a device’s memory mappings.

IOPageTable This object represents a node in the multilevel page-table structure used
by IOMMU hardware to translate hardware memory accesses.

Page capabilities are used to represent the actual frames that are mapped into the I/O
address space. A Page can be mapped into either a VSpace or an IOSpace but never into
both at the same time.

IOSpace and VSpace fault handling differ significantly. VSpace page faults are redirected
to the thread’s exception handler (see Section 6.2), which can take the appropriate
action and restart the thread at the faulting instruction. There is no concept of an
exception handler for an IOSpace. Instead, faulting transactions are simply aborted;
the device driver must correct the cause of the fault and retry the DMA transaction.

An initial master IOSpace capability is provided in the initial thread’s CSpace. An
IOSpace capability for a specific device is created by using the seL4_CNode_Mint()
method, passing the PCI identifier of the device as the low 16 bits of the badge ar-
gument, and a Domain ID as the high 16 bits of the badge argument. PCI identifiers
are explained fully in the PCI specification [SA99], but are briefly described here. A
PCI identifier is a 16-bit quantity. The first 8 bits identify the bus that the device is
on. The next 5 bits are the device identifier: the number of the device on the bus.
The last 3 bits are the function number. A single device may consist of several inde-
pendent functions, each of which may be addressed by the PCI identifier. Domain IDs
are explained fully in the Intel IOMMU documentation [Int11]. There is presently no
way to query seL4 for how many Domain IDs are supported by the IOMMU and the
seL4_CNode_Mint() method will fail if an unsupported value is chosen.

The IOMMU page-table structure has three levels. Page tables are mapped into an
IOSpace using the seL4_X86_IOPageTable_Map() method. This method takes the
IOPageTable to map, the IOSpace to map into and the address to map at. Three levels
of page tables must be mapped before a frame can be mapped successfully. A frame is
mapped with the seL4_X86_Page_MapIO() method whose parameters are analogous
to the corresponding method that maps Pages into VSpaces (see Chapter 7), namely
seL4_X86_Page_Map().

Unmapping is accomplished with the usual unmap (see Chapter 7) API call, seL4_-
X86_Page_Unmap().

More information about seL4’s IOMMU abstractions can be found in [Pal09].

8.3 Arm-Specific I/O

8.3.1 Arm SMMU version 2.0

seL4 provides an API for programming the Arm System MMU (SMMU) version 2.0,
which allows system software to manage access rights and address translation for de-
vices that can initiate direct memory accesses (DMA).

8.3. ARM-SPECIFIC I/O 49

An Arm SMMU v2.0 implementation allows device memory transactions to be asso-
ciated with an identifier (StreamID) that is used to direct the transaction through
a SMMU translation context bank (CB). A translation context bank can perform
address translation, memory protection and memory attribute transformation. The
standard specifies different types of address translations that correspond to stages in
the ArmV8 virtual memory system architecture such as either non-secure EL0, EL1
first and second stage translations, Hyp mode translations or secure mode translations.
It is possible to associate different StreamIDs with the same context bank and it is
possible to share address translation tables between a context bank and software MMU
address space if the stage and type of translation is the same.

Faults that occur when a memory transaction conflicts with a StreamID or CB config-
uration happen asynchronously with respect to a processor element’s execution. When
this occurs an interrupt is used to allow a PE to handle the SMMU fault. Faults are
reported through registers in the SMMU that can be queried in an interrupt handler.

TLB maintenance operations are required to keep SMMU translation caches consistent
when there are changes to any valid page table mapping entries.

An SMMU implementation usually has a maximum number of StreamIDs that it sup-
ports. The specificiation allows StreamIDs to be up to 16bits wide. There are also a
fixed number of context banks, up to a maximum of 128. Context banks can be generic
or support only a single address translation stage. This information is reported by ID
registers in each implementation.

The seL4 API allows system software to manage an SMMU by assigning StreamIDs to
context banks, bind context banks to page translation structures, implement SMMU
fault handling and also perform explicit TLB maintenance. This allows system software
to ensure that a device is only able to access and modify memory contents that it has
been explicitly given access to and allow devices to be presented with a virtualized
address space for performing DMA.

All the StreamIDs and context banks are accessible via capabilities. Control capa-
bilities are used to create capabilities referring to each StreamID and context bank
in a system. The kernel tracks the allocation of StreamIDs and context banks with
two static CNodes, one for each resource type. These CNodes track which VSpace a
context bank has bound to it, and which context bank a StreamID is bound to.

The capabilities allow access control policies to be implemented by a user thread. When
StreamID, context bank capabilities are revoked, the kernel will disable the context
banks or StreamID mappings.

TLB maintenance is handled by the kernel via tracking which context banks are as-
sociated with a particular VSpace. Any TLB maintenance operations that the kernel
performs on VSpace invocations are also applied to associated context banks.

SMMU fault handling is delegated to user level via invocations that allow fault statuses
to be queried and cleared for each context bank and for the SMMU globally. SMMU
fault interrupts can be handled the same as other platform level interrupts.

The kernel implementation only uses translation stages matching what translation the
kernel is performing for VSpace objects. When seL4 is operating in EL1, the SMMU
only uses stage 1 translation (ASID), that is "stage 1 with stage 2 bypass" in the

50 CHAPTER 8. HARDWARE I/O

context bank attribute configuration. When hypervisor mode is enabled, and seL4 is
operating in EL2, the SMMU only does stage 2 translations.

Four capabilities types provide access to SMMU resources:

seL4_ARM_SID A capability granting access to a single transaction stream, which can
be used to bind and unbind a stream to a single context bank.

seL4_ARM_CB A capbility representing a single specific context bank. It can be used
to bind and unbind a VSpace to assign what page tables the context bank should
use for translation, assign StreamIDs and process context bank faults.

seL4_ARM_SIDControl A control capability which can be used to create seL4_ARM_-
SID capabilities to specific transaction streams. The seL4_ARM_SIDControl cap is
used for managing rights on StreamID configurations. This capability is provided
in the initial thread’s CSpace.

seL4_ARM_CBControl A control capability that can be used to derive seL4_ARM_CB
capabilities. The seL4_ARM_CBControl cap is used for managing rights on context
bank configurations. This capability is provided in the initial thread’s CSpace.

8.3.1.1 Creating seL4_ARM_SID capabilities

The Arm SMMU 2.0 specification doesn’t specify how StreamIDs need to correspond
to different devices. Each platform can define its own policy for how StreamIDs are
allocated. A seL4_ARM_SIDControl capability can be used to create a capability to any
valid StreamID for the SMMU and delegate access to other tasks in the system.

seL4_ARM_SIDControl_GetSID() uses the seL4_ARM_SIDControl capability to create a
new seL4_ARM_SID capability that represents a single StreamID. This new cap-
bility is placed in the provided slot. It is expected that whatever thread controls
an seL4_ARM_SIDControl capability knows about how StreamIDs are allocated in
a system.

The Arm SMMU 2.0 specification descibes many ways of associating StreamIDs with
context banks. Currently only direct mapping of a StreamID to a context bank is
supported.

8.3.1.2 Creating seL4_ARM_CB capabilities

Each context bank allows the SMMU to maintain an active translation context with it’s
own registers for holding context specific information. An SMMU has a fixed number of
context banks available for use and these are allocated using the seL4_ARM_CBControl
capability.

seL4_ARM_CBControl_GetCB() uses the seL4_ARM_CBControl capability to create a
new seL4_ARM_CB capability that represents a single context bank. This new
capability is placed in the provided slot. It is expected that whatever thread
controls a seL4_ARM_CBControl capability has knowledge of the properties of
each context bank that each index refers to.

8.3. ARM-SPECIFIC I/O 51

8.3.1.3 Configuring context banks

By providing a seL4_ARM_CB cap, a user-level thread can configure the VSpace used
by the bank with the following API:

seL4_ARM_CB_AssignVspace() configures the context bank to use the provided VS-
apce root for translations.

seL4_ARM_CB_UnassignVspace() removes the configured VSpace and conducting a
TLB invalidation.

The SMMU-v2 uses the same paging structure as the MMU (AArch_64 and AArch_-
32 formats). Therefore, there is no need to provide a new set of page structure caps
nor a separate set of map and unmap functions. To manage the assignment, the kernel
has an internal CNode, called smmuStateCBNode, that stores copies of the VSpace_cap
created by executing the above API. The copy of the VSpace_cap contains its assigned
ContextBank number. Therefore the kernel can conduct context bank invalidation if
the VSpace_cap is revoked.

8.3.1.4 Configuring streams (transactions)

A user-level thread can bind a context bank with an seL4_ARM_SID capability with:

seL4_ARM_SID_BindCB() configures the stream to use given context bank for trans-
lation. To simplify the process, the binding also enables the stream ID. seL4_-
ARM_SID_BindCB generates a copy of the seL4_ARM_CB cap in kernel’s internal
CNode. This allows the stream ID to be disabled if the seL4_ARM_CB cap is
revoked.

seL4_ARM_SID_UnbindCB() removes the seL4_ARM_CB cap from the kernel’s internal
CNode and disables the stream ID. The kernel provides this API for the conve-
niences of sharing a stream ID among multiple VSpaces.

If there are any exceptions after the stream ID is enabled, the user-level software should
use the fault handling mechanisms to resolve them.

8.3.1.5 Copying and Deleting caps

The kernel allows copying both ARM_SID cap and seL4_ARM_CB cap. This allows
capabilites to be delegated to different threads. The kernel does not allow copying
neither the seL4_ARM_SIDControl nor the seL4_ARM_CBControl capabilities.

Deleting a seL4_ARM_CB cap that contains a valid capBindSID field will:

• invalidate the streamID to ContextBank assignment in hardware.

Deleting the last seL4_ARM_CB cap will:

52 CHAPTER 8. HARDWARE I/O

• perform an seL4_ARM_CB_UnassignVspace(), removing any configured VSpace,

• conduct a TLB invalidation.

Similarly, deleting a VSpace_cap that contains assigned context bank number will:

• invalidate the context bank

• conduct a TLB invalidation

Deleting the last ARM_SID cap will:

• Perform an seL4_ARM_SID_UnbindCB(), (deleting the copy of the assigned seL4_-
ARM_CB cap)

• Disable the stream ID.

8.3.1.6 TLB invalidation

The kernel is expected to perform all required SMMU TLB maintenance operations as
part of the API implementation. In addition, the kernel provides two system calls for
explicitly performing invalidations:

seL4_ARM_CBControl_TLBInvalidateAll() invalidates all TLB entries in all context
banks.

seL4_ARM_CB_TLBInvalidate() invalidates all TLB entries in a context bank.

The kernel does not impose any restrictions on how a VSpace is used by user-level
applications, hence a VSpace can be shared by normal threads and drivers. Shar-
ing a VSpace between threads and drivers also means sharing all mappings in that
VSpace between MMUs in CPU cores and SMMU used by device transactions. More-
over, multiple context banks in SMMU can share a VSpace. Therefore, maintaining
the coherency between the TLB in MMU and the TLB in SMMU’s context banks is
important.

The kernel keeps a record of Vspace’s usage in context banks in SMMU by maintaining:
the number of context banks using a given ASID, and the ASID that a given context
bank is using. There are a few reasons behind this design.

• First, the ASID is efficient for representing a VSpace. In seL4, each VSpace has
an ASID which is assigned before the VSpace is ready to be used and will never
change until the VSpace is deleted. Recording how many context banks are using
a VSpace’s ASID is equivalent to recording the VSpace’s usage in context banks.

• Second, all TLB invalidation operation requires knowledge of the ASID. There are
two types of TLB invalidation operations: invalidating a page table entry using
its ASID (triggered by updating a page table entry, e.g. unmapping a page), and
invalidating all mappings of an ASID (triggered by deleting a VSpace).

8.3. ARM-SPECIFIC I/O 53

• Third, the kernel can easily find a context banks’ ASID on all occasions, which
is useful to either conduct TLB invalidation requests or unassign VSpace from a
context bank.

By knowing how many context banks are using an ASID, the kernel can easily check in
every TLB invalidation operation and invoke TLB invalidation in SMMU if the value
is not zero. In SMMU’s TLB invalidation operation, the kernel searches the context
banks using the ASID, and conducts TLB invalidation in those context banks.

Ideally, the SMMU shares the same ASID or VMID name space with the rest of the
system. This allows the SMMU to maintain TLB coherency by listening for TLB
broadcasting messages. This means the context banks should be configured with the
correct ASID or VMID when the StreamID is enabled. This is not a problem for stage
1 translation, as there are a large number of ASID bits and an ASID can be assigned
to a vspace root with existing APIs. However, the VMID used in stage 2 only has 8
bits, and the kernel allocates them on demand and can reclaim a VSpace’s hardware
ASID to reuse if there are more VSpaces than available ASIDS. While it is possible
to do this when the VSpace is only used in an MMU, it is not possible with multiple
active context banks. Due to this, the context bank in SMMU cannot be configured
with the correct VMID. Currently, the SMMU driver uses private VMID space, and
uses the context bank number as the corresponding VMID number.

8.3.1.7 Fault handling

The number of IRQs used for reporting transaction faults is hardware dependent.
There are two kinds of faults: global faults (general configuration and transaction
faults), or context bank faults. For transaction faults, the SMMU reports faulty stream
IDs. The global faults reports:

• Invalid context fault.

• Unidentified stream fault.

• Stream match conflict fault.

• Unimplemented context bank fault.

• Unimplemented context interrupt fault.

• Configuration access fault.

• External fault.

Each context bank contains registers to report faults on address translation, for ex-
ample, faulty addresses, or permission errors. The SMMU driver identifies the cause
of a fault by first reading the global fault registers (one state register and three fault
syndrome registers), then by reading corresponding context bank fault registers. Note,
the SMMU reports the faulty transaction (stream) ID, which can be used to identify
its context bank ID.

54 CHAPTER 8. HARDWARE I/O

• System assumption: Both the SMMU’s IRQ handler and the owner of the seL4_-
ARM_SIDControl cap (controlling stream ID distributions) are trusted.

• SMMU interrupts are handled as same as other IRQs, i,e, the kernel does not
treat the SMMU IRQs special, reporting the interrupt via IRQ notifications.

• The kernel provides a API for reading the global fault registers: seL4_ARM_SID-
Control_GetFault(). Because the IRQ notification can only deliver information
via the badge, the owner of the StreamControl_cap can retrieve more informa-
tion via this API.

• If the fault is related to a transaction, the owner of the seL4_ARM_SIDControl cap
will notify the holder of the corresponding stream ID cap, which should also have
a copy of the context bank cap bound to this transaction.

• The kernel provides an API for reading the context bank fault registers: seL4_-
ARM_CB_CBGetFault(), used by a context bank cap holder (the seL4_ARM_CB
cap holder).

• Once the fault handling is done, the server can call seL4_ARM_CB_CBClear-
Fault() to clear the fault status on a context bank, and seL4_ARM_SIDCon-
trol_ClearFault() to clear the fault status on SMMU.

Chapter 9

System Bootstrapping

9.1 Initial Thread’s Environment

The seL4 kernel creates a minimal boot environment for the initial thread, which is
started at priority seL4_MaxPrio and maximum control priority seL4_MaxPrio. This
environment consists of the initial thread’s TCB, CSpace and VSpace, consisting of
frames that contain the userland image (code/data of the initial thread) and the IPC
buffer.

On the MCS kernel, the initial thread is configured with a round-robin scheduling
context with CONFIG_BOOT_THREAD_TIME_SLICE milliseconds timeslice. Without MCS,
all threads including the initial thread are scheduled round-robin with CONFIG_TIMER_-
TICK_MS ∗ CONFIG_TIME_SLICE timeslices.

The initial thread’s CSpace consists of exactly one CNode which contains capabilities
to the initial thread’s own resources as well as to all available global resources. The
CNode size can be configured at compile time (default is 212 slots), but the guard is
always chosen so that the CNode resolves exactly the number of bits in the architecture
(32 bits or 64 bits). This means, the first slot of the CNode has CPTR 0x0, the second
slot has CPTR 0x1 etc.

The first 15 slots (or 14 slots if not MCS) contain specific capabilities as listed in
Table 9.1.

