
Events, Co-routines, Continuations and Threads

OS (and application)Execution Models

System Building

General purpose systems need to deal with
• Many activities

– potentially overlapping

– may be interdependent

» need to resume after something else happens

• Activities that depend on external phenomena
– may requiring waiting for completion (e.g. disk read)

– reacting to external triggers (e.g. interrupts)

• OS defines its execution model

– low-level language

– minimal runtime

Need a systematic approach to execution structure
© Kevin Elphinstone 2

Execution Models

• Events

• Coroutines

• Threads

• Continuations

Note: Focus is on uni-processor for now, multiprocessors come later in the course.

© Kevin Elphinstone 3

Events

External entities generate (post) events.
• keyboard presses, mouse clicks, system calls

Event loop waits for events and calls an appropriate
event handler.

Event handler is a function that runs until
completion and returns to the event loop.

© Kevin Elphinstone 4

Some Definitions

• Block

• Execution state is preserved

• Marks current execution as blocked

• It is no longer considered Ready

• Removed from a Ready Queue

• Requires an unblock to mark ready and rejoin the ready queue

• Resumes from where it blocked

• Yield

• Execution state is preserved

• The thread relinquishes execution

• Immediately placed in the ready queue

• Resumes from where it yielded

© Kevin Elphinstone 5

Event Model

© Kevin Elphinstone 6

The event model only requires
a single stack

• All event handlers must return to the
event loop
– No blocking

– No yielding

No preemption of handlers

• Handlers generally short lived

PC
SP

REGS

CPU

Stack

Memory

Event
Loop

Data

Event
Handler 1

Event
Handler 2

Event
Handler 3

What is ‘a’?

int a; /* global */

int func()

{

a = 1;

if (a == 1) {

a = 2;

}

return a;

}
© Kevin Elphinstone 7

No concurrency issues within a
handler

Event-based kernel on CPU with protection

© Kevin Elphinstone 8

Huh?

How to support
multiple
processes?

Kernel-only Memory

Scheduling?

User Memory

Stack

User
Code

User
Data

PC
SP

REGS

CPU

Stack

Event
Loop

Data

Event
Handler 1

Event
Handler 2

Event
Handler 3

Event-based kernel on CPU with protection

© Kevin Elphinstone 9

User-level state in PCB

Kernel starts on fresh
stack on each trap

No interrupts, no blocking
in kernel mode

Kernel-only Memory

Timer Event
Handler

(Scheduler)

User Memory

Stack

User
Code

User
Data

PC
SP

REGS

CPU

PCB
A

PCB
B

PCB
C

Stack

Trap
Dispatcher

Data

Event
Handler 1

Event
Handler 2

Current
PCB

Event-based kernel on CPU with protection

© Kevin Elphinstone 10

User-level state in PCB

Kernel starts on fresh
stack on each trap

No interrupts, no blocking
in kernel mode

Kernel-only Memory

Timer Event
Handler

(Scheduler)

User Memory

Stack

User
Code

User
Data

PC
SP

REGS

CPU

PCB
A

PCB
B

PCB
C

Stack

Trap
Dispatcher

Data

Event
Handler 1

Event
Handler 2

Current
PCB

Co-routines

Originally described in:
• Melvin E. Conway. 1963. Design of a separable transition-diagram compiler. Commun. ACM 6, 7

(July 1963), 396-408. DOI=http://dx.doi.org/10.1145/366663.366704

Analogous to a “subroutine” with extra entry and
exit points.

Via yield()
• Supports long running subroutines

• Can implement sync primitives that wait for a condition to
be true

– while (condition != true) yield();

© Kevin Elphinstone 11

Co-routines

© Kevin Elphinstone 12

yield() saves state of routine A
and starts routine B

• or resumes B’s state from its previous
yield() point.

No pre-emption, any switching is
explicit via yield() in code

PC
SP

REGS

CPU
Routine A

Stack

Memory

Data

Routine B

What is ‘a’?

int a; /* global */

int func()

{

a = 1;

yield();

if (a == 1) {

a = 2;

}

return a;

}

© Kevin Elphinstone 13

What is ‘a’?

int a; /* global */

int func() {

a = 1;

if (a == 1) {

yield();

a = 2;

}

return a;

}
© Kevin Elphinstone 14

Limited concurrency
issues/races as globals are
exclusive between yields()

Co-routines Implementation strategy?

