
School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

2023 T3 Week 01 Part 1

Introduction: Microkernels and seL4
@GernotHeiser

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3 → L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4 µKernel

OKL4 Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed

NOVA
GMD/IBM/Karlsruhe

UNSW/NICTA

Dresden

Commercial Clone

OK Labs

© Gernot Heiser 2019 – CC BY 4.0

Copyright Notice
These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License
• You are free:

• to share—to copy, distribute and transmit the work
• to remix—to adapt the work

• under the following conditions:
• Attribution: You must attribute the work (but not in any way that

suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

1 COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

Why Advanced Operating Systems?
• Understand OS (especially microkernels) in real depth
• Understand how to design an OS
• Learn to build a sizable system with great deal of independence
• Learn to cope with the complexity of systems code
• Tackle a real challenge
• Get a glimpse of OS research, and preparation for it
• Obtain skills highly sought-after in industry
• Have fun while working hard!

2 COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

Today’s Lecture
• Whirlwind intro to microkernels and the context of seL4
• seL4 principles and concepts
• seL4 Mechanisms

• IPC and Notifications

Aim: Get you ready for the project quickly

3 COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

Microkernels

4 COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

Microkernels: Reducing the Trusted Computing Base

5

• Idea of microkernel:
• Flexible, minimal platform
• Mechanisms, not policies
• OS functionality provided by usermode servers
• Servers invoked by kernel-provided message-

passing mechanism (IPC)
• Goes back to Nucleus [Brinch Hansen’70]

IPC performance
is critical!

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

Hardware

IPC, virtual memory

Application

Application

Unix
Server

File
ServerDevice

Driver

Syscall

IPC

Kernel
Mode

User
Mode

COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

Monolithic vs Microkernel OS Evolution
Monolithic OS

• New features add code kernel
• New policies add code kernel
• Kernel complexity grows

Microkernel OS

• Features add usermode code
• Policies replace usermode code
• Kernel complexity is stable

6

Hardware

VFS

IPC, file system

Scheduler, virtual memory

Device drivers, dispatcher

ApplicationSyscall

Hardware

IPC, virtual memory

Application

NW
Protoc
Stack

File
ServerDevice

Driver

IPC

Kernel
Mode

User
Mode

10 kSLOC

20,000
kSLOC

• Adaptable
• Dependable
• Highly optimised

COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

Microkernel Principle: Minimality

• Small trusted computing base
• Easier to get right
• Small attack surface

• Challenges:
– API design: generality despite small code base
– Kernel design and implementation for high performance

A concept is tolerated inside the microkernel only if
moving it outside the kernel, i.e. permitting competing
implementations, would prevent the implementation of
the system’s required functionality. [Lietdke SOSP’95]

7 COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

L4: 30 Years High-Performance Microkernels

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3 → L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4 µKernel

OKL4 Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embed.

NOVA
GMD/IBM/Karlsruhe

UNSW/NICTA

Dresden

Commercial Clone

OK Labs

API Inheritance

Code Inheritance

iOS secure
enclave

First L4 kernel
with capabilities

Qualcomm
modem chips

8 COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

The seL4 Microkernel

9 COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

Principles
• Single protection mechanism: capabilities

• Now also for time: MCS configuration [Lyons et al, EuroSys’18]
• All resource-management policy at user level

• Painful to use
• Need to provide standard memory-management library

• Results in L4-like programming model
• Suitable for formal verification

• Proof of implementation correctness
• Attempted since ‘70s
• Finally achieved by L4.verified project

at NICTA [Klein et al, SOSP’09]

10

More on principles in my blog: https://bit.ly/34uI8Fl
COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.011

Concepts in a Slide
• Capabilities (Caps): reference kernel objects
• 10 kernel object types:

• Threads (thread-control blocks: TCBs)
• Scheduling contexts (SCs)
• Address spaces (page table objects: PDs, PTs)
• Endpoints (IPC)
• Reply objects (ROs)
• Notifications
• Capability spaces (CNodes)
• Frames
• Interrupt objects (architecture specific)
• Untyped memory

• System calls:
• Call(), ReplyRecv() (and one-way variants)
• Yield()

COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

Not a Concept: Hardware Abstraction
Why?
• Hardware abstraction violates minimality
• Hardware abstraction introduces policy

True microkernel:
• Minimal wrapper of hardware, just enough to safely multiplex
• “CPU driver” [Charles Gray]
• Similarities with Exokernels [Engeler ’95]

12 COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.013

What Are (Object) Capabilities?