9.2 BootInfo Frame

CNode slots with CPTR seL4_NumInitialCaps (defined in the seL4 userland library)
and above are filled dynamically during bootstrapping. Their exact contents depend
on the userland image size, platform configuration (devices) etc. In order to tell the
initial thread which capabilities are stored where in its CNode, the kernel provides a
BootInfo Frame which is mapped into the initial thread’s address space. The mapped
address is chosen by the kernel and given to the initial thread via a CPU register.

The BootInfo Frame contains the C struct described in Table 9.2. It is defined in the
seL4 userland library. Besides talking about capabilities, it also informs the initial

55

56 CHAPTER 9. SYSTEM BOOTSTRAPPING

Table 9.1: Initial thread’s CNode content.

Enum Constant Capability

seL4_CapNull null
seL4_CapInitThreadTCB initial thread’s TCB
seL4_CapInitThreadCNode initial thread’s CNode
seL4_CapInitThreadVSpace initial thread’s VSpace
seL4_CapIRQControl global IRQ controller (see Section 8.1)
seL4_CapASIDControl global ASID controller (see Chapter 7)
seL4_CapInitThreadASIDPool initial thread’s ASID pool (see Chapter 7)
seL4_CapIOPort global I/O port cap, null cap if unsupported (see

Section 8.2.2)
seL4_CapIOSpace global I/O space cap, null cap if unsupported

(see Section 8.2.3)
seL4_CapBootInfoFrame BootInfo frame (see Section 9.2)
seL4_CapInitThreadIPCBuffer initial thread’s IPC buffer (see Section 4.1)
seL4_CapDomain domain cap (see Section 6.3)
seL4_CapSMMUSIDControl global ARM SMMU SID controller, null cap if

unsupported (see Section 8.3.1)
seL4_CapSMMUCBControl global ARM SMMU CB controller, null cap if

unsupported (see Section 8.3.1)
seL4_CapInitThreadSC initial thread’s scheduling context (MCS only)

thread about the current platform’s configuration.

The type seL4_SlotRegion is a C struct which contains start and end slot CPTRs.
It denotes a region of slots in the initial thread’s CNode, starting with CPTR start
and with end being the CPTR of the first slot after the region ends, i.e. end - 1 points
to the last slot of the region.

Depending on the architecture and platform there might be additional pieces of boot
information. If extraLen is greater then zero then 4K after the start of bootinfo is a
region of extraLen bytes containing additional bootinfo structures. Each chunk starts
with a seL4_BootInfoHeader, described in Table 9.3, that describes what the chunk
is and how long it is, where the length includes the header. The length can be used to
skip over chunks that you do not understand. The only generally defined chunk type is
SEL4_BOOTINFO_HEADER_PADDING and describes an empty chunk that has no data, any
other types are platform or architecture specific. The extraBIPages slot region gives
the frames capabilities for the pages that make up the additional boot info region.

The capabilities in userImageFrames are ordered such that the first capability refer-
ences the first frame of the userland image and so on. The capabilities in userIm-
agePaging are ordered in descending order of paging structure size. Within a given
paging structure size, capabilities are ordered by the virtual address at which the
corresponding objects are mapped into the initial thread’s address space.

It is up to userland to infer the virtual address of frames referenced by the capabilities
in userImageFrames and the virtual address and types of paging structures referenced

9.2. BOOTINFO FRAME 57

Table 9.2: BootInfo struct.

Field Type Field Name Description

seL4_Word extraLen length of additional bootinfo
information in bytes

seL4_NodeId nodeID node ID
seL4_Word numNodes number of nodes
seL4_Word numIOPTLevels number of I/O page-table

levels (-1 if CONFIG_-
IOMMU unset)

seL4_IPCBuffer* ipcBuffer pointer to the initial thread’s
IPC buffer

seL4_SlotRegion empty empty slots (null caps)
seL4_SlotRegion sharedFrames reserved
seL4_SlotRegion userImageFrames frames containing the user-

land image
seL4_SlotRegion userImagePaging userland-image paging struc-

ture caps
seL4_SlotRegion ioSpaceCaps I/O space capabilities for

ARM SMMU
seL4_SlotRegion extraBIPages frames backing additional

bootinfo information
seL4_Uint8 initThreadCNodeSizeBits CNode size (2n slots)
seL4_Word initThreadDomain domain of the initial thread

(see Section 6.3)
seL4_SlotRegion schedcontrol seL4_SchedControl capabili-

ties, one for each node (MCS
only).

seL4_SlotRegion untyped untyped-memory capabilities
seL4_UntypedDesc[] untypedList array of information about

each untyped

by the capabilities in userImagePaging. Userland typically has a way of finding out to
which virtual addresses its code and data is mapped (e.g. in GCC, with the standard
linker script, the symbols __executable_start and _end are available). Additionally,
the initial thread can assume that its address space is virtually contiguous, and is
made up of the smallest frames available on the architecture. It’s also assumed that
the initial thread knows which paging structures are available on the architecture
it’s running on. This, along with knowledge of how capabilities in userImageFrames
and userImagePaging are ordered, is sufficient information for userland to infer the
virtual address of each frame capability, and the virtual address and type of each
paging structure capability.

Untyped memory is given in no particular order. The array entry untypedList[i]
stores the untyped-memory information of the i-th untyped cap of the slot region
untyped. Therefore, the array length is at least untyped.end - untyped.start. The
actual length is hardcoded in the kernel and irrelevant to the reader of the array. The

58 CHAPTER 9. SYSTEM BOOTSTRAPPING

Table 9.3: BootInfoHeader struct.

Field Type Field Name Description

seL4_Word id Identifier indicating the contents of the chunk
seL4_Uint8 len Length in bytes of the chunk

untyped memory information is stored in a seL4_UntypedDesc struct, described in
Table 9.4, and details the address, size and kind of the memory backing the untyped.
This allows userland to infer physical memory addresses of retyped frames and use
them to initiate DMA transfers when no IOMMU is available. The kernel makes no
guarantees about certain sizes of untyped memory being available.

Table 9.4: seL4_UntypedDesc struct

Field Type Field Name Description

seL4_Word paddr physical base address of the untyped object
seL4_Uint8 sizeBits size (2n bytes) of the untyped object
seL4_Uint8 isDevice is this untyped a device or not (see Section 2.4)
seL4_Uint8[] padding manual padding so final struct is a multiple of the word size

If the platform has an seL4-supported IOMMU, numIOPTLevels contains the number of
IOMMU-page-table levels. This information is needed by userland when constructing
an IOMMU address space (IOSpace). If there is no IOMMU support, numIOPTLevels
is 0.

On ARM if the platform has any available SMMU units the capabilities for them will
be described by the ioSpaceCaps slot region. The mapping of a capability from this
region to a specific SMMU is platform specific.

9.3 Boot Command-line Arguments

On IA-32, seL4 accepts boot command-line arguments which are passed to the kernel
via a multiboot-compliant bootloader (e.g. GRUB, syslinux). Multiple arguments are
separated from each other by whitespace. Two forms of arguments are accepted: (1)
key-value arguments of the form “key=value” and (2) single keys of the form “key”.
The value field of the key-value form may be a string, a decimal integer, a hexadecimal
integer beginning with “0x”, or an integer list where list elements are separated by
commas. Keys and values can’t have any whitespace in them and there can be no
whitespace before or after an “=” or a comma either. Arguments are listed in Table 9.5
along with their default values (if left unspecified).

9.3. BOOT COMMAND-LINE ARGUMENTS 59

Table 9.5: IA-32 boot command-line arguments.

Key Value Default

console_port I/O-port base of the serial port
that the kernel prints to (if
compiled in debug mode)

0x3f8

debug_port I/O-port base of the serial port
that is used for kernel de-
bugging (if compiled in debug
mode)

0x3f8

disable_iommu none The IOMMU is enabled by
default on VT-d-capable plat-
forms

Chapter 10

seL4 API Reference

10.1 Error Codes

Invoking a capability with invalid parameters will result in an error. seL4 system calls
return an error code in the message tag and a short error description in the message
registers to aid the programmer in determining the cause of errors.

10.1.1 Invalid Argument

A non-capability argument is invalid.

Field Meaning

Label seL4_InvalidArgument
IPCBuffer[0] Invalid argument number

10.1.2 Invalid Capability

A capability argument is invalid.

Field Meaning

Label seL4_InvalidCapability
IPCBuffer[0] Invalid capability argument number

10.1.3 Illegal Operation

The requested operation is not permitted.

Field Meaning

Label seL4_IllegalOperation

60

10.1. ERROR CODES 61

10.1.4 Range Error

An argument is out of the allowed range.

Field Meaning

Label seL4_RangeError
IPCBuffer[0] Minimum allowed value
IPCBuffer[1] Maximum allowed value

10.1.5 Alignment Error

A supplied argument does not meet the alignment requirements.

Field Meaning

Label seL4_AlignmentError

10.1.6 Failed Lookup

A capability could not be looked up.

Field Meaning

Label seL4_FailedLookup
IPCBuffer[0] 1 if the lookup failed for a source capability, 0 otherwise
IPCBuffer[1] Type of lookup failure
IPCBuffer[2..] Lookup failure description as described in Section 3.4

10.1.7 Truncated Message

Too few message words or capabilities were sent in the message.

Field Meaning

Label seL4_TruncatedMessage

10.1.8 Delete First

A destination slot specified in the syscall arguments is occupied.

Field Meaning

Label seL4_DeleteFirst

62 CHAPTER 10. SEL4 API REFERENCE

10.1.9 Revoke First

The object currently has other objects derived from it and the requested invocation
cannot be performed until either these objects are deleted or the revoke invocation is
performed on the capability.

Field Meaning

Label seL4_RevokeFirst

10.1.10 Not Enough Memory

The Untyped Memory object does not have enough unallocated space to complete the
seL4_Untyped_Retype() request.

Field Meaning

Label seL4_NotEnoughMemory
IPCBuffer[0] Amount of memory available in bytes

10.2 System Calls

10.2.1 General System Calls

This section provides the system call API for non-MCS kernel configurations.

10.2.1.1 Send

LIBSEL4_INLINE_FUNC void seL4_Send

Send to a capability.

Type Name Description
seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.

Return value: This method does not return anything.

Description: See Section 2.2

10.2. SYSTEM CALLS 63

10.2.1.2 Recv

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_Recv

Block until a message is received on an endpoint.

Type Name Description
seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2.1.3 Call

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_Call

Call a capability.

Type Name Description
seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2.1.4 Reply

LIBSEL4_INLINE_FUNC void seL4_Reply

Perform a send to a one-off reply capability stored when the thread was last called.

Type Name Description
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.

Return value: This method does not return anything.

Description: See Section 2.2

64 CHAPTER 10. SEL4 API REFERENCE

10.2.1.5 Non-Blocking Send

LIBSEL4_INLINE_FUNC void seL4_NBSend

Perform a non-blocking send to a capability.

Type Name Description
seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.

Return value: This method does not return anything.

Description: See Section 2.2

10.2.1.6 Reply Recv

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_ReplyRecv

Perform a reply followed by a receive in one system call.

Type Name Description
seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.
seL4_Word * sender The address to write sender information to.

The sender information is the badge of the
endpoint capability that was invoked by the
sender, or the notification word of the noti-
fication object that was signalled. This pa-
rameter is ignored if NULL.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2. SYSTEM CALLS 65

10.2.1.7 NBRecv

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_NBRecv

Receive a message from an endpoint but do not block in the case that no messages are
pending.

Type Name Description
seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2.1.8 Yield

LIBSEL4_INLINE_FUNC void seL4_Yield

Donate the remaining timeslice to a thread of the same priority.

Type Name Description
void

Return value: This method does not return anything.

Description: See Section 2.2

66 CHAPTER 10. SEL4 API REFERENCE

10.2.1.9 Signal

LIBSEL4_INLINE_FUNC void seL4_Signal

Signal a notification.

Type Name Description
seL4_CPtr dest The capability to be invoked.

Return value: This method does not return anything.

Description: This is not a proper system call known by the kernel. Rather, it is a
convenience wrapper which calls seL4_Send(). It is useful for signalling a notification.

See the description of seL4_Send() in Section 2.2.

10.2.1.10 Wait

LIBSEL4_INLINE_FUNC void seL4_Wait

Perform a receive on a notification object.

Type Name Description
seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

Return value: This method does not return anything.

Description: This is not a proper system call known by the kernel. Rather, it is a
convenience wrapper which calls seL4_Recv().

See the description of seL4_Recv() in Section 2.2.

10.2. SYSTEM CALLS 67

10.2.1.11 Poll

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_Poll

Perform a non-blocking recv on a notification object.

Type Name Description
seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: This is not a proper system call known by the kernel. Rather, it is a
convenience wrapper which calls seL4_NBRecv(). It is useful for doing a non-blocking
wait on a notification.

See the description of seL4_NBRecv() in Section 2.2.

68 CHAPTER 10. SEL4 API REFERENCE

10.2.2 General System Calls (MCS)

This section provides the system call API for MCS kernel configurations.

10.2.2.1 Send

LIBSEL4_INLINE_FUNC void seL4_Send

Send to a capability.

Type Name Description
seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.

Return value: This method does not return anything.

Description: See Section 2.2

10.2.2.2 Recv

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_Recv

Block until a message is received on an endpoint.

Type Name Description
seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

seL4_CPtr reply The capability to the reply object to use on a call (only
used on MCS).

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2. SYSTEM CALLS 69

10.2.2.3 Call

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_Call

Call a capability.

Type Name Description
seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2.2.4 Non-Blocking Send

LIBSEL4_INLINE_FUNC void seL4_NBSend

Perform a non-blocking send to a capability.

Type Name Description
seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.

Return value: This method does not return anything.

Description: See Section 2.2

70 CHAPTER 10. SEL4 API REFERENCE

10.2.2.5 Reply Recv

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_ReplyRecv

Perform a reply followed by a receive in one system call.

Type Name Description
seL4_CPtr src The capability to perform the receive on.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.
seL4_Word * sender The address to write sender information to.

The sender information is the badge of the
endpoint capability that was invoked by the
sender, or the notification word of the noti-
fication object that was signalled. This pa-
rameter is ignored if NULL.

seL4_CPtr reply The capability to the reply object, which
is first invoked and then used for the recv
phase to store a new reply capability.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2.2.6 NBRecv

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_NBRecv

Receive a message from an endpoint but do not block in the case that no messages are
pending.

Type Name Description
seL4_CPtr src The capability to receive on.
seL4_Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

seL4_CPtr reply The capability to the reply object to use on a call.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2. SYSTEM CALLS 71

10.2.2.7 NBSend Recv

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_NBSendRecv

Non-blocking send on one capability, and a blocking recieve on another in a single
system call.

Type Name Description
seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.
seL4_CPtr src The capability to receive on.
seL4_Word * sender The address to write sender information to.

The sender information is the badge of the
endpoint capability that was invoked by the
sender, or the notification word of the noti-
fication object that was signalled. This pa-
rameter is ignored if NULL.

seL4_CPtr reply The capability to the reply object, which
is first invoked and then used for the recv
phase to store a new reply capability.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

10.2.2.8 NBSend Wait

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_NBSendWait

Non-blocking invoke of a capability and wait on another in one system call.

Type Name Description
seL4_CPtr dest The capability to be invoked.
seL4_MessageInfo_t msgInfo The messageinfo structure for the IPC.
seL4_CPtr src The capability to receive on.
seL4_Word * sender The address to write sender information to.

The sender information is the badge of the
endpoint capability that was invoked by the
sender, or the notification word of the noti-
fication object that was signalled. This pa-
rameter is ignored if NULL.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: See Section 2.2

72 CHAPTER 10. SEL4 API REFERENCE

10.2.2.9 Yield

LIBSEL4_INLINE_FUNC void seL4_Yield

Yield the remaining timeslice. Periodic threads will not be scheduled again until their
next sporadic replenishment.

Type Name Description
void

Return value: This method does not return anything.

Description: See Section 2.2

10.2.2.10 Wait

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_Wait

Perform a wait on an endpoint or notification object.

Type Name Description
seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

Return value: TODO

Description: Block on a notification or endpoint waiting for a message. No reply object
is required for a Wait. Wait should not be paired with Call, as it does not provide
a reply object. If Wait is paired with a Call the waiter will block after recieving the
message.