© Kevin Elphinstone 15

Usually implemented with a stack
per routine

Preserves current state of
execution of the routinePC

SP
REGS

CPU
Routine A

Stack
A

Memory

Data

Routine B

Stack
B

Co-routines

© Kevin Elphinstone 16

Routine A state currently loaded

Routine B state stored on stack

Routine switch from A → B

• saving state of A a
– regs, sp, pc

• restoring the state of B
– regs, sp, pc

PC
SP

REGS

CPU
Routine A

Stack
A

Memory

Data

Routine B

Stack
B

A hypothetical yield()
yield:

/*
* a0 contains a pointer to the previous routine’s struct.
* a1 contains a pointer to the new routine’s struct.
*
* The registers get saved on the stack, namely:
*
* s0-s8
* gp, ra
*
*
*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */
addi sp, sp, -44

17

/* Save the registers */
sw ra, 40(sp)
sw gp, 36(sp)
sw s8, 32(sp)
sw s7, 28(sp)
sw s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, 0(sp)

/* Store the old stack pointer */
sw sp, 0(a0)

18

Save the registers
that the ‘C’
procedure calling
convention
expects
preserved

/* Get the new stack pointer from the new pcb */
lw sp, 0(a1)
nop /* delay slot for load */

/* Now, restore the registers */
lw s0, 0(sp)
lw s1, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
lw s4, 16(sp)
lw s5, 20(sp)
lw s6, 24(sp)
lw s7, 28(sp)
lw s8, 32(sp)
lw gp, 36(sp)
lw ra, 40(sp)
nop /* delay slot for load */

/* and return. */
j ra
addi sp, sp, 44 /* in delay slot */

19

20

Yield
yield(a,b)

{

yield(a,b)

{

yield(b,a)

{

}

}

}

Routine A Routine B

What is ‘a’?

int a; /* global */

int func() {

a = 1;

func2();

if (a == 1) {

a = 2;

}

return a;

}
© Kevin Elphinstone 21

Coroutines

What about subroutines combined with coroutines

• i.e. what is the issue with calling subroutines?

Subroutine calling might involve an implicit yield()

• potentially creates a race on globals

– either understand where all yields lie, or

– cooperative multithreading

© Kevin Elphinstone 22

Cooperative Multithreading

Also called green threads

Conservatively assumes a multithreading model

• i.e. uses synchronisation (locks) to avoid races,

• and makes no assumption about subroutine behaviour

– Everything thing can potentially yield()

© Kevin Elphinstone 23

© Kevin Elphinstone 24

int a; /* global */

lock_t a_lock;

int func() {

int t;

lock_acquire(a_lock)

a = 1;

func2();

if (a == 1) {

a = 2;

}

t = a;

lock_release(a_lock);

return t;

}

A Thread

© Kevin Elphinstone 25

Thread attributes

• processor related

– memory

– program counter

– stack pointer

– registers (and status)

• OS/package related
– state (running/blocked)

– identity

– scheduler (queues, priority)

– etc…

PC
SP

REGS

CPU
Code

Stack

Memory

Data

Thread Control Block

© Kevin Elphinstone 26

To support more than a
single thread we to need
store thread state and
attributes

Stored in per-thread thread
control block

• also indirectly in stack

PC
SP

REGS

CPU

Stack

Memory

TCB
A

Code

Data

Thread A and Thread B

© Kevin Elphinstone 27

Thread A state currently loaded

Thread B state stored in TCB B

Thread switch from A → B

• saving state of thread a
– regs, sp, pc

• restoring the state of thread B
– regs, sp, pc

Note: registers and PC can be
stored on the stack, and only
SP stored in TCB

PC
SP

REGS

CPU

Stack

Memory

TCB
A

Code

Data

Stack

TCB
B

Approximate OS
mi_switch()
{
struct thread *cur, *next;
next = scheduler();

/* update curthread */
cur = curthread;
curthread = next;

/*
* Call the machine-dependent code that actually does the
* context switch.
*/
md_switch(&cur->t_sp, &next->t_sp);
/* back running in same thread */

}

© Kevin Elphinstone 28

Note: global
variable curthread

OS/161 mips_switch
mips_switch:

/*

* a0 contains a pointer to the old thread's struct tcb.

* a1 contains a pointer to the new thread's struct tcb.