Any system call is invoking a capability:
err = cap.method(args);

Obj reference
Access rights

Capability = Access Token:
Prima-facie evidence of privilege

Eg. read, write,
send, execute…

Capabilities provide:
• Fine-grained access control
• Reasoning about information flow

Object

Eg. thread,
address space

COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

seL4 Capabilities
• Stored in cap space (CSpace)

• Kernel object made up of CNodes
• each an array of cap “slots”

• Inaccessible to userland
• But referred to by pointers into CSpace (slot addresses)
• These CSpace addresses are called CPTRs

• Caps convey specific privilege (access rights)
• Read, Write, Execute, GrantReply (Call), Grant (cap transfer)

• Can invoke a cap or derive cap of less or equal strength
• Details later

14 COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

seL4 Mechanisms
IPC & Notifications

15 COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.016

Protected Procedure Calls (IPC)

Fundamental microkernel operation
• Kernel provides no services, only mechanisms
• OS services provided by (protected) user-level server processes
• Invoked by protected procedure call (called “IPC” for historical reasons)

seL4

Client Server

IPC

send receive

seL4 IPC uses a handshake through Endpoints:
• Transfer points without storage capacity
• Message must be transferred instantly

• Single-copy user ➞ user by kernel

COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.017

seL4 IPC: Cross-Domain Invocation

seL4

Client

…
err = server.f(args);
…

Server

f(args) {
 …
}

IPC

seL4 IPC is not:
• A mechanism for shipping data
• A synchronisation mechanism

• side effect, not purpose

seL4 IPC is: A user-controlled
context switch “with benefits”:
• change protection context
• pass arguments / result

COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.018

IPC: Endpoints

• Threads must rendez-vous
• One side blocks until the

other is ready
• Implicit synchronisation

• Arguments copied from sender’s to receiver’s message registers
• Combination of caps (by reference arguments) and data words (by value)

• Presently max 121 words (484B, incl message “tag”)
• Should never use anywhere near that much!

…....

Client
Running Blocked

Server
Blocked Running

Call (ep_cap, …)

while (true) {
…
ReplyRecv (…)

}…....

• Involves 2 threads, but
always one blocked

• logically, thread moves
between address spaces

COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.019

Endpoints are Message Queues

Kernel

• EP has no sense of direction
• May queue senders or receivers

• never both at the same time!
• Communication needs 2 EPs!

Server

First invocation
queues caller

Client1

Client2

TCB1 TCB2
EP

Further callers of
same direction

queue by priority

TCBS

Note: On single
core should not
get queues –

server should be
highest priority!

COMP9242 2023 T3 W01-1: Microkernels & seL4

But: Reasonable
for single-threaded
(“passive”) server
on multicore!

© Gernot Heiser 2019 – CC BY 4.0

Server Invocation & Return
• Asymmetric relationship:

• Server widely accessible, clients not
• How can server reply back to

client (distinguish between them)?
• Client can pass session cap in first request

• server needs to maintain session state
• forces stateful server design

• seL4 solution: Kernel creates channel in reply object (RO)
• server provides RO in ReplyRecv() operation
• kernel blocks client on RO when executing receive phase
• server invokes RO for send phase (only one send until refreshed)
• only works when client invokes with Call()

20

Client1 Server Client2

New MCS
kernel

semantics!

COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.021

Call Semantics

Client
Call(ep, args)

process

Client Server

Kernel

deliver to server
block client on RO

deliver to client

Server
ReplyRecv(ep,… ,ro)

process
ReplyRecv(ep,… ,ro)

ep

ro

COMP9242 2023 T3 W01-1: Microkernels & seL4

One per client for
blocking calls!

Priorities:
• Call to high
• Receive from low!

© Gernot Heiser 2019 – CC BY 4.0

Stateful Servers: Identifying Clients
• Server must respond to correct client

• Ensured by reply cap

• Must associate request
with correct state

• Could use separate EP per client
• endpoints are lightweight (16 B)
• but would require mechanism to wait on a set of EPs (like Unix select())

• Instead, seL4 allows to individually mark (“badge”) caps to same EP
• server provides individually badged (session) caps to clients

• separate endpoints for opening session, further invocations
• server tags client state with badge
• kernel delivers badge to receiver on invocation of badged caps

22

Client1 Server
Client1 state

Client2 Client2 state
Args

COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

IPC Mechanics: Virtual Registers
• Like physical registers, virtual registers are thread state