See the description of seL4_Wait() in Section 2.2.

10.2. SYSTEM CALLS 73

10.2.2.11 NBWait

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_NBWait

Perform a polling wait on an endpoint or notification object.

Type Name Description
seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

Return value: TODO

Description: Poll a notification or endpoint waiting for a message. No reply object is
required for a Wait. Wait should not be paired with Call.

See the description of seL4_NBWait() in Section 2.2.

10.2.2.12 Poll

LIBSEL4_INLINE_FUNC seL4_MessageInfo_t seL4_Poll

Perform a non-blocking recv on a notification object.

Type Name Description
seL4_CPtr src The capability to be invoked.
seL4_Word * sender The address to write sender information to. The

sender information is the badge of the endpoint capa-
bility that was invoked by the sender, or the notifica-
tion word of the notification object that was signalled.
This parameter is ignored if NULL.

Return value: A seL4_MessageInfo_t structure as described in Section 4.1

Description: This is not a proper system call known by the kernel. Rather, it is a
convenience wrapper which calls seL4_NBWait(). It is useful for doing a non-blocking
wait on a notification.

See the description of seL4_NBWait() in Section 2.2.

74 CHAPTER 10. SEL4 API REFERENCE

10.2.2.13 Signal

LIBSEL4_INLINE_FUNC void seL4_Signal

Signal a notification.

Type Name Description
seL4_CPtr dest The capability to be invoked.

Return value: This method does not return anything.

Description: This is not a proper system call known by the kernel. Rather, it is a
convenience wrapper which calls seL4_Send(). It is useful for signalling a notification.

See the description of seL4_Send() in Section 2.2.

10.2. SYSTEM CALLS 75

10.2.3 Debugging System Calls

This section documents debugging system calls available when the kernel is build with
the DEBUG_BUILD configuration. For any system calls that rely on a kernel serial driver,
PRINTING must also be enabled.

10.2.3.1 Put Char

LIBSEL4_INLINE_FUNC void seL4_DebugPutChar

Output a single char through the kernel.

Type Name Description
char c The character to output.

Return value: This method does not return anything.

Description: Use the kernel serial driver to output a single character. This is useful
for debugging when a user level serial driver is not available.

10.2.3.2 Dump scheduler

LIBSEL4_INLINE_FUNC void seL4_DebugDumpScheduler

Output the contents of the kernel scheduler.

Type Name Description
void

Return value: This method does not return anything.

Description: Dump the state of the all TCB objects to kernel serial output. This
system call will output a table containing:

• Address: the address of the TCB object for that thread,

• Name: the name of the thread (if set),

• IP: the contents of the instruction pointer the thread is at,

• Priority: the priority of that thread,

• State : the state of the thread.

76 CHAPTER 10. SEL4 API REFERENCE

10.2.3.3 Halt

LIBSEL4_INLINE_FUNC void seL4_DebugHalt

Halt the system.

Type Name Description
void

Return value: This method does not return anything.

Description: This debugging system call will cause the kernel immediately cease re-
sponding to system calls. The kernel will switch permanently to the idle thread with
interrupts disabled. Depending on the platform, the kernel may switch the hardware
into a low-power state.

10.2.3.4 Snapshot

LIBSEL4_INLINE_FUNC void seL4_DebugSnapshot

Output a capDL dump of the current kernel state.

Type Name Description
void

Return value: This method does not return anything.

Description: This debugging system call will output all of the capabilities in the current
kernel using capDL.

10.2.3.5 Cap Identify

LIBSEL4_INLINE_FUNC seL4_Uint32 seL4_DebugCapIdentify

Identify the type of a capability in the current cspace.

Type Name Description
seL4_CPtr cap A capability slot in the current cspace.

Return value: The type of capability passed in.

Description: This debugging system call returns the type of capability in a capability
slot in the current cspace. The type returned is not a libsel4 type, but refers to
an internal seL4 type. This can be looked up in a built kernel by looking for the
(generated) enum cap_tag, type cap_tag_t.

10.2. SYSTEM CALLS 77

10.2.3.6 Name Thread

LIBSEL4_INLINE_FUNC void seL4_DebugNameThread

Name a thread.

Type Name Description
seL4_CPtr tcb A capability to the tcb object for the thread to name.
const char * name The name for the thread.

Return value: This method does not return anything.

Description: Name a thread. This name will then be output by the kernel in all
debugging output. Note that the max name length that can be passed to this function
is limited by the number of chars that will fit in an IPC message (seL4_MsgMaxLength
multiplied by the amount of chars that fit in a word). However the name is also
truncated in order to fit into a TCB object. For some platforms you may need to
increase seL4_TCBBits by 1 in a debug build in order to fit a long enough name.

10.2.3.7 Send SGI 0-15

LIBSEL4_INLINE_FUNC void seL4_DebugSendIPI

Sends arbitrary SGI.

Type Name Description
seL4_Uint8 target The target core ID.
unsigned irq The SGI number (0-15).

Return value: This method does not return anything.

Description: Send an arbitrary SGI (core-specific interrupt 0-15) to the specified target
core.

78 CHAPTER 10. SEL4 API REFERENCE

10.2.3.8 Run

LIBSEL4_INLINE_FUNC void seL4_DebugRun

Run a user level function in kernel mode.

Type Name Description
void(*)(void *) userfn The address in userspace of the function to run.
void * userarg A single argument to pass to the function.

Return value: This method does not return anything.

Description: This extremely dangerous function is for running benchmarking and de-
bugging code that needs to be executed in kernel mode from userlevel. It should never
be used in a release kernel. This works because the kernel can access all user mappings
of device memory, and does not switch page directories on kernel entry.

Unlike the other system calls in this section, seL4_DebugRun does not depend on
the DEBUG_BUILD configuration option, but its own config variable DANGEROUS_CODE_-
INJECTION.

10.2. SYSTEM CALLS 79

10.2.4 Benchmarking System Calls

This section documents system calls available when the kernel is configured with bench-
marking enabled. There are several different benchmarking modes which can be con-
figured when building the kernel:

1. BENCHMARK_TRACEPOINTS: Enable using tracepoints in the kernel and timing
code.

2. BENCHMARK_TRACK_KERNEL_ENTRIES: Keep track of information on kernel entries.

3. BENCHMARK_TRACK_UTILISATION: Allow users to get CPU timing info for the
system, threads and/or idle thread.

10.2.4.1 Reset Log

LIBSEL4_INLINE_FUNC seL4_Error seL4_BenchmarkResetLog

Reset benchmark logging.

Type Name Description
void

Return value: A seL4_Error error if the user-level log buffer has not been set by the
user (BENCHMARK_TRACEPOINTS/BENCHMARK_TRACK_KERNEL_ENTRIES).

Description: The behaviour of this system call depends on benchmarking mode in
action while invoking this system call:

1. BENCHMARK_TRACEPOINTS: resets the log index to 0,

2. BENCHMARK_TRACK_KERNEL_ENTRIES: as above,

3. BENCHMARK_TRACK_UTILISATION: resets benchmark and current thread start time
(to the time of invoking this syscall), resets idle thread utilisation to 0, and starts
tracking utilisation.

80 CHAPTER 10. SEL4 API REFERENCE

10.2.4.2 Finalize Log

LIBSEL4_INLINE_FUNC seL4_Word seL4_BenchmarkFinalizeLog

Stop benchmark logging.

Type Name Description
void

Return value: The index of the final entry in the log buffer (if BENCHMARK_TRACE-
POINTS/BENCHMARK_TRACK_KERNEL_ENTRIES are enabled).

Description: The behaviour of this system call depends on benchmarking mode in
action while invoking this system call:

1. BENCHMARK_TRACEPOINTS: Sets the final log buffer index to the current index,

2. BENCHMARK_TRACK_KERNEL_ENTRIES: as above,

3. BENCHMARK_TRACK_UTILISATION: sets benchmark end time to current time, stops
tracking utilisation.

10.2.4.3 Set Log Buffer

LIBSEL4_INLINE_FUNC seL4_Error seL4_BenchmarkSetLogBuffer

Set log buffer.

Type Name Description
seL4_Word frame_cptr A capability pointer to a user allocated frame of

seL4_LargePage size.

Return value: A seL4_IllegalOperation error if frame_cptr is not valid and couldn’t
set the buffer.

Description: Provide a large frame object for the kernel to use as a log-buffer. The
object must not be device memory, and must be seL4_LargePageBits in size.

10.2. SYSTEM CALLS 81

10.2.4.4 Null Syscall

LIBSEL4_INLINE_FUNC void seL4_BenchmarkNullSyscall

Null system call that enters and exits the kernel immediately, for timing kernel traps
in microbenchmarks.

Type Name Description
void

Return value: This method does not return anything.

Description: Used to time kernel traps (in and out).

10.2.4.5 Flush Caches

LIBSEL4_INLINE_FUNC void seL4_BenchmarkFlushCaches

Flush hardware caches.

Type Name Description
void

Return value: This method does not return anything.

Description: Flush all possible hardware caches for this platform.

10.2.4.6 Flush L1 Caches

LIBSEL4_INLINE_FUNC void seL4_BenchmarkFlushL1Caches

Flush L1 caches.

Type Name Description
seL4_Word cache_type L1 Cache Type to be flushed

Return value: This method does not return anything.

Description: Flush L1 caches for this platform (currently only support for ARM).
Allow to specify the cache type to be flushed (i.e. instruction cache only, data cache
only and both instruction cache and data cache).

82 CHAPTER 10. SEL4 API REFERENCE

10.2.4.7 Get Thread Utilisation

LIBSEL4_INLINE_FUNC void seL4_BenchmarkGetThreadUtilisation

Get utilisation timing information.

Type Name Description
seL4_Word tcb_cptr TCB cap pointer to a thread to get CPU utilisation

for.

Return value: This method does not return anything.

Description: Get timing information for the system, requested thread and idle thread.
Such information is written into the caller’s IPC buffer; see the definition of bench-
mark_track_util_ipc_index enum for more details on the data/format returned on
the IPC buffer.

10.2.4.8 Reset Thread Utilisation

LIBSEL4_INLINE_FUNC void seL4_BenchmarkResetThreadUtilisation

Reset utilisation timing for a specific thread.

Type Name Description
seL4_Word tcb_cptr TCB cap pointer to a thread to get CPU utilisation

for.

Return value: This method does not return anything.

Description: Reset the kernel’s timing information data (start time and utilisation)
for a specific thread.

10.2.4.9 Dump All Threads Utilisation

LIBSEL4_INLINE_FUNC void seL4_BenchmarkDumpAllThreadsUtilisation

Print the current accumulated cycle count for every thread on the current node.

Type Name Description
void

Return value: This method does not return anything.

Description: Uses kernel’s printf to print number of cycles on each line in the following
format: thread_name,thread_cycles

10.2. SYSTEM CALLS 83

10.2.4.10 Reset All Threads Utilisation

LIBSEL4_INLINE_FUNC void seL4_BenchmarkResetAllThreadsUtilisation

Reset the accumulated cycle count for every thread on the current node.

Type Name Description
void

Return value: This method does not return anything.

Description: Reset the cycle count for each thread to 0.

84 CHAPTER 10. SEL4 API REFERENCE

10.2.5 X86 System Calls

10.2.5.1 VMEnter

LIBSEL4_INLINE_FUNC seL4_Word seL4_VMEnter

Change current thread to execute from its bound VCPU.

Type Name Description
seL4_Word * sender The address to write sender information to. If the

syscall returns due to receiving a notification on the
bound notification then the sender information is the
badge of the notification capability that was invoked.
This parameter is ignored if NULL.

Return value: SEL4_VMENTER_RESULT_NOTIF if a notification was received or SEL4_-
VMENTER_RESULT_FAULT if the guest mode execution faulted for any reason

Description: Changes the execution mode of the current thread from normal TCB exe-
cution, to guest execution using its bound VCPU. For details on VCPUs and execution
modes see Section 6.4.

Invoking seL4_VMEnter is similar to replying to a fault in that updates to the registers
can be given in the message, but unlike a fault no message info (see Section 4.1) is
sent as the registers are not optional and the number that must be sent is fixed. The
mapping of hardware register to message register is

• SEL4_VMENTER_CALL_EIP_MR Address to start executing instructions at in the
guest mode

• SEL4_VMENTER_CALL_CONTROL_PPC_MR New value for the Primary Processor Based
VM Execution Controls

• SEL4_VMENTER_CALL_CONTROL_ENTRY_MR New value for the VM Entry Controls

On return these same three message registers will be filled with the values at the
point that the privlidged mode ceased executing. If this function returns with SEL4_-
VMENTER_RESULT_FAULT then the following additional message registers will be filled
out

• SEL4_VMENTER_FAULT_REASON_MR

• SEL4_VMENTER_FAULT_QUALIFICATION_MR

• SEL4_VMENTER_FAULT_INSTRUCTION_LEN_MR

• SEL4_VMENTER_FAULT_GUEST_PHYSICAL_MR

• SEL4_VMENTER_FAULT_RFLAGS_MR

• SEL4_VMENTER_FAULT_GUEST_INT_MR

10.2. SYSTEM CALLS 85

• SEL4_VMENTER_FAULT_CR3_MR

• SEL4_VMENTER_FAULT_EAX

• SEL4_VMENTER_FAULT_EBX

• SEL4_VMENTER_FAULT_ECX

• SEL4_VMENTER_FAULT_EDX

• SEL4_VMENTER_FAULT_ESI

• SEL4_VMENTER_FAULT_EDI

• SEL4_VMENTER_FAULT_EBP

86 CHAPTER 10. SEL4 API REFERENCE

10.3 Architecture-Independent Object Methods

10.3.1 seL4_CNode

10.3.1.1 Cancel Badged Sends

static inline int seL4_CNode_CancelBadgedSends

The cancel badged sends method is intend to allow for the reuse of badges by an
authority. When used with a badged endpoint capability it will cancel any outstanding
send operations for that endpoint and badge. This operation has no effect on un-badged
or other objects.

Type Name Description
seL4_CNode _service CPTR to the CNode at the root of the CSpace where

the capability will be found. Must be at a depth
equivalent to the wordsize.

seL4_Word index CPTR to the capability. Resolved from the root of
the _service parameter.

seL4_Uint8 depth Number of bits of index to resolve to find the capa-
bility being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 87

10.3.1.2 Copy

static inline int seL4_CNode_Copy

Copy a capability, setting its access rights whilst doing so

Type Name Description
seL4_CNode _service CPTR to the CNode that forms the root

of the destination CSpace. Must be at a
depth equivalent to the wordsize.

seL4_Word dest_index CPTR to the destination slot. Resolved
from the root of the destination CSpace.

seL4_Uint8 dest_depth Number of bits of dest_index to resolve to
find the destination slot.

seL4_CNode src_root CPTR to the CNode that forms the root
of the source CSpace. Must be at a depth
equivalent to the wordsize.

seL4_Word src_index CPTR to the source slot. Resolved from
the root of the source CSpace.

seL4_Uint8 src_depth Number of bits of src_index to resolve to
find the source slot.

seL4_CapRights_t rights The rights inherited by the new capability.
Possible values for this type are given in
Section 3.1.4 .