*

* The only thing we touch in the tcb is the first word, which

* we save the stack pointer in. The other registers get saved

* on the stack, namely:

*

* s0-s8

* gp, ra

*

*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */

addi sp, sp, -44

29

OS/161 mips_switch
/* Save the registers */

sw ra, 40(sp)
sw gp, 36(sp)
sw s8, 32(sp)
sw s7, 28(sp)
sw s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, 0(sp)

/* Store the old stack pointer in the old tcb */
sw sp, 0(a0)

30

Save the registers
that the ‘C’
procedure calling
convention
expects
preserved

OS/161 mips_switch
/* Get the new stack pointer from the new tcb */

lw sp, 0(a1)
nop /* delay slot for load */

/* Now, restore the registers */
lw s0, 0(sp)
lw s1, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
lw s4, 16(sp)
lw s5, 20(sp)
lw s6, 24(sp)
lw s7, 28(sp)
lw s8, 32(sp)
lw gp, 36(sp)
lw ra, 40(sp)
nop /* delay slot for load */

/* and return. */
j ra
addi sp, sp, 44 /* in delay slot */
.end mips_switch

31

32

Thread
Switchmips_switch(a,b)

{

mips_switch(a,b)

{

mips_switch(b,a)

{

}

}

}

Thread a Thread b

Preemptive Multithreading

Switch can be triggered by asynchronous external event

• timer interrupt

Asynchronous interrupt triggers saving current state

• on current stack, if in kernel (nesting)

• on kernel stack or in TCB if coming from user-level

call thread_switch()

© Kevin Elphinstone 33

Threads on simple CPU

© Kevin Elphinstone 34

Stack

Memory

TCB
A

Code

Data

Stack

TCB
B

Stack

TCB
C

Scheduling
& Switching

Threads on CPU with protection

© Kevin Elphinstone 35

What is missing?

Stack

Kernel-only Memory

TCB
A

Code

Data

Stack

TCB
B

Stack

TCB
C

Scheduling
& Switching

User Memory

PC
SP

REGS

CPU

Threads on CPU with protection

© Kevin Elphinstone 36

What happens on kernel
entry and exit?Stack

Kernel-only Memory

TCB
A

Code

Data

Stack

TCB
B

Stack

TCB
C

Scheduling
& Switching

User Memory

Stack

User
Code

User
Data

PC
SP

REGS

CPU

Switching Address Spaces on
Thread Switch = Processes

© Kevin Elphinstone 37

Stack

Kernel-only Memory

TCB
A

Code

Data

Stack

TCB
B

Stack

TCB
C

Scheduling
& Switching

User Memory

Stack

User
Code

User
Data

PC
SP

REGS

CPU

Switching Address Spaces on
Thread Switch = Processes

© Kevin Elphinstone 38

Stack

Kernel-only Memory

TCB
A

Code

Data

Stack

TCB
B

Stack

TCB
C

Scheduling
& Switching

User Memory

Stack

User
Code

User
Data

PC
SP

REGS

CPU

What is this?

© Kevin Elphinstone 39

Stack

Kernel-only Memory

TCB
A

Code

Data

Stack

TCB
B

Stack

TCB
C

Scheduling
& Switching

User Memory

PC
SP

REGS

CPU

Stack

TCB
1

Code

Data

Stack

TCB
2

Stack

TCB
3

Scheduling
& Switching

User-level Threads

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process A Process B Process C

User-level Threads

Fast thread management (creation, deletion,
switching, synchronisation…)

 Blocking blocks all threads in a process
• Syscalls

• Page faults

 No thread-level parallelism on multiprocessor

Kernel-Level Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

Kernel-level Threads

 Slow thread management (creation, deletion,
switching, synchronisation…)

• System calls

Blocking blocks only the appropriate thread in a
process

Thread-level parallelism on multiprocessor

Continuations

Definition of a Continuation

• representation of an instance of a computation at a point in time

• the state and code where to continue from

© Kevin Elphinstone 44

Warm-up using python

• Traditional function that returns

def func(x):

return x+1

• Function with a continuation indicating where to continue

• The continuation is invoked with the function’s result.

def func_cps(x,c):

c(x+1)

© Kevin Elphinstone 45

Continuation Passing Style

def add(a,b):

return a+b

print(add(1,2))

=> 3

def add_cps(a,b,cont):

cont(x+1)

add_cps(1,2,print)

=> 3

© Kevin Elphinstone 46

Continuation Passing Style

def add(a,b):

return a + b

def mul(a,b):

return a * b

def func(a,b):

return add(mult(2,a),b)

print(func(3,4))

=> 10

def add_cps(a,b,cont):

cont(a+b)

def mul_cps(a,b,cont):

cont(a*b)

def func_cps(a,b,c):

mul(2,a,lambda r, y=b, c=c: add(r,y,c))

func_cps(3,4,print)

=> 10

© Kevin Elphinstone 47

call/cc in Scheme (a functional language)

call/cc = call-with-current-continuation
A function

• takes a function (f) to call as an argument

• calls that function with a reference to current continuation (cont) as an argument

• when cont is later called, the continuation is restored.