• context-switched by kernel
• map to physical registers or thread-local memory (“IPC buffer”)

• Message registers
• contain message transferred in IPC
• architecture-dependent subset mapped to physical registers

• presently 1 on x86, 4 on x64, Arm, RISC-V
• library interface hides details
• 1st transferred word is special, contains message tag

• API: MR[0] refers to next word (not the tag!)
• Use helper functions seL4_SetMR, seL4_GetMR

23 COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

IPC Operations Summary
• Call (ep_cap, …)

• Atomic: guarantees caller is ready to receive reply
• Sets up server’s reply object

• ReplyRecv (ep_cap, …)
• Invokes RO (non-blocking), waits on EP, re-inits RO

• Recv (ep_cap, …), Reply(…), Send (ep_cap, …)
• For initialisation and exception handling
• needs Read, Write, Write permission, respectively

• NBSend (ep_cap, …)
• Polling send, message lost if receiver not ready

No failure notification where this reveals info on other entities!

24

Need error
handling
protocol !

Not really
useful

COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

Notifications – Synchronisation Objects
• Logically, a Notification is an array of binary semaphores

• Multiple signalling, select-like wait
• Not a message-passing IPC operation!

• Implemented by
data word in Notification

• Send OR-s sender’s
cap badge to data word

• Receiver can poll or wait
• waiting returns and

clears data word
• polling just returns

data word

25

…....

Thread1
Running Blocked

Thread2
Blocked Running

w = Poll (not_cap, …)

…... w = Wait (not_cap,…)
….... Signal (not_cap, …)

Signal (not_cap, …)

COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.026

Notification Queues

Kernel

First invocation
queues waiter

Process1

Process2

TCB1 TCB2
Notification

Further waiters
queued by priority

0 0 0 0 0 0… 0

COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.027

Receiving from EP and Notification

File Server
Client Device

Driver

Server with synchronous and asynchronous interface

Synchronous
RPC protocol

Asynchronous
completion signals

Separate thread
per interface?

Concurrency
control, complexity!Better: single thread for both interfaces

• Notification “bound” to TCB
• Signal delivered as “IPC” from EP Must partition badge

space to distinguish!

COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.028

IPC Message Format

Note: Don’t need to deal with this explicitly for project

Msg
Length

#
Caps

Caps
unwrappedLabel

CSpace reference for receiving
caps (Receive only)

Caps (on Send)
Badges (on Receive)MessageTag

Semantics defined
by IPC protocol
(Kernel or user)

Raw data

Bitmap indicating
caps which had

badges extracted
Caps sent
or received

COMP9242 2023 T3 W01-1: Microkernels & seL4

© Gernot Heiser 2019 – CC BY 4.0

Client-Server IPC Example
seL4_MessageInfo_t tag = seL4_MessageInfo_new(0, 0, 0, 1);
seL4_SetMR(0, value);
seL4_Call(server_c, tag);Set message

register #0

ut_t* reply_ut = ut_alloc(seL4_ReplyBits, &cspace);
seL4_CPtr reply = cspace_alloc_slot(&cspace);
err = cspace_untyped_retype(&cspace, reply_ut->cap, reply,
 seL4_ReplyObject, seL4_ReplyBits);
seL4_CPtr badged_ep = cspace_alloc_slot(&cspace);
cspace_mint(&cspace, badged_ep, &cspace, ep, seL4_AllRights, 0xff);
…
seL4_Word badge;
seL4_MessageInfo_t msg = seL4_Recv(ep, &badge, reply);
…
seL4_MessageInfo_t response = seL4_MessageInfo_new(0, 0, 0, 1);
seL4_NBSend(reply, response);

Allocate slot &
retype to RO

Derive cap with
badge 0xff

Client

Server

29

Wait on EP, receiving
badge, setting RO

Reply to sender
identified by RO

Note: this is for clarity, in
reality should use ReplyRecv!

COMP9242 2023 T3 W01-1: Microkernels & seL4

CSpace helper functions
in libsel4cspace

© Gernot Heiser 2019 – CC BY 4.0

Proper Server Loop

…
while (1) {
 seL4_MessageInfo_t msg = seL4_ReplyRecv(ep, response, &badge, reply);
 …
 seL4_MessageInfo_t response = seL4_MessageInfo_new(0, 0, 0, 1);
}

30 COMP9242 2023 T3 W01-1: Microkernels & seL4

Reply objectReturn value
EP to wait on

Client badge