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

88 CHAPTER 10. SEL4 API REFERENCE

10.3.1.3 Delete

static inline int seL4_CNode_Delete

Delete a capability

Type Name Description
seL4_CNode _service CPTR to the CNode at the root of the CSpace where

the capability will be found. Must be at a depth
equivalent to the wordsize.

seL4_Word index CPTR to the capability. Resolved from the root of
the _service parameter.

seL4_Uint8 depth Number of bits of index to resolve to find the capa-
bility being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 89

10.3.1.4 Mint

static inline int seL4_CNode_Mint

Copy a capability, setting its access rights and badge whilst doing so

Type Name Description
seL4_CNode _service CPTR to the CNode that forms the root

of the destination CSpace. Must be at a
depth equivalent to the wordsize.

seL4_Word dest_index CPTR to the destination slot. Resolved
from the root of the destination CSpace.

seL4_Uint8 dest_depth Number of bits of dest_index to resolve to
find the destination slot.

seL4_CNode src_root CPTR to the CNode that forms the root
of the source CSpace. Must be at a depth
equivalent to the wordsize.

seL4_Word src_index CPTR to the source slot. Resolved from
the root of the source CSpace.

seL4_Uint8 src_depth Number of bits of src_index to resolve to
find the source slot.

seL4_CapRights_t rights The rights inherited by the new capability.
Possible values for this type are given in
Section 3.1.4 .

seL4_Word badge Badge or guard to be applied to the new
capability. For badges on 32-bit platforms,
the high 4 bits are ignored.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

90 CHAPTER 10. SEL4 API REFERENCE

10.3.1.5 Move

static inline int seL4_CNode_Move

Move a capability

Type Name Description
seL4_CNode _service CPTR to the CNode that forms the root of the

destination CSpace. Must be at a depth equivalent
to the wordsize.

seL4_Word dest_index CPTR to the destination slot. Resolved from the
root of the destination CSpace.

seL4_Uint8 dest_depth Number of bits of dest_index to resolve to find the
destination slot.

seL4_CNode src_root CPTR to the CNode that forms the root of the
source CSpace. Must be at a depth equivalent to
the wordsize.

seL4_Word src_index CPTR to the source slot. Resolved from the root
of the source CSpace.

seL4_Uint8 src_depth Number of bits of src_index to resolve to find the
source slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 91

10.3.1.6 Mutate

static inline int seL4_CNode_Mutate

Move a capability, setting its badge in the process

Type Name Description
seL4_CNode _service CPTR to the CNode that forms the root of the

destination CSpace. Must be at a depth equivalent
to the wordsize.

seL4_Word dest_index CPTR to the destination slot. Resolved from the
root of the destination CSpace.

seL4_Uint8 dest_depth Number of bits of dest_index to resolve to find the
destination slot.

seL4_CNode src_root CPTR to the CNode that forms the root of the
source CSpace. Must be at a depth equivalent to
the wordsize.

seL4_Word src_index CPTR to the source slot. Resolved from the root
of the source CSpace.

seL4_Uint8 src_depth Number of bits of src_index to resolve to find the
source slot.

seL4_Word badge Badge or guard to be applied to the new capability.
For badges on 32-bit platforms, the high 4 bits are
ignored.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

92 CHAPTER 10. SEL4 API REFERENCE

10.3.1.7 Revoke

static inline int seL4_CNode_Revoke

Delete all child capabilities of a capability

Type Name Description
seL4_CNode _service CPTR to the CNode at the root of the CSpace where

the capability will be found. Must be at a depth
equivalent to the wordsize.

seL4_Word index CPTR to the capability. Resolved from the root of
the _service parameter.

seL4_Uint8 depth Number of bits of index to resolve to find the capa-
bility being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 93

10.3.1.8 Rotate

static inline int seL4_CNode_Rotate

Given 3 capability slots - a destination, pivot and source - move the capability in the
pivot slot to the destination slot and the capability in the source slot to the pivot slot

Type Name Description
seL4_CNode _service CPTR to the CNode at the root of the CSpace

where the destination slot will be found. Must
be at a depth equivalent to the wordsize.

seL4_Word dest_index CPTR to the destination slot. Resolved relative
to _service. Must be empty unless it refers to
the same slot as the source slot.

seL4_Uint8 dest_depth Depth to resolve dest_index to.
seL4_Word dest_badge The new capdata for the capability that ends up

in the destination slot.
seL4_CNode pivot_root CPTR to the CNode at the root of the CSpace

where the pivot slot will be found. Must be at a
depth equivalent to the wordsize.

seL4_Word pivot_index CPTR to the pivot slot. Resolved relative to
pivot_root. The resolved slot must not refer to
the source or destination slots.

seL4_Uint8 pivot_depth Depth to resolve pivot_index to.
seL4_Word pivot_badge The new capdata for the capability that ends up

in the pivot slot.
seL4_CNode src_root CPTR to the CNode at the root of the CSpace

where the source slot will be found. Must be at
a depth equivalent to the wordsize.

seL4_Word src_index CPTR to the source slot. Resolved relative to
src_root.

seL4_Uint8 src_depth Depth to resolve src_index to.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

94 CHAPTER 10. SEL4 API REFERENCE

10.3.1.9 Save Caller

static inline int seL4_CNode_SaveCaller

Save the reply capability from the last time the thread was called in the given CSpace
so that it can be invoked later

Type Name Description
seL4_CNode _service CPTR to the CNode at the root of the CSpace where

the capability is to be saved. Must be at a depth
equivalent to the wordsize.

seL4_Word index CPTR to the slot in which to save the capability.
Resolved from the root of the _service parameter.

seL4_Uint8 depth Number of bits of index to resolve to find the slot
being targeted.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 3.1.2.

10.3.2 seL4_DomainSet

10.3.2.1 Set

static inline int seL4_DomainSet_Set

Change the domain of a thread.

Type Name Description
seL4_DomainSet _service Capability allowing domain configuration.
seL4_Uint8 domain The thread’s new domain.
seL4_TCB thread Capability to the TCB which is being operated

on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.3.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 95

10.3.3 seL4_IRQControl

10.3.3.1 Get

static inline int seL4_IRQControl_Get

Create an IRQ handler capability

Type Name Description
seL4_IRQControl _service An IRQControl capability. This gives you the

authority to make this call.
seL4_Word irq The IRQ that you want this capability to han-

dle.
seL4_CNode root CPTR to the CNode that forms the root of

the destination CSpace. Must be at a depth
equivalent to the wordsize.

seL4_Word index CPTR to the destination slot. Resolved from
the root of the destination CSpace.

seL4_Uint8 depth Number of bits of dest_index to resolve to find
the destination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.1.

10.3.4 seL4_IRQHandler

10.3.4.1 Acknowledge

static inline int seL4_IRQHandler_Ack

Acknowledge the receipt of an interrupt and re-enable it

Type Name Description
seL4_IRQHandler _service The IRQ handler capability.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.1.

96 CHAPTER 10. SEL4 API REFERENCE

10.3.4.2 Clear

static inline int seL4_IRQHandler_Clear

Clear the handler capability from the IRQ slot

Type Name Description
seL4_IRQHandler _service The IRQ handler capability.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.1.

10.3.4.3 Set Notification

static inline int seL4_IRQHandler_SetNotification

Set the notification which the kernel will signal on interrupts controlled by the supplied
IRQ handler capability

Type Name Description
seL4_IRQHandler _service The IRQ handler capability.
seL4_CPtr notification The notification which the IRQs will sig-

nal.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.1.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 97

10.3.5 seL4_SchedContext

10.3.5.1 Bind

static inline int seL4_SchedContext_Bind

Bind an object to a scheduling context. The object can be a notification object or a
thread.

If the object is a thread and the thread is in a runnable state and the scheduling
context has available budget, this will start the thread running.

If the object is a notification, when passive threads wait on the notification object and
a signal arrives, the passive thread will receive the scheduling context and possess it
until it waits on the notification object again.

This operation will fail if the scheduling context is already bound to a thread or
notification object.

Type Name Description
seL4_SchedContext _service TODO
seL4_CPtr cap Capability to a TCB or a notification object

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1

10.3.5.2 Consumed

static inline seL4_SchedContext_Consumed_t seL4_SchedContext_Consumed

Return the amount of time used by this scheduling context since this function was last
called or a timeout exception triggered.

Type Name Description
seL4_SchedContext _service TODO

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1

98 CHAPTER 10. SEL4 API REFERENCE

10.3.5.3 Unbind

static inline int seL4_SchedContext_Unbind

Unbind any objects (threads or notification objects) from a scheduling context. This
will render the bound thread passive, see Section 6.1.5.

Type Name Description
seL4_SchedContext _service TODO

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1

10.3.5.4 UnbindObject

static inline int seL4_SchedContext_UnbindObject

Unbind an object from a scheduling context. The object can be either a thread or a
notification.

If the thread being unbound is the thread that is bound to this scheduling context,
this will render the thread passive. However if the thread being unbound received the
scheduling context via scheduling context donation over IPC, the scheduling context
will be returned to the thread that it was originally bound to.

If the object is a notification and it is bound to the scheduling context, unbind it.

Type Name Description
seL4_SchedContext _service TODO
seL4_CPtr cap Capability to a notification that is bound to

the scheduling context or capability to a tcb
that is bound to this scheduling context or
has received it through scheduling context
donation.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.7

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 99

10.3.5.5 YieldTo

static inline seL4_SchedContext_YieldTo_t seL4_SchedContext_YieldTo

If a thread is currently runnable and running on this scheduling context and the
scheduling context has available budget, place it at the head of the scheduling queue.
If the caller is at an equal priority to the thread this will result in the thread being
scheduled. If the caller is at a higher priority the thread will not run until the threads
priority is the highest priority in the system. The caller must have a maximum control
priority greater than or equal to the threads priority.

Type Name Description
seL4_SchedContext _service TODO

Return value: TODO

Description: TODO

100 CHAPTER 10. SEL4 API REFERENCE

10.3.6 seL4_SchedControl

10.3.6.1 ConfigureFlags

static inline int seL4_SchedControl_ConfigureFlags

Set the parameters of a scheduling context by invoking the scheduling control capabil-
ity. If the scheduling context is bound to a currently running thread, the parameters
will take effect immediately: that is the current budget will be increased or reduced by
the difference between the new and previous budget and the replenishment time will
be updated according to any difference in the period. This can result in active threads
being post-poned or released depending on the nature of the parameter change and
the state of the thread. Additionally, if the scheduling context was previously empty
(no budget) but bound to a runnable thread, this can result in a thread running for
the first time since it now has access to CPU time. This call will return seL4 Invalid
Argument if the parameters are too small (smaller than the kernel WCET for this
platform) or too large (will overflow the timer).

Type Name Description
seL4_SchedControl _service TODO
seL4_SchedContext schedcontext Capability to the scheduling context

which is being operated on.
seL4_Time budget Timeslice in microseconds, when the

budget expires the thread will be pre-
empted.

seL4_Time period Period in microseconds, if equal to
budget, this thread will be treated as
a round-robin thread. Otherwise, spo-
radic servers will be used to assure the
scheduling context does not exceed the
budget over the specified period.

seL4_Word extra_refills Number of extra sporadic replenish-
ments this scheduling context should
use. Ignored for round-robin threads.

seL4_Word badge Identifier for this scheduling context.
Delivered to timeout exception han-
dler. Can be used to determine which
scheduling context triggered the time-
out.

seL4_Word flags Bitwise OR’d set of seL4_SchedCon-
textFlag.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 101

10.3.7 seL4_TCB

10.3.7.1 Bind Notification

static inline int seL4_TCB_BindNotification

Binds a notification object to a TCB

Type Name Description
seL4_TCB _service Capability to the TCB which is being operated

on.
seL4_CPtr notification Notification to bind.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 5.3

10.3.7.2 Configure (MCS)

static inline int seL4_TCB_Configure

Set the parameters of a TCB

Type Name Description
seL4_TCB _service Capability to the TCB which is being op-

erated on.
seL4_CNode cspace_root The new CSpace root.
seL4_Word cspace_root_data Optionally set the guard and guard size of

the new root CNode. If set to zero, this
parameter has no effect.

seL4_CPtr vspace_root The new VSpace root.
seL4_Word vspace_root_data Has no effect on x86 or ARM processors.
seL4_Word buffer Location of the thread’s IPC buffer. Must

be 512-byte aligned. The IPC buffer may
not cross a page boundary.

seL4_CPtr bufferFrame Capability to a page containing the
thread’s IPC buffer.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1

102 CHAPTER 10. SEL4 API REFERENCE

10.3.7.3 Configure Single Stepping

static inline seL4_TCB_ConfigureSingleStepping_t seL4_TCB_ConfigureSingleStep-
ping

Set or modify single stepping options for the target TCB. Subsequent calls to this
function overwrite previous configuration. Depending on your processor architecture,
this may or may not require the consumption of a hardware register.

Type Name Description
seL4_TCB _service Capability to the TCB which is being op-

erated on.
seL4_Uint16 bp_num The API-ID of a target breakpoint. This

ID will be a positive integer, with values
ranging from 0 to seL4_NumHWBreak-
points - 1.

seL4_Word num_instructions Number of instructions to step over before
delivering a fault to the target thread’s
fault endpoint. Setting this to 0 disables
single-stepping.

Return value: A seL4_TCB_ConfigureSingleStepping_t: Struct that contains seL4_-
Error error, an seL4 API error value, seL4_Bool bp_was_consumed, a boolean which
indicates whether or not the bp_num breakpoint ID that was passed to the function,
was consumed in the setup of the single-stepping functionality: if this is true, the
caller should not attempt to re-use bp_num until it has disabled the single-stepping
functionality via a subsequent call to seL4_TCB_ConfigureSingleStepping with an
num_instructions argument of 0.

Description: See Sections 6.2.5 and 6.2.4

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 103

10.3.7.4 Configure

static inline int seL4_TCB_Configure

Set the parameters of a TCB

Type Name Description
seL4_TCB _service Capability to the TCB which is being op-

erated on.
seL4_Word fault_ep CPTR to the endpoint which receives IPCs

when this thread faults. This capability is
in the CSpace of the thread being config-
ured.

seL4_CNode cspace_root The new CSpace root.
seL4_Word cspace_root_data Optionally set the guard and guard size of

the new root CNode. If set to zero, this
parameter has no effect.

seL4_CPtr vspace_root The new VSpace root.
seL4_Word vspace_root_data Has no effect on x86 or ARM processors.
seL4_Word buffer Location of the thread’s IPC buffer. Must

be 512-byte aligned. The IPC buffer may
not cross a page boundary.

seL4_CPtr bufferFrame Capability to a page containing the
thread’s IPC buffer.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1

104 CHAPTER 10. SEL4 API REFERENCE

10.3.7.5 Copy Registers

static inline int seL4_TCB_CopyRegisters

Copy the registers from one thread to another

Type Name Description
seL4_TCB _service Capability to the TCB which is being op-

erated on. This is the destination TCB.
seL4_TCB source Cap to the source TCB.
seL4_Bool suspend_source The invocation should also suspend the

source thread.
seL4_Bool resume_target The invocation should also resume the des-

tination thread.
seL4_Bool transfer_frame Frame registers should be transferred.
seL4_Bool transfer_integer Integer registers should be transferred.
seL4_Uint8 arch_flags Architecture dependent flags. These have

no mearing on either x86 or ARM.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: In the context of this function, frame registers are those that are read,
modified or preserved by a system call and integer registers are those that are not.
Refer to the seL4 userland library source for specifics. Section 6.1.3

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 105

10.3.7.6 Get Breakpoint

static inline seL4_TCB_GetBreakpoint_t seL4_TCB_GetBreakpoint

Read a breakpoint or watchpoint’s current configuration.

Type Name Description
seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Uint16 bp_num The API-ID of a target breakpoint. This ID will

be a positive integer, with values ranging from 0 to
seL4_NumHWBreakpoints - 1.

Return value: A seL4_TCB_GetBreakpoint_t: Struct that contains seL4_Error er-
ror, an seL4 API error value, seL4_Word vaddr, the virtual address at which the
breakpoint will currently be triggered; seL4_Word type, the type of operation which
will currently trigger the breakpoint, whether instruction execution, or data access;
seL4_Word size, integer value for the span-size of the breakpoint. Usually a power of
two (1, 2, 4, etc.); seL4_Word rw, the access direction that will currently trigger the
breakpoint, whether read, write, or both and seL4_Bool is_enabled, which indicates
whether or not the breakpoint will currently be triggered if the match conditions are
met.

Description: See Section 6.2.4

106 CHAPTER 10. SEL4 API REFERENCE

10.3.7.7 Read Registers

static inline int seL4_TCB_ReadRegisters

Read a thread’s registers into the first count fields of a given seL4_UserContext

Type Name Description
seL4_TCB _service Capability to the TCB which is be-

ing operated on.
seL4_Bool suspend_source The invocation should also suspend

the source thread.
seL4_Uint8 arch_flags Architecture dependent flags.

These have no mearing on either
x86 or ARM.

seL4_Word count The number of registers to read.
seL4_UserContext * regs The structure to read the registers

into.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.12

10.3.7.8 Resume

static inline int seL4_TCB_Resume

Resume a thread

Type Name Description
seL4_TCB _service Capability to the TCB which is being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.3

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 107

10.3.7.9 Set Breakpoint

static inline int seL4_TCB_SetBreakpoint

Set or modify a thread’s breakpoints or watchpoints. Calls to this function overwrite
previous configurations for the target breakpoint. Do not use this with seL4_Sin-
gleStep: the API will reject the call and return an error. Instead, use seL4_TCB_-
ConfigureSingleStepping to configure single-stepping.

Type Name Description
seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Uint16 bp_num The API-ID of a target breakpoint. This ID will

be a positive integer, with values ranging from 0 to
seL4_NumHWBreakpoints - 1.

seL4_Word vaddr A virtual address which forms part of the match
conditions for the triggering of the breakpoint.

seL4_Word type One of: seL4_InstructionBreakpoint, which spec-
ifies that the breakpoint should occur on instruc-
tion execution at the specified vaddr or seL4_-
DataBreakpoint, which states that the breakpoint
should occur on data access at the specified vaddr.

seL4_Word size A positive integer indicating the trigger-span of the
watchpoint. Must be zero when ’type’ is seL4_-
InstructionBreakpoint.

seL4_Word rw One of seL4_BreakOnRead, meaning the break-
point will only be triggered on read-access; seL4_-
BreakOnWrite meaning the breakpoint will only be
triggered on write-access, and seL4_BreakOnRead-
Write meaning the breakpoint will be triggered on
any access.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.2.4

108 CHAPTER 10. SEL4 API REFERENCE

10.3.7.10 Set CPU Affinity

static inline int seL4_TCB_SetAffinity

Change a thread’s current CPU in multicore machine

Type Name Description
seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Word affinity The thread’s new CPU to run.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.2

10.3.7.11 Set IPC Buffer

static inline int seL4_TCB_SetIPCBuffer

Set a thread’s IPC buffer

Type Name Description
seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Word buffer Location of the thread’s IPC buffer. Must be 512-

byte aligned. The IPC buffer may not cross a page
boundary.

seL4_CPtr bufferFrame Capability to a page containing the thread’s IPC
buffer.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Sections 6.1 and 4.1

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 109

10.3.7.12 Set Maximum Controlled Priority

static inline int seL4_TCB_SetMCPriority

Change a thread’s maximum controlled priority

Type Name Description
seL4_TCB _service Capability to the TCB which is being operated on.
seL4_TCB authority Capability to the TCB to use the MCP from when

setting the MCP.
seL4_Word mcp The thread’s new maximum controlled priority.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.4

10.3.7.13 Set Priority

static inline int seL4_TCB_SetPriority

Change a thread’s priority

Type Name Description
seL4_TCB _service Capability to the TCB which is being operated on.
seL4_TCB authority Capability to the TCB to use the MCP from when

setting the priority.
seL4_Word priority The thread’s new priority.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.4

110 CHAPTER 10. SEL4 API REFERENCE

10.3.7.14 Set Sched Params (MCS)

static inline int seL4_TCB_SetSchedParams

Change a thread’s priority, maximum controlled priority, scheduling context and fault
handler.

Type Name Description
seL4_TCB _service Capability to the TCB which is being operated

on.
seL4_TCB authority Capability to the TCB to use the MCP from

when setting the priority and MCP.
seL4_Word mcp The thread’s new maximum controlled priority.
seL4_Word priority The thread’s new priority.
seL4_CPtr sched_context Capability to the scheduling context that the

TCB should run on. If the scheduling context is
already bound to a notification or TCB that is
not this TCB this operation will fail. Similarly,
if this TCB is already bound to a scheduling
context that is not this scheduling context, this
will also fail.

seL4_CPtr fault_ep CPTR to the endpoint which receives IPCs
when this thread faults.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.4

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 111

10.3.7.15 Set Sched Params

static inline int seL4_TCB_SetSchedParams

Change a thread’s priority and maximum controlled priority.

Type Name Description
seL4_TCB _service Capability to the TCB which is being operated on.
seL4_TCB authority Capability to the TCB to use the MCP from when

setting the priority and MCP.
seL4_Word mcp The thread’s new maximum controlled priority.
seL4_Word priority The thread’s new priority.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.4

10.3.7.16 Set Space

static inline int seL4_TCB_SetSpace

Set the fault endpoint, CSpace and VSpace of a thread

Type Name Description
seL4_TCB _service Capability to the TCB which is being op-

erated on.
seL4_Word fault_ep CPTR to the endpoint which receives IPCs

when this thread faults. On MCS this cap
gets copied into the TCB.

seL4_CNode cspace_root The new CSpace root.
seL4_Word cspace_root_data Optionally set the guard and guard size of

the new root CNode. If set to zero, this
parameter has no effect.

seL4_CPtr vspace_root The new VSpace root.
seL4_Word vspace_root_data Has no effect on x86 or ARM processors.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1

See Section 6.1

112 CHAPTER 10. SEL4 API REFERENCE

10.3.7.17 Set TLS Base

static inline int seL4_TCB_SetTLSBase

Set the TLS base of the target TCB. This intended for use on architectures where the
register used for TLS can only be written to in privilidged mode

Type Name Description
seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Word tls_base The TLS base to set

Return value: TODO

Description: TODO

10.3.7.18 Set Timeout Endpoint

static inline int seL4_TCB_SetTimeoutEndpoint

Set a thread’s timeout endpoint.

Type Name Description
seL4_TCB _service Capability to the TCB which is being oper-

ated on.
seL4_CPtr timeout_fault_ep CPTR to the endpoint which receives IPCs

when this thread triggers timeout faults.
Can be null.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Timeout exception messages will be delivered to this endpoint if it is not
a null capability.

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 113

10.3.7.19 Suspend

static inline int seL4_TCB_Suspend

Suspend a thread

Type Name Description
seL4_TCB _service Capability to the TCB which is being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.3

10.3.7.20 Unbind Notification

static inline int seL4_TCB_UnbindNotification

Unbinds any notification object from a TCB

Type Name Description
seL4_TCB _service Capability to the TCB which is being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 5.3

114 CHAPTER 10. SEL4 API REFERENCE

10.3.7.21 Unset Breakpoint

static inline int seL4_TCB_UnsetBreakpoint

Disables a hardware breakpoint or watchpoint. The caller should assume that the
underlying configuration of the hardware registers has also been cleared. Do not use
this to clear single-stepping: the API will reject the call and return an error. Instead,
use seL4_TCB_ConfigureSingleStepping to disable single-stepping.

Type Name Description
seL4_TCB _service Capability to the TCB which is being operated on.
seL4_Uint16 bp_num The API-ID of a target breakpoint. This ID will

be a positive integer, with values ranging from 0 to
seL4_NumHWBreakpoints - 1.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.2.4

10.3.7.22 Write Registers

static inline int seL4_TCB_WriteRegisters

Set a thread’s registers to the first count fields of a given seL4_UserContext

Type Name Description
seL4_TCB _service Capability to the TCB which is being

operated on.
seL4_Bool resume_target The invocation should also resume

the destination thread.
seL4_Uint8 arch_flags Architecture dependent flags. These

have no mearing on either x86 or
ARM.

seL4_Word count The number of registers to be set.
seL4_UserContext * regs Data structure containing the new

register values.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.1.12

10.3. ARCHITECTURE-INDEPENDENT OBJECT METHODS 115

10.3.8 seL4_Untyped

10.3.8.1 Retype

static inline int seL4_Untyped_Retype

Retype an untyped object

Type Name Description
seL4_Untyped _service CPTR to an untyped object.
seL4_Word type The seL4 object type that we are retyping to.
seL4_Word size_bits Used to determine the size of variable-sized ob-

jects.
seL4_CNode root CPTR to the CNode at the root of the desti-

nation CSpace.
seL4_Word node_index CPTR to the destination CNode. Resolved rel-

ative to the root parameter.
seL4_Word node_depth Number of bits of node_index to translate

when addressing the destination CNode.
seL4_Word node_offset Number of slots into the node at which capa-

bilities start being placed.
seL4_Word num_objects Number of capabilities to create.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Given a capability, _service, to an untyped object, creates num_objects
of the requested type. Creates num_objects capabilities to the new objects starting
at node_offset in the CNode specified by root, node_index, and node_depth.

For variable-sized kernel objects, the size_bits argument is used to determine the size
of objects to create. The relationship between size_bits and object size depends on
the type of object being created. See Section 2.4.2 for more information about object
sizes. See Section 2.4 for more information about how untyped memory is retyped.
See Section 3.1.3 for more information about the placement of capabilities to created
objects.

116 CHAPTER 10. SEL4 API REFERENCE

10.4 x86-Specific Object Methods

10.4.1 seL4_IRQControl

10.4.1.1 Get I/O APIC

static inline int seL4_IRQControl_GetIOAPIC

Create an IRQ handler capability for an interrupt from an IOAPIC.

Type Name Description
seL4_IRQControl _service An IRQControl capability. This gives you the

authority to make this call.
seL4_CNode root CPTR to the CNode that forms the root of

the destination CSpace. Must be at a depth
equivalent to the wordsize.

seL4_Word index CPTR to the destination slot. Resolved from
the root of the destination CSpace.

seL4_Uint8 depth Number of bits of index to resolve to find the
destination slot.

seL4_Word ioapic Zero based index of IOAPIC to get interrupt
from, ordered the same as in ACPI tables

seL4_Word pin IOAPIC pin that generates the interrupt.
seL4_Word level Indicates whether the IOAPIC should be pro-

grammed to treat this interrupt as level trig-
gered.

seL4_Word polarity Indicates whether the IOAPIC should be pro-
grammed to treat this interrupt as high or low
triggered

seL4_Word vector CPU vector to deliver the interrupt to.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.1 and Section 8.2.1.

10.4. X86-SPECIFIC OBJECT METHODS 117

10.4.1.2 Get MSI

static inline int seL4_IRQControl_GetMSI

Create an IRQ handler capability for an interrupt from an MSI.

Type Name Description
seL4_IRQControl _service An IRQControl capability. This gives you the

authority to make this call.
seL4_CNode root CPTR to the CNode that forms the root of

the destination CSpace. Must be at a depth
equivalent to the wordsize.

seL4_Word index CPTR to the destination slot. Resolved from
the root of the destination CSpace.

seL4_Uint8 depth Number of bits of index to resolve to find the
destination slot.

seL4_Word pci_bus PCI bus ID of the device that will generate the
interrupt.

seL4_Word pci_dev PCI device ID of the device that will generate
the interrupt.

seL4_Word pci_func PCI function ID of the device that will gener-
ate the interrupt.

seL4_Word handle Value of the handle programmed into the data
portion of the MSI.

seL4_Word vector CPU vector to deliver the interrupt to.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.1 and Section 8.2.1.

118 CHAPTER 10. SEL4 API REFERENCE

10.4.2 seL4_TCB

10.4.2.1 Set EPT Root

static inline int seL4_TCB_SetEPTRoot

Set the EPT root of a thread

Type Name Description
seL4_TCB _service TODO
seL4_X86_EPTPML4 eptpml4 CPTR to an EPT PML4 object to act as the

guest mode vspace root

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 6.4.

10.4. X86-SPECIFIC OBJECT METHODS 119

10.4.3 seL4_X86_ASIDControl

10.4.3.1 Make Pool

static inline int seL4_X86_ASIDControl_MakePool

Create an X86 ASID pool.

Type Name Description
seL4_X86_ASIDControl _service The master ASIDControl capability.
seL4_Untyped untyped Capability to an untyped memory object

that will become the pool. Must be 4K
bytes.

seL4_CNode root CPTR to the CNode that forms the root
of the destination CSpace. Must be at a
depth equivalent to the wordsize.

seL4_Word index CPTR to the destination slot. Resolved
from the root of the destination CSpace.

seL4_Uint8 depth Number of bits of index to resolve to find
the destination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Together with a capability to Untyped Memory, which is passed as an
argument, create an ASID Pool. The untyped capability must represent a 4K memory
object. This will create an ASID pool with enough space for 1024 VSpaces.

120 CHAPTER 10. SEL4 API REFERENCE

10.4.4 seL4_X86_ASIDPool

10.4.4.1 Assign

static inline int seL4_X86_ASIDPool_Assign

Assign an ASID pool.

Type Name Description
seL4_X86_ASIDPool _service The ASID pool which is being assigned to.

Must not be full. Each ASID pool can con-
tain 1024 entries.

seL4_CPtr vspace The page directory that is being assigned to
an ASID pool. Must not already be assigned
to an ASID pool.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Assigns an ASID to the VSpace associated with the Page Directory
passed in as an argument.

10.4. X86-SPECIFIC OBJECT METHODS 121

10.4.5 seL4_X86_EPTPD

10.4.5.1 Map

static inline int seL4_X86_EPTPD_Map

Map an EPT page directory.

Type Name Description
seL4_X86_EPTPD _service Capability to the EPT PD being oper-

ated on.
seL4_X86_EPTPML4 eptpml4 Capability to the EPT root which will

contain the mapping
seL4_Word gpa Guest physical address to map the page

into.
seL4_X86_VMAttributes attr VM attributes for the mapping. Pos-

sible values for this type are given in
Chapter 7

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.4.5.2 Unmap

static inline int seL4_X86_EPTPD_Unmap

Unmap an EPT page directory.

Type Name Description
seL4_X86_EPTPD _service Capability to the EPT PD being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

122 CHAPTER 10. SEL4 API REFERENCE

10.4.6 seL4_X86_EPTPDPT

10.4.6.1 Map

static inline int seL4_X86_EPTPDPT_Map

Map an EPT page directory page table.

Type Name Description
seL4_X86_EPTPDPT _service Capability to the EPT PDPT being op-

erated on.
seL4_X86_EPTPML4 eptpml4 Capability to the EPT root which will

contain the mapping
seL4_Word gpa Guest physical address to map the page

into.
seL4_X86_VMAttributes attr VM attributes for the mapping. Pos-

sible values for this type are given in
Chapter 7

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.4.6.2 Unmap

static inline int seL4_X86_EPTPDPT_Unmap

Unmap an EPT page directory page table.

Type Name Description
seL4_X86_EPTPDPT _service Capability to the EPT PDPT being operated

on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.4. X86-SPECIFIC OBJECT METHODS 123

10.4.7 seL4_X86_EPTPT

10.4.7.1 Map

static inline int seL4_X86_EPTPT_Map

Map an EPT page table.

Type Name Description
seL4_X86_EPTPT _service Capability to the EPT PT being oper-

ated on.
seL4_X86_EPTPML4 eptpml4 Capability to the EPT root which will

contain the mapping
seL4_Word gpa Guest physical address to map the page

into.
seL4_X86_VMAttributes attr VM attributes for the mapping. Pos-

sible values for this type are given in
Chapter 7

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.4.7.2 Unmap

static inline int seL4_X86_EPTPT_Unmap

Unmap an EPT page table.

Type Name Description
seL4_X86_EPTPT _service Capability to the EPT PT being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

124 CHAPTER 10. SEL4 API REFERENCE

10.4.8 seL4_X86_IOPageTable

10.4.8.1 Map

static inline int seL4_X86_IOPageTable_Map

Map an IO page table into an IOSpace.

Type Name Description
seL4_X86_IOPageTable _service Capability to the I/O page table being

operated on.
seL4_X86_IOSpace iospace The IOSpace to map the page table into.
seL4_Word ioaddr The address to map the page table at.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.2.3

10.4.8.2 Unmap

static inline int seL4_X86_IOPageTable_Unmap

Unmap an IO page table from an IOSpace.

Type Name Description
seL4_X86_IOPageTable _service Capability to the I/O page table being

operated on.The page table to unmap.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.2.3

10.4. X86-SPECIFIC OBJECT METHODS 125

10.4.9 seL4_X86_IOPort

10.4.9.1 In16

static inline seL4_X86_IOPort_In16_t seL4_X86_IOPort_In16

Read 16 bits from an IO port.

Type Name Description
seL4_X86_IOPort _service An I/O Port capability.
seL4_Uint16 port The port to read from.

Return value: A seL4_X86_IOPort_In16_t structure as described in Section 8.2.2.

Description: See Section 8.2.2

10.4.9.2 In32

static inline seL4_X86_IOPort_In32_t seL4_X86_IOPort_In32

Read 32 bits from an IO port.

Type Name Description
seL4_X86_IOPort _service An I/O Port capability.
seL4_Uint16 port The port to read from.

Return value: A seL4_X86_IOPort_In32_t structure as described in Section 8.2.2.

Description: See Section 8.2.2

10.4.9.3 In8

static inline seL4_X86_IOPort_In8_t seL4_X86_IOPort_In8

Read 8 bits from an IO port.

Type Name Description
seL4_X86_IOPort _service An I/O Port capability.
seL4_Uint16 port The port to read from.

Return value: A seL4_X86_IOPort_In8_t structure as described in Section 8.2.2.

Description: See Section 8.2.2

126 CHAPTER 10. SEL4 API REFERENCE

10.4.9.4 Out16

static inline int seL4_X86_IOPort_Out16

Write 16 bits to an IO port.

Type Name Description
seL4_X86_IOPort _service An I/O Port capability.
seL4_Word port The port to write to.
seL4_Word data Data to write to the IO port.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.2.2

10.4.9.5 Out32

static inline int seL4_X86_IOPort_Out32

Write 32 bits to an IO port.

Type Name Description
seL4_X86_IOPort _service An I/O Port capability.
seL4_Word port The port to write to.
seL4_Word data Data to write to the IO port.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.2.2

10.4. X86-SPECIFIC OBJECT METHODS 127

10.4.9.6 Out8

static inline int seL4_X86_IOPort_Out8

Write 8 bits to an IO port.

Type Name Description
seL4_X86_IOPort _service An I/O Port capability.
seL4_Word port The port to write to.
seL4_Word data Data to write to the IO port.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.2.2

10.4.10 seL4_X86_IOPortControl

10.4.10.1 Issue

static inline int seL4_X86_IOPortControl_Issue

Issue an IO port sub range.

Type Name Description
seL4_X86_IOPortControl _service Control capability for I/O ports.
seL4_Word first_port First port of the range of the issued

capability.
seL4_Word last_port Last port of the range of the issued

capability.
seL4_CNode root CPTR to the CNode that forms the

root of the destination CSpace.
seL4_Word index CPTR to the destination slot. Re-

solved from the root of the destina-
tion CSpace.

seL4_Uint8 depth Number of bits of dest_index to re-
solve to find the destination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.2.2

128 CHAPTER 10. SEL4 API REFERENCE

10.4.11 seL4_X86_Page

10.4.11.1 Get Address

static inline seL4_X86_Page_GetAddress_t seL4_X86_Page_GetAddress

Get the physical address of the underlying frame.

Type Name Description
seL4_X86_Page _service Capability to the page being operated on.

Return value: A seL4_IA32_Page_GetAddress_t struct that contains a seL4_Word
paddr, which holds the physical address of the page, and int error. See Section 10.1
for a description of the message register and tag contents upon error.

Description: See Chapter 7

10.4.11.2 Map EPT

static inline int seL4_X86_Page_MapEPT

TODO

Type Name Description
seL4_X86_Page _service Capability to the page being operated

on.
seL4_X86_EPTPML4 vspace TODO
seL4_Word vaddr TODO
seL4_CapRights_t rights TODO
seL4_X86_VMAttributes attr TODO

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: TODO

10.4. X86-SPECIFIC OBJECT METHODS 129

10.4.11.3 Map I/O

static inline int seL4_X86_Page_MapIO

Map a page into an IOSpace.

Type Name Description
seL4_X86_Page _service Capability to the page being operated on.
seL4_X86_IOSpace iospace The IOSpace that the frame is being mapped

into
seL4_CapRights_t rights Rights for the mapping. Possible values for

this type are given in Section 3.1.4
seL4_Word ioaddr The address that the frame is being mapped

at.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

130 CHAPTER 10. SEL4 API REFERENCE

10.4.11.4 Map

static inline int seL4_X86_Page_Map

Map a page into an address space or update the mapping attributes.

Type Name Description
seL4_X86_Page _service Capability to the page being operated

on.
seL4_CPtr vspace Capability to the VSpace which will

contain the mapping
seL4_Word vaddr Virtual address to map the page into.
seL4_CapRights_t rights Rights for the mapping. Possible values

for this type are given in Section 3.1.4
seL4_X86_VMAttributes attr VM attributes for the mapping. Pos-

sible values for this type are given in
Chapter 7

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Takes a VSpace capability, as an argument and installs a reference to
the given Page in the lowest-level unmapped paging structure corresponding to the
given address, or updates the mapping attributes if the page is already mapped at
this address. If the required paging structures are not present this operation will fail,
returning a seL4_FailedLookup error.

10.4.11.5 Unmap

static inline int seL4_X86_Page_Unmap

Unmap a page.

Type Name Description
seL4_X86_Page _service Capability to the page being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Removes an existing mapping.

10.4. X86-SPECIFIC OBJECT METHODS 131

10.4.12 seL4_X86_PageDirectory

10.4.12.1 Get Status Bits

static inline seL4_X86_PageDirectory_GetStatusBits_t seL4_X86_PageDirec-
tory_GetStatusBits

Retrieve the accessed and dirty bits of a page mapped into an address space.

Type Name Description
seL4_X86_PageDirectory _service Capability to the page directory being

operated on.Capability to the address
space to query.

seL4_Word vaddr Virtual address of the page to query

Return value: A seL4_X86_PageDirectory_GetStatusBits_t structure.

Description: See Chapter 7

10.4.12.2 Map

static inline int seL4_X86_PageDirectory_Map

Map a page directory.

Type Name Description
seL4_X86_PageDirectory _service Capability to the page directory being

operated on.
seL4_CPtr vspace Capability to the VSpace which will

contain the mapping
seL4_Word vaddr Virtual address to map the page into.
seL4_X86_VMAttributes attr VM attributes for the mapping. Pos-

sible values for this type are given in
Chapter 7

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

132 CHAPTER 10. SEL4 API REFERENCE

10.4.12.3 Unmap

static inline int seL4_X86_PageDirectory_Unmap

Unmap a page directory.

Type Name Description
seL4_X86_PageDirectory _service Capability to the page directory being

operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

10.4.13 seL4_X86_PageTable

10.4.13.1 Map

static inline int seL4_X86_PageTable_Map

Map a page table into an address space.

Type Name Description
seL4_X86_PageTable _service Capability to the page table being op-

erated on.
seL4_CPtr vspace Capability to the VSpace which will

contain the mapping
seL4_Word vaddr Virtual address to map the page into.
seL4_X86_VMAttributes attr VM attributes for the mapping. Pos-

sible values for this type are given in
Chapter 7

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Takes a PageDirectory capability as an argument, and installs a refer-
ence to the invoked PageTable in a specified slot in the PageDirectory.

10.4. X86-SPECIFIC OBJECT METHODS 133

10.4.13.2 Unmap

static inline int seL4_X86_PageTable_Unmap

Unmap a page table from its address space and zero it out.

Type Name Description
seL4_X86_PageTable _service Capability to the page table being operated

on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Removes the reference to the invoked PageTable from its containing
PageDirectory. See Chapter 7

10.4.14 seL4_X86_VCPU

10.4.14.1 Disable IO Port

static inline int seL4_X86_VCPU_DisableIOPort

Disable I/O port range in privileged execution

Type Name Description
seL4_X86_VCPU _service VCPU object to operate on
seL4_Word low Start of the I/O port range to disable
seL4_Word high Last I/O port in the range to disable

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Disable a range of I/O ports for direct access by the execution mode in
the VCPU.

134 CHAPTER 10. SEL4 API REFERENCE

10.4.14.2 Enable IO Port

static inline int seL4_X86_VCPU_EnableIOPort

Enable I/O port range in guest execution

Type Name Description
seL4_X86_VCPU _service VCPU object to operate on
seL4_X86_IOPort ioPort I/O port capability whose authority is being

delegating
seL4_Word low Start of the I/O port range to enable
seL4_Word high Last I/O port in the range to enable

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Enables a range of I/O ports for direct access by the execution mode
in the VCPU. The requested port range must be a sub range of the provided I/O port
capability.

This also establishes a link between the provided I/O port capability and the VCPU,
see Section 6.4 for details.

10.4.14.3 Read VMCS

static inline seL4_X86_VCPU_ReadVMCS_t seL4_X86_VCPU_ReadVMCS

Read VMCS field from the hardware

Type Name Description
seL4_X86_VCPU _service VCPU object to operate on
seL4_Word field Field to give to vmread instruction

Return value: A seL4_X86_VCPU_ReadVMCS_t struct that contains a seL4_Word value,
which holds the return result of the vmread instruction, and int error. See Sec-
tion 10.1 for a description of the message register and tag contents upon error.

Description: Thin wrapper around the vmread instruction that is performed on the
VMCS region that is part of the VCPU object. After validating that a legal field is
requested the value of ‘vmread‘ is returned directly in the result.

10.4. X86-SPECIFIC OBJECT METHODS 135

10.4.14.4 Set TCB

static inline int seL4_X86_VCPU_SetTCB

Bind TCB to VCPU

Type Name Description
seL4_X86_VCPU _service VCPU object to operate on
seL4_TCB tcb CPTR of the TCB to bind to

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Configures the one-to-one binding of a VCPU and TCB, overwriting any
previous binding in both. See Section 6.4.

10.4.14.5 Write Registers

static inline int seL4_X86_VCPU_WriteRegisters

Set guest mode registers to the fields of a given seL4_VCPUContext

Type Name Description
seL4_X86_VCPU _service VCPU object to operate on
seL4_VCPUContext * regs Data structure containing the new register

values.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Sets the guest mode registers, which is any registers not already part of
the VMCS.

136 CHAPTER 10. SEL4 API REFERENCE

10.4.14.6 Write VMCS

static inline seL4_X86_VCPU_WriteVMCS_t seL4_X86_VCPU_WriteVMCS

Write VMCS field to the hardware

Type Name Description
seL4_X86_VCPU _service VCPU object to operate on
seL4_Word field Field to give to vmwrite instruction
seL4_Word value Value to write using vmwrite instruction

Return value: A seL4_X86_VCPU_WriteVMCS_t struct that contains a seL4_Word writen,
which holds the final value written with the vmwrite instruction, and int error. See
Section 10.1 for a description of the message register and tag contents upon error.

Description: Thin wrapper around the ‘vmwrite‘ instruction that is performed on the
VMCS region that is part of the VCPU object. As well as validating that a legal field is
requested, the value may be modified to ensure any bits that are fixed in the hardware
are correct, and that any features required for kernel correctness are not disabled (see
Section 6.4).

The final value written to the hardware is returned and can be compared to the input
parameter to determine what bits the kernel changed.

10.5. IA32-SPECIFIC OBJECT METHODS 137

10.5 IA32-Specific Object Methods

No methods.

138 CHAPTER 10. SEL4 API REFERENCE

10.6 x86_64-Specific Object Methods

10.6.1 seL4_X86_PDPT

10.6.1.1 Map

static inline int seL4_X86_PDPT_Map

TODO

Type Name Description
seL4_X86_PDPT _service TODO
seL4_X64_PML4 pml4 TODO
seL4_Word vaddr TODO
seL4_X86_VMAttributes attr TODO

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: TODO

10.6.1.2 Unmap

static inline int seL4_X86_PDPT_Unmap

TODO

Type Name Description
seL4_X86_PDPT _service TODO

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: TODO

10.7. ARM-SPECIFIC OBJECT METHODS 139

10.7 ARM-Specific Object Methods

10.7.1 seL4_ARM_ASIDControl

10.7.1.1 Make Pool

static inline int seL4_ARM_ASIDControl_MakePool

Create an ASID Pool.

Type Name Description
seL4_ARM_ASIDControl _service The master ASIDControl capability be-

ing operated on.
seL4_Untyped untyped Capability to an untyped memory object

that will become the pool. Must be 4K
bytes.

seL4_CNode root CPTR to the CNode that forms the root
of the destination CSpace. Must be at a
depth equivalent to the wordsize.

seL4_Word index CPTR to the destination slot. Resolved
from the root of the destination CSpace.

seL4_Uint8 depth Number of bits of index to resolve to find
the destination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Together with a capability to Untyped Memory, which is passed as an
argument, create an ASID Pool. The untyped capability must represent a 4K memory
object. This will create an ASID pool with enough space for 1024 VSpaces.

140 CHAPTER 10. SEL4 API REFERENCE

10.7.2 seL4_ARM_ASIDPool

10.7.2.1 Asid Pool Assign

static inline int seL4_ARM_ASIDPool_Assign

Assign an ASID Pool.

Type Name Description
seL4_ARM_ASIDPool _service The ASID pool which is being assigned to.

Must not be full. Each ASID pool can con-
tain 1024 entries.

seL4_CPtr vspace The VSpace that is being assigned to an
ASID pool. Must not already be assigned
to an ASID pool.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Assigns an ASID to the VSpace passed in as an argument.

10.7.3 seL4_ARM_CB

10.7.3.1 AssignVspace

static inline int seL4_ARM_CB_AssignVspace

Assigning a vspace to a context bank.

Type Name Description
seL4_ARM_CB _service A CB capability. This gives you the authority to

make this call.
seL4_CPtr vspace The VSpace that is being assigned to a context

bank. Must already has an assigned ASID.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.3.1.3.

10.7. ARM-SPECIFIC OBJECT METHODS 141

10.7.3.2 CBClearFault

static inline int seL4_ARM_CB_CBClearFault

Clear the fault status of the context bank.

Type Name Description
seL4_ARM_CB _service A CB capability. This gives you the authority to

make this call.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.3.1.7.

10.7.3.3 CBGetFault

static inline seL4_ARM_CB_CBGetFault_t seL4_ARM_CB_CBGetFault

Get the fault status of the context bank.

Type Name Description
seL4_ARM_CB _service A CB capability. This gives you the authority to

make this call.

Return value: A seL4_ARM_SMMU_CB_GetFault_t struct that contains a seL4_Word
status, which holds the fault status of the context bank, seL4_Word address, which
holds the faulty address, and int error. See Section 10.1 for a description of the
message register and tag contents upon error.

Description: See Section 8.3.1.7.

142 CHAPTER 10. SEL4 API REFERENCE

10.7.3.4 TLBInvalidate

static inline int seL4_ARM_CB_TLBInvalidate

Invalidating TLB entries used by the current ASID in this context bank.

Type Name Description
seL4_ARM_CB _service A CB capability. This gives you the authority to

make this call.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.3.1.6.

10.7.3.5 UnassignVspace

static inline int seL4_ARM_CB_UnassignVspace

Unassigning a vspace to a context bank.

Type Name Description
seL4_ARM_CB _service A CB capability. This gives you the authority to

make this call.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.3.1.3.

10.7. ARM-SPECIFIC OBJECT METHODS 143

10.7.4 seL4_ARM_CBControl

10.7.4.1 GetCB

static inline int seL4_ARM_CBControl_GetCB

Create a CB capability.

Type Name Description
seL4_ARM_CBControl _service A CBControl capability. This gives you the

authority to make this call.
seL4_Word cb The CB that you want this capability to

manage.
seL4_CNode root CPTR to the CNode that forms the root

of the destination CSpace. Must be at a
depth equivalent to the wordsize.

seL4_Word index CPTR to the destination slot. Resolved
from the root of the destination CSpace.

seL4_Uint8 depth Number of bits of dest_index to resolve to
find the destination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.3.1.2.

10.7.4.2 TLBInvalidateAll

static inline int seL4_ARM_CBControl_TLBInvalidateAll

Invalidate all TLB entries.

Type Name Description
seL4_ARM_CBControl _service A CBControl capability. This gives you the

authority to make this call.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.3.1.6.

144 CHAPTER 10. SEL4 API REFERENCE

10.7.5 seL4_ARM_IOPageTable

10.7.5.1 Map

static inline int seL4_ARM_IOPageTable_Map

TODO

Type Name Description
seL4_ARM_IOPageTable _service Capability to the I/O page table being

operated on.
seL4_ARM_IOSpace iospace TODO
seL4_Word ioaddr TODO

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: TODO

10.7.5.2 Unmap

static inline int seL4_ARM_IOPageTable_Unmap

TODO

Type Name Description
seL4_ARM_IOPageTable _service Capability to the I/O page table being

operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: TODO

10.7. ARM-SPECIFIC OBJECT METHODS 145

10.7.6 seL4_ARM_Page

10.7.6.1 Clean Data

static inline int seL4_ARM_Page_Clean_Data

Cleans the data cache out to RAM. The start and end are relative to the page being
serviced.

Type Name Description
seL4_ARM_Page _service Capability to the page being operated on.
seL4_Word start_offset The offset, relative to the start of the page

inclusive.
seL4_Word end_offset The offset, relative to the start of the page

exclusive.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7.

10.7.6.2 Clean and Invalidate Data

static inline int seL4_ARM_Page_CleanInvalidate_Data

Clean and invalidates the cache range within the given page. The range will be flushed
out to RAM. The start and end are relative to the page being serviced.

Type Name Description
seL4_ARM_Page _service Capability to the page being operated on.
seL4_Word start_offset The offset, relative to the start of the page

inclusive.
seL4_Word end_offset The offset, relative to the start of the page

exclusive.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7.

146 CHAPTER 10. SEL4 API REFERENCE

10.7.6.3 Get Address

static inline seL4_ARM_Page_GetAddress_t seL4_ARM_Page_GetAddress

Get the physical address of the underlying frame.

Type Name Description
seL4_ARM_Page _service Capability to the page being operated on.

Return value: A seL4_ARM_Page_GetAddress_t struct that contains a seL4_Word
paddr, which holds the physical address of the page, and int error. See Section 10.1
for a description of the message register and tag contents upon error.

Description: See Chapter 7.

10.7.6.4 Invalidate Data

static inline int seL4_ARM_Page_Invalidate_Data

Invalidates the cache range within the given page. The start and end are relative to
the page being serviced and should be aligned to a cache line boundary where possible.
An additional clean is performed on the outer cache lines if the start and end are not
aligned, to clean out the bytes between the requested and the cache line boundary.

Type Name Description
seL4_ARM_Page _service Capability to the page being operated on.
seL4_Word start_offset The offset, relative to the start of the page

inclusive.
seL4_Word end_offset The offset, relative to the start of the page

exclusive.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7.

10.7. ARM-SPECIFIC OBJECT METHODS 147

10.7.6.5 Map I/O

static inline int seL4_ARM_Page_MapIO

Type Name Description
seL4_ARM_Page _service Capability to the page being operated on.
seL4_ARM_IOSpace iospace TODO
seL4_CapRights_t rights TODO
seL4_Word ioaddr TODO

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: TODO

10.7.6.6 Map

static inline int seL4_ARM_Page_Map

Map a page into an address space or update the mapping attributes.

Type Name Description
seL4_ARM_Page _service Capability to the page being operated

on.
seL4_CPtr vspace Capability to the VSpace which will

contain the mapping. Must be assigned
to an ASID pool.

seL4_Word vaddr Virtual address to map the page into.
seL4_CapRights_t rights Rights for the mapping. Possible values

for this type are given in Section 3.1.4 .
seL4_ARM_VMAttributes attr VM Attributes for the mapping. Pos-

sible values for this type are given in
Chapter 7 .

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Takes a VSpace capability, as an argument and installs a reference to
the given Page in the lowest-level unmapped paging structure corresponding to the
given address, or updates the mapping attributes if the page is already mapped at
this address. If the required paging structures are not present this operation will fail,
returning a seL4_FailedLookup error. The page must not already be mapped through
this capability in a different VSpace or at a different address; the page may be mapped
in multiple VSpaces by copying the capability.

148 CHAPTER 10. SEL4 API REFERENCE

10.7.6.7 Unify Instruction

static inline int seL4_ARM_Page_Unify_Instruction

Unify Instruction Cache. Cleans data lines to point of unification, invalidate corre-
sponding instruction lines to point of unification, then invalidates branch predictors.
The start and end are relative to the page being serviced.

Type Name Description
seL4_ARM_Page _service Capability to the page being operated on.
seL4_Word start_offset The offset, relative to the start of the page

inclusive.
seL4_Word end_offset The offset, relative to the start of the page

exclusive.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7.

10.7.6.8 Unmap

static inline int seL4_ARM_Page_Unmap

Unmap a page.

Type Name Description
seL4_ARM_Page _service Capability to the page being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Removes an existing mapping.

10.7. ARM-SPECIFIC OBJECT METHODS 149

10.7.7 seL4_ARM_PageTable

10.7.7.1 Map

static inline int seL4_ARM_PageTable_Map

Map a page table into an address space.

Type Name Description
seL4_ARM_PageTable _service Capability to the page table being op-

erated on.
seL4_CPtr vspace Capability to the VSpace which will

contain the mapping. Must be assigned
to an ASID pool.

seL4_Word vaddr Virtual address to map the page into.
seL4_ARM_VMAttributes attr VM Attributes for the mapping. Pos-

sible values for this type are given in
Chapter 7 .

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Takes a VSpace capability as an argument, and installs a reference to
the invoked PageTable in the VSpace according to the provided virtual address. If
higher-level paging structures do not exist for the virtual address this operation will
fail, returning a seL4_FailedLookup error. If the page table is already mapped this
operation will fail, returning a seL4_InvalidCapability error. If another object is al-
ready mapped at this level for the virtual address this operation will fail, returning a
seL4_DeleteFirst error.

150 CHAPTER 10. SEL4 API REFERENCE

10.7.7.2 Unmap

static inline int seL4_ARM_PageTable_Unmap

Unmap a page table from its Page Directory and zero it out.

Type Name Description
seL4_ARM_PageTable _service Capability to the page table being operated

on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Removes the reference to the invoked Page Table from its containing
Page Directory.

10.7.8 seL4_ARM_SID

10.7.8.1 BindCB

static inline int seL4_ARM_SID_BindCB

Binding a context bank to a stream ID.

Type Name Description
seL4_ARM_SID _service A SID capability. This gives you the authority to

make this call.
seL4_CPtr cb The CB that is being binded to a stream ID. Must

already has an assigned vspace.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.3.1.4.

10.7. ARM-SPECIFIC OBJECT METHODS 151

10.7.8.2 UnbindCB

static inline int seL4_ARM_SID_UnbindCB

Unbinding a context bank from a stream ID.

Type Name Description
seL4_ARM_SID _service A SID capability. This gives you the authority to

make this call.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.3.1.4.

10.7.9 seL4_ARM_SIDControl

10.7.9.1 ClearFault

static inline int seL4_ARM_SIDControl_ClearFault

Clear the fault status of the SMMU.

Type Name Description
seL4_ARM_SIDControl _service A SIDControl capability. This gives you

the authority to make this call.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.3.1.7.

152 CHAPTER 10. SEL4 API REFERENCE

10.7.9.2 GetFault

static inline seL4_ARM_SIDControl_GetFault_t seL4_ARM_SIDControl_GetFault

Get the fault status of the SMMU.

Type Name Description
seL4_ARM_SIDControl _service A SIDControl capability. This gives you

the authority to make this call.

Return value: A seL4_ARM_SMMU_GetFault_t struct that contains a seL4_Word sta-
tus, which holds the global fault status of the SMMU, seL4_Word syndrome_0, which
holds the global fault syndrome 0 of the SMMU, seL4_Word syndrome_1, which holds
the global fault syndrome 1 of the SMMU, and int error. See Section 10.1 for a
description of the message register and tag contents upon error.

Description: See Section 8.3.1.7.

10.7.9.3 GetSID

static inline int seL4_ARM_SIDControl_GetSID

Create a SID capability.

Type Name Description
seL4_ARM_SIDControl _service A SIDControl capability. This gives you

the authority to make this call.
seL4_Word sid The SID that you want this capability to

manage.
seL4_CNode root CPTR to the CNode that forms the root

of the destination CSpace. Must be at a
depth equivalent to the wordsize.

seL4_Word index CPTR to the destination slot. Resolved
from the root of the destination CSpace.

seL4_Uint8 depth Number of bits of dest_index to resolve
to find the destination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.3.1.1.

10.7. ARM-SPECIFIC OBJECT METHODS 153

10.7.10 seL4_ARM_VCPU

10.7.10.1 Acknowledge Virtual PPI IRQ

static inline int seL4_ARM_VCPU_AckVPPI

Acknowledge a PPI IRQ previously forwarded from a VPPIEvent fault

Type Name Description
seL4_ARM_VCPU _service Capability to the VCPU being operated on.
seL4_Word irq irq to ack.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Acknowledge and unmask the PPI interrupt so that further interrupts
can be forwarded through VPPIEvent faults.

10.7.10.2 Inject IRQ

static inline int seL4_ARM_VCPU_InjectIRQ

Inject an IRQ to a virtual CPU

Type Name Description
seL4_ARM_VCPU _service Capability to the VCPU being operated on.
seL4_Uint16 virq Virtual IRQ ID
seL4_Uint8 priority Priority of the IRQ to be injected
seL4_Uint8 group IRQ group
seL4_Uint8 index IRQ index

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: TODO

154 CHAPTER 10. SEL4 API REFERENCE

10.7.10.3 Read Registers

static inline seL4_ARM_VCPU_ReadRegs_t seL4_ARM_VCPU_ReadRegs

Read a virtual CPU register

Type Name Description
seL4_ARM_VCPU _service Capability to the VCPU being operated on.
seL4_Word field Register to read from a VCPU

Return value: TODO

Description: TODO

10.7.10.4 Set TCB

static inline int seL4_ARM_VCPU_SetTCB

Bind a TCB to a virtual CPU

Type Name Description
seL4_ARM_VCPU _service Capability to the VCPU being operated on.
seL4_TCB tcb Capability to TCB to bind to a virtual CPU

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: There is a 1:1 relationship between a virtual CPU and a TCB. If either
(or both) of them is associated with another one, they will be dissociated, and then
associated to the ones called in this system calls.

10.7. ARM-SPECIFIC OBJECT METHODS 155

10.7.10.5 Write Registers

static inline int seL4_ARM_VCPU_WriteRegs

Write a virtual CPU register

Type Name Description
seL4_ARM_VCPU _service Capability to the VCPU being operated on.
seL4_Word field Register ID to write to a VCPU
seL4_Word value Value to be written to the VCPU register

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: TODO

10.7.11 seL4_IRQControl

10.7.11.1 GetTrigger

static inline int seL4_IRQControl_GetTrigger

Create an IRQ handler capability and specify the trigger method (edge or level).

Type Name Description
seL4_IRQControl _service An IRQControl capability. This gives you the

authority to make this call.
seL4_Word irq The IRQ that you want this capability to han-

dle.
seL4_Word trigger Indicates whether this IRQ is edge (1) or level

(0) triggered.
seL4_CNode root CPTR to the CNode that forms the root of

the destination CSpace. Must be at a depth
equivalent to the wordsize.

seL4_Word index CPTR to the destination slot. Resolved from
the root of the destination CSpace.

seL4_Uint8 depth Number of bits of dest_index to resolve to find
the destination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.1.

See Section 8.1.

156 CHAPTER 10. SEL4 API REFERENCE

10.7.11.2 GetTriggerCore

static inline int seL4_IRQControl_GetTriggerCore

Create an IRQ handler capability and specify the trigger method (edge or level) and
the target core.

Type Name Description
seL4_IRQControl _service An IRQControl capability. This gives you the

authority to make this call.
seL4_Word irq The IRQ that you want this capability to han-

dle.
seL4_Word trigger Indicates whether this IRQ is edge (1) or level

(0) triggered.
seL4_CNode root CPTR to the CNode that forms the root of

the destination CSpace. Must be at a depth
equivalent to the wordsize.

seL4_Word index CPTR to the destination slot. Resolved from
the root of the destination CSpace.

seL4_Uint8 depth Number of bits of dest_index to resolve to find
the destination slot.

seL4_Word target Indicates the target core ID to which this irq
will be sent.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Section 8.1.

10.8. AARCH32-SPECIFIC OBJECT METHODS 157

10.8 Aarch32-Specific Object Methods

10.8.1 seL4_ARM_PageDirectory

10.8.1.1 Clean Data

static inline int seL4_ARM_PageDirectory_Clean_Data

Clean cached pages within a page directory

Type Name Description
seL4_ARM_PageDirectory _service Capability to the page directory being

operated on.
seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7.

10.8.1.2 Clean and Invalidate Data

static inline int seL4_ARM_PageDirectory_CleanInvalidate_Data

Clean and invalidate cached pages within a page directory

Type Name Description
seL4_ARM_PageDirectory _service Capability to the page directory being

operated on.
seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7.

158 CHAPTER 10. SEL4 API REFERENCE

10.8.1.3 Invalidate Data

static inline int seL4_ARM_PageDirectory_Invalidate_Data

Invalidate cached pages within a page directory

Type Name Description
seL4_ARM_PageDirectory _service Capability to the page directory being

operated on.
seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7.

10.8.1.4 Unify Instruction

static inline int seL4_ARM_PageDirectory_Unify_Instruction

Clean and invalidate cached instruction pages to point of unification

Type Name Description
seL4_ARM_PageDirectory _service Capability to the page directory being

operated on.
seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7.

10.9. AARCH64-SPECIFIC OBJECT METHODS 159

10.9 Aarch64-Specific Object Methods

10.9.1 seL4_ARM_PageDirectory

10.9.1.1 Map

static inline int seL4_ARM_PageDirectory_Map

Map a page directory

Type Name Description
seL4_ARM_PageDirectory _service Capability to the page directory being

operated on.
seL4_CPtr vspace Top level translation table. Must be

assigned to an ASID pool.
seL4_Word vaddr Virtual adress
seL4_ARM_VMAttributes attr VM Attributes for the mapping. Pos-

sible values for this type are given in
Chapter 7 .

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Map a page directory (level 2) to an upper page directory (level 1).
If an upper page directory does not exist for the virtual address this operation will
fail, returning a seL4_FailedLookup error. If the page directory is already mapped
this operation will fail, returning a seL4_InvalidCapability error. If another object is
already mapped at this level for the virtual address this operation will fail, returning
a seL4_DeleteFirst error.

10.9.1.2 Unmap

static inline int seL4_ARM_PageDirectory_Unmap

Unmap a page directory

Type Name Description
seL4_ARM_PageDirectory _service Capability to the page directory being

operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Unmap a page directory (level 2) from an upper page directory (level 1)

160 CHAPTER 10. SEL4 API REFERENCE

10.9.2 seL4_ARM_PageUpperDirectory

10.9.2.1 Map

static inline int seL4_ARM_PageUpperDirectory_Map

Map an upper page directory

Type Name Description
seL4_ARM_PageUpperDirectory _service Capability to the upper page di-

rectory being operated on.
seL4_CPtr vspace Top level translation table.

Must be assigned to an ASID
pool.

seL4_Word vaddr Virtual address
seL4_ARM_VMAttributes attr VM Attributes for the mapping.

Possible values for this type are
given in Chapter 7 .

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Map an upper page directory (level 1) to a top level translation table (level
0). If the upper page directory is already mapped this operation will fail, returning a
seL4_InvalidCapability error. If another object is already mapped at this level for the
virtual address this operation will fail, returning a seL4_DeleteFirst error.

10.9.2.2 Unmap

static inline int seL4_ARM_PageUpperDirectory_Unmap

TODO

Type Name Description
seL4_ARM_PageUpperDirectory _service Capability to the upper page di-

rectory being operated on.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: TODO

10.9. AARCH64-SPECIFIC OBJECT METHODS 161

10.9.3 seL4_ARM_VSpace

10.9.3.1 Clean Data

static inline int seL4_ARM_VSpace_Clean_Data

Clean cached pages within a top level translation table

Type Name Description
seL4_ARM_VSpace _service Capability to the top level translation table be-

ing operated on.
seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7.

10.9.3.2 Clean and Invalidate Data

static inline int seL4_ARM_VSpace_CleanInvalidate_Data

Clean and invalidate cached pages within a top level translation table

Type Name Description
seL4_ARM_VSpace _service Capability to the top level translation table be-

ing operated on.
seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7.

162 CHAPTER 10. SEL4 API REFERENCE

10.9.3.3 Invalidate Data

static inline int seL4_ARM_VSpace_Invalidate_Data

Invalidate cached pages within a top level translation table

Type Name Description
seL4_ARM_VSpace _service Capability to the top level translation table be-

ing operated on.
seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7.

10.9.3.4 Unify Instruction

static inline int seL4_ARM_VSpace_Unify_Instruction

Clean and invalidate cached instruction pages to point of unification

Type Name Description
seL4_ARM_VSpace _service Capability to the top level translation table be-

ing operated on.
seL4_Word start Start address
seL4_Word end End address

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7.

10.10. RISCV-SPECIFIC OBJECT METHODS 163

10.10 RISCV-Specific Object Methods

10.10.1 General RISCV Object Methods

10.10.2 seL4_IRQControl

No methods.

10.10.3 seL4_RISCV_ASIDControl

10.10.3.1 MakePool

static inline int seL4_RISCV_ASIDControl_MakePool

Create an ASID Pool.

Type Name Description
seL4_RISCV_ASIDControl _service The master ASIDControl capability to

invoke.
seL4_Untyped untyped Capability to an untyped memory ob-

ject that will become the pool. Must
be 4K bytes.

seL4_CNode root CPTR to the CNode that forms the
root of the destination CSpace. Must
be at a depth of 32.

seL4_Word index CPTR to the CNode that forms the
root of the destination CSpace. Must
be at a depth of 32.

seL4_Uint8 depth Number of bits of index to resolve to
find the destination slot.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Together with a capability to Untyped Memory, which is passed as an
argument, create an ASID Pool. The untyped capability must represent a 4K memory
object. This will create an ASID pool with enough space for 1024 VSpaces.

164 CHAPTER 10. SEL4 API REFERENCE

10.10.4 seL4_RISCV_ASIDPool

10.10.4.1 Assign

static inline int seL4_RISCV_ASIDPool_Assign

Assign an ASID Pool.

Type Name Description
seL4_RISCV_ASIDPool _service The ASID Pool capability to invoke,

which must be to an ASID pool that is
not full.

seL4_CPtr vspace The top-level PageTable that is being as-
signed to an ASID pool. Must not already
be assigned to an ASID pool.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Assigns an ASID to the VSpace passed in as an argument.

10.10.5 seL4_RISCV_Page

10.10.5.1 GetAddress

static inline seL4_RISCV_Page_GetAddress_t seL4_RISCV_Page_GetAddress

Get the physical address of a page.

Type Name Description
seL4_RISCV_Page _service Capability to the page to invoke.

Return value: A seL4_RISCV_Page_GetAddress_t struct that contains a seL4_Word
paddr, which holds the physical address of the page, and int error. See Section 10.1
for a description of the message register and tag contents upon error.

Description: See Chapter 7.

10.10. RISCV-SPECIFIC OBJECT METHODS 165

10.10.5.2 Map

static inline int seL4_RISCV_Page_Map

Map a page into a page table.

Type Name Description
seL4_RISCV_Page _service Capability to the page to invoke.
seL4_RISCV_PageTable vspace VSpace to map the page into.
seL4_Word vaddr Virtual address at which to map the

page.
seL4_CapRights_t rights Rights for the mapping. Possible val-

ues for this type are given in Sec-
tion 3.1.4.

seL4_RISCV_VMAttributes attr VM Attributes for the mapping.
Possible values for this type are given
in Chapter 7.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Takes a VSpace, or top-level Page Table, capability as an argument and
installs a reference to the given Page in the page table slot corresponding to the given
address. If a page is already mapped at the same virtual address, update the mapping
attributes. If the required paging structures are not present this operation will fail,
returning a seL4_FailedLookup error.

10.10.5.3 Unmap

static inline int seL4_RISCV_Page_Unmap

Unmap a page.

Type Name Description
seL4_RISCV_Page _service Capability to the page to invoke.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Removes an existing mapping.

166 CHAPTER 10. SEL4 API REFERENCE

10.10.6 seL4_RISCV_PageTable

10.10.6.1 Map

static inline int seL4_RISCV_PageTable_Map

Map a page table at a specific virtual address.

Type Name Description
seL4_RISCV_PageTable _service Capability to the page table to in-

voke.
seL4_RISCV_PageTable vspace VSpace to map the lower-level page

table into.
seL4_Word vaddr Virtual address at which to map the

page table.
seL4_RISCV_VMAttributes attr VM Attributes for the mapping.

Possible values for this type are given
in Chapter 7.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: Starting from the VSpace, map the page table object at any unpopulated
level for the provided virtual address. If all paging structures and mappings are present
for this virtual address, return an seL4_DeleteFirst error.

10.10.6.2 Unmap

static inline int seL4_RISCV_PageTable_Unmap

Unmap a page table.

Type Name Description
seL4_RISCV_PageTable _service Capability to the page table to invoke.

Return value: A return value of 0 indicates success. A non-zero value indicates that
an error occurred. See Section 10.1 for a description of the message register and tag
contents upon error.

Description: See Chapter 7

Bibliography

[Boy09] Andrew Boyton. A verified shared capability model. In Gerwin Klein, Ralf
Huuck, and Bastian Schlich, editors, Proceedings of the 4th Workshop on
Systems Software Verification, volume 254 of Electronic Notes in Computer
Science, pages 25–44, Aachen, Germany, October 2009. Elsevier.

[BSC+11] Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoud-
hury, and Gernot Heiser. Timing analysis of a protected operating system
kernel. In IEEE Real-Time Systems Symposium, pages 339–348, Vienna,
Austria, November 2011.

[BSH12] Bernard Blackham, Yao Shi, and Gernot Heiser. Improving interrupt re-
sponse time in a verifiable protected microkernel. In EuroSys, pages 323–
336, Bern, Switzerland, April 2012.

[CKS08] David Cock, Gerwin Klein, and Thomas Sewell. Secure microkernels, state
monads and scalable refinement. In Otmane Ait Mohamed, César Muñoz,
and Sofiène Tahar, editors, Proceedings of the 21st International Confer-
ence on Theorem Proving in Higher Order Logics, volume 5170 of Lecture
Notes in Computer Science, pages 167–182, Montreal, Canada, August
2008. Springer-Verlag.

[DEK+06] Philip Derrin, Kevin Elphinstone, Gerwin Klein, David Cock, and Manuel
M. T. Chakravarty. Running the manual: An approach to high-assurance
microkernel development. In Proceedings of the ACM SIGPLAN Haskell
Workshop, Portland, OR, USA, September 2006.

[EKE08] Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphinstone. Verified pro-
tection model of the seL4 microkernel. In Jim Woodcock and Natarajan
Shankar, editors, Proceedings of Verified Software: Theories, Tools and
Experiments 2008, volume 5295 of Lecture Notes in Computer Science,
pages 99–114, Toronto, Canada, October 2008. Springer-Verlag.

[Int11] Intel Corporation. Intel Virtualization Technology for Directed I/O
— Architecture Specification, February 2011. http://download.intel.com/
technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-
ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.
seL4: Formal verification of an OS kernel. In Proceedings of the 22nd ACM

167

http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf
http://download.intel.com/technology/computing/vptech/Intel(r)_VT_for_Direct_IO.pdf

168 BIBLIOGRAPHY

Symposium on Operating Systems Principles, pages 207–220, Big Sky, MT,
USA, October 2009. ACM.

[MMB+13] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy
Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. seL4:
from general purpose to a proof of information flow enforcement. In IEEE
Symposium on Security & Privacy, pages 415–429, San Francisco, CA,
May 2013.

[Pal09] Ameya Palande. Capability-based secure DMA in seL4. Masters thesis,
Vrije Universiteit, Amsterdam, January 2009.

[SA99] Tom Shanley and Don Anderson. PCI System Architecture. Mindshare,
Inc., 1999.

[SWG+11] Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray, June An-
dronick, and Gerwin Klein. seL4 enforces integrity. In Marko van Eekelen,
Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editor, Interactive
Theorem Proving (ITP), pages 325–340, Nijmegen, The Netherlands, Au-
gust 2011.

[TKN07] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and sep-
aration logic. In Martin Hofmann and Matthias Felleisen, editors, Pro-
ceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 97–108, Nice, France, January 2007.
ACM.

[WKS+09] Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick, David
Cock, and Michael Norrish. Mind the gap: A verification framework for
low-level C. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and
Makarius Wenzel, editors, Proceedings of the 22nd International Confer-
ence on Theorem Proving in Higher Order Logics, volume 5674 of Lecture
Notes in Computer Science, pages 500–515, Munich, Germany, August
2009. Springer-Verlag.

	Introduction
	Kernel Services and Objects
	Capability-based Access Control
	System Calls
	Kernel Objects
	Kernel Memory Allocation
	Reusing Memory
	Summary of Object Sizes

	Capability Spaces
	Capability and CSpace Management
	CSpace Creation
	CNode Methods
	Capabilities to Newly-Retyped Objects
	Capability Rights
	Capability Derivation Tree

	Deletion and Revocation
	CSpace Addressing
	Capability Address Lookup
	Addressing Capabilities

	Lookup Failure Description
	Invalid Root
	Missing Capability
	Depth Mismatch
	Guard Mismatch

	Message Passing (IPC)
	Message Registers
	Endpoints
	Endpoint Badges
	Capability Transfer
	Errors
	Calling and Replying

	Notifications
	Notification Objects
	Signalling, Polling and Waiting
	Binding Notifications

	Threads and Execution
	Threads
	Thread control blocks
	Thread Creation
	Thread Deactivation
	Scheduling
	MCS Scheduling
	Scheduling Contexts
	Passive Threads
	Scheduling Context Creation
	Scheduling Context Donation
	Scheduling algorithm
	Exceptions
	Standard Exceptions
	Timeout Exceptions (MCS Only)

	Message Layout of the Read-/Write-Registers Methods

	Faults
	Capability Faults
	Unknown Syscall
	User Exception
	Debug Exception: Breakpoints and Watchpoints
	Debug Exception: Single-stepping
	Timeout Fault (MCS only)
	VM Fault

	Domains
	Virtualisation
	ARM
	x86

	Address Spaces and Virtual Memory
	Objects
	Hardware Virtual Memory Objects
	IA-32
	x64
	AArch32
	AArch64

	RISC-V
	RISC-V 32-bit
	RISC-V 64-bit

	Page
	AArch32 page sizes
	AArch64 page sizes
	IA-32 page sizes
	X64 page sizes
	RISC-V 32-bit page sizes
	RISC-V 64-bit page sizes

	ASID Control
	ASID Pool

	Mapping Attributes
	Sharing Memory
	Page Faults

	Hardware I/O
	Interrupt Delivery
	x86-Specific I/O
	Interrupts
	I/O Ports
	I/O Space

	Arm-Specific I/O
	Arm SMMU version 2.0
	Creating seL4_ARM_SID capabilities
	Creating seL4_ARM_CB capabilities
	Configuring context banks
	Configuring streams (transactions)
	Copying and Deleting caps
	TLB invalidation
	Fault handling

	System Bootstrapping
	Initial Thread's Environment
	BootInfo Frame
	Boot Command-line Arguments

	seL4 API Reference
	Error Codes
	Invalid Argument
	Invalid Capability
	Illegal Operation
	Range Error
	Alignment Error
	Failed Lookup
	Truncated Message
	Delete First
	Revoke First
	Not Enough Memory

	System Calls
	General System Calls
	Send
	Recv
	Call
	Reply
	Non-Blocking Send
	Reply Recv
	NBRecv
	Yield
	Signal
	Wait
	Poll

	General System Calls (MCS)
	Send
	Recv
	Call
	Non-Blocking Send
	Reply Recv
	NBRecv
	NBSend Recv
	NBSend Wait
	Yield
	Wait
	NBWait
	Poll
	Signal

	Debugging System Calls
	Put Char
	Dump scheduler
	Halt
	Snapshot
	Cap Identify
	Name Thread
	Send SGI 0-15
	Run

	Benchmarking System Calls
	Reset Log
	Finalize Log
	Set Log Buffer
	Null Syscall
	Flush Caches
	Flush L1 Caches
	Get Thread Utilisation
	Reset Thread Utilisation
	Dump All Threads Utilisation
	Reset All Threads Utilisation

	X86 System Calls
	VMEnter

	Architecture-Independent Object Methods
	seL4_CNode
	Cancel Badged Sends
	Copy
	Delete
	Mint
	Move
	Mutate
	Revoke
	Rotate
	Save Caller

	seL4_DomainSet
	Set

	seL4_IRQControl
	Get

	seL4_IRQHandler
	Acknowledge
	Clear
	Set Notification

	seL4_SchedContext
	Bind
	Consumed
	Unbind
	UnbindObject
	YieldTo

	seL4_SchedControl
	ConfigureFlags

	seL4_TCB
	Bind Notification
	Configure (MCS)
	Configure Single Stepping
	Configure
	Copy Registers
	Get Breakpoint
	Read Registers
	Resume
	Set Breakpoint
	Set CPU Affinity
	Set IPC Buffer
	Set Maximum Controlled Priority
	Set Priority
	Set Sched Params (MCS)
	Set Sched Params
	Set Space
	Set TLS Base
	Set Timeout Endpoint
	Suspend
	Unbind Notification
	Unset Breakpoint
	Write Registers

	seL4_Untyped
	Retype

	x86-Specific Object Methods
	seL4_IRQControl
	Get I/O APIC
	Get MSI

	seL4_TCB
	Set EPT Root

	seL4_X86_ASIDControl
	Make Pool

	seL4_X86_ASIDPool
	Assign

	seL4_X86_EPTPD
	Map
	Unmap

	seL4_X86_EPTPDPT
	Map
	Unmap

	seL4_X86_EPTPT
	Map
	Unmap

	seL4_X86_IOPageTable
	Map
	Unmap

	seL4_X86_IOPort
	In16
	In32
	In8
	Out16
	Out32
	Out8

	seL4_X86_IOPortControl
	Issue

	seL4_X86_Page
	Get Address
	Map EPT
	Map I/O
	Map
	Unmap

	seL4_X86_PageDirectory
	Get Status Bits
	Map
	Unmap

	seL4_X86_PageTable
	Map
	Unmap

	seL4_X86_VCPU
	Disable IO Port
	Enable IO Port
	Read VMCS
	Set TCB
	Write Registers
	Write VMCS

	IA32-Specific Object Methods
	x86_64-Specific Object Methods
	seL4_X86_PDPT
	Map
	Unmap

	ARM-Specific Object Methods
	seL4_ARM_ASIDControl
	Make Pool

	seL4_ARM_ASIDPool
	Asid Pool Assign

	seL4_ARM_CB
	AssignVspace
	CBClearFault
	CBGetFault
	TLBInvalidate
	UnassignVspace

	seL4_ARM_CBControl
	GetCB
	TLBInvalidateAll

	seL4_ARM_IOPageTable
	Map
	Unmap

	seL4_ARM_Page
	Clean Data
	Clean and Invalidate Data
	Get Address
	Invalidate Data
	Map I/O
	Map
	Unify Instruction
	Unmap

	seL4_ARM_PageTable
	Map
	Unmap

	seL4_ARM_SID
	BindCB
	UnbindCB

	seL4_ARM_SIDControl
	ClearFault
	GetFault
	GetSID

	seL4_ARM_VCPU
	Acknowledge Virtual PPI IRQ
	Inject IRQ
	Read Registers
	Set TCB
	Write Registers

	seL4_IRQControl
	GetTrigger
	GetTriggerCore

	Aarch32-Specific Object Methods
	seL4_ARM_PageDirectory
	Clean Data
	Clean and Invalidate Data
	Invalidate Data
	Unify Instruction

	Aarch64-Specific Object Methods
	seL4_ARM_PageDirectory
	Map
	Unmap

	seL4_ARM_PageUpperDirectory
	Map
	Unmap

	seL4_ARM_VSpace
	Clean Data
	Clean and Invalidate Data
	Invalidate Data
	Unify Instruction

	RISCV-Specific Object Methods
	General RISCV Object Methods
	seL4_IRQControl
	seL4_RISCV_ASIDControl
	MakePool

	seL4_RISCV_ASIDPool
	Assign

	seL4_RISCV_Page
	GetAddress
	Map
	Unmap

	seL4_RISCV_PageTable
	Map
	Unmap