– The argument to cont is returned from to the caller of call/cc

© Kevin Elphinstone 48

…

(call-with-current-continuation f)

…

(f (x)

…

(x return_value)

)

© Kevin Elphinstone 49

Note

© Kevin Elphinstone 50

For C-programmers, call/cc is effectively saving stack, and PC

Simple Example

(define (f arg)

(arg 2)

3)

(display (f (lambda (x) x))); displays 3

(display (call-with-current-continuation f))

;displays 2

Derived from http://en.wikipedia.org/wiki/Call-with-current-continuation

© Kevin Elphinstone 51

Another Simple Example
(define the-continuation #f)
(define (test)
(let ((i 0))
; call/cc calls its first function argument, passing
; a continuation variable representing this point in
; the program as the argument to that function.
;
; In this case, the function argument assigns that
; continuation to the variable the-continuation.
;
(call/cc (lambda (k) (set! the-continuation k)))
;
; The next time the-continuation is called, we start here.
(set! i (+ i 1))
i))

© Kevin Elphinstone 52

Another Simple Example

> (test)

1

> (the-continuation)

2

> (the-continuation)

3

> ; stores the current continuation (which will print 4 next) away

> (define another-continuation the-continuation)

> (test) ; resets the-continuation

1

> (the-continuation)

2

> (another-continuation) ; uses the previously stored continuation

4

© Kevin Elphinstone 53

Coroutine Example

;;; This starts a new routine running (proc).

(define (fork proc)

(call/cc (lambda (k)

(enqueue k)

(proc))))

;;; This yields the processor to another routine, if there is one.

(define (yield)

(call/cc

(lambda (k)

(enqueue k)

((dequeue)))))

© Kevin Elphinstone 54

Continuations

The concept of capturing current (stack) state to continue the computation in the future

In the general case, as many times as we like

Variations and language environments (e.g. in C) result in less general continuations

• e.g. one shot continuations, setjmp()/longjump()

© Kevin Elphinstone 55

What should be a kernel’s execution model?

Note that the same question can be asked of applications

© Kevin Elphinstone 56

The two alternatives

No one correct answer
From the view of the designer there are two alternatives.

Single Kernel Stack Per-Thread Kernel Stack

Only one stack is
used all the time to support
all user threads.

Every user thread has a
kernel stack.

Per-Thread Kernel Stack
Processes Model

A thread’s kernel state is implicitly
encoded in the kernel activation
stack

• If the thread must block in-
kernel, we can simply switch
from the current stack, to
another threads stack until
thread is resumed

• Resuming is simply switching
back to the original stack

• Preemption is easy

example(arg1, arg2) {

P1(arg1, arg2);

if (need_to_block) {

thread_block();

P2(arg2);

} else {

P3();

}

/* return control to user */

return SUCCESS;

}

Single Kernel Stack
“Event” or “Interrupt” Model

How do we use a single kernel stack to support
many threads?

• Issue: How are system calls that block handled?

⇒ either continuations
– Using Continuations to Implement Thread Management and

Communication in Operating Systems. [Draves et al., 1991]

⇒ or stateless kernel (event model)
– Interface and Execution Models in the Fluke Kernel. [Ford et al.,

1999]
– Also seL4

Continuations

State required to resume a blocked
thread is explicitly saved in a
TCB

– A function pointer

– Variables

Stack can be discarded and
reused to support new thread

Resuming involves discarding
current stack, restoring the
continuation, and continuing

example(arg1, arg2) {

P1(arg1, arg2);

if (need_to_block) {

save_arg_in_TCB;

thread_block(example_continue);

/* NOT REACHED */

} else {

P3();

}

thread_syscall_return(SUCCESS);

}

example_continue() {

recover_arg2_from_TCB;

P2(recovered arg2);

thread_syscall_return(SUCCESS);

}

Stateless Kernel

System calls cannot block within the kernel

• If syscall must block (resource unavailable)
– Modify user-state such that syscall is restarted when resources

become available

– Stack content is discarded (functions all return)

Preemption within kernel difficult to achieve.

⇒Must (partially) roll syscall back to a restart point

Avoid page faults within kernel code

⇒Syscall arguments in registers
– Page fault during roll-back to restart (due to a page fault) is fatal.

IPC implementation examples – Per thread
stack

msg_send_rcv(msg, option,

send_size, rcv_size, ...) {

rc = msg_send(msg, option,

send_size, ...);

if (rc != SUCCESS)

return rc;

rc = msg_rcv(msg, option, rcv_size, ...);

return rc;

}

Block inside
msg_rcv if no
message
available

Send and Receive
system call
implemented by a
non-blocking send
part and a blocking
receive part.

IPC examples - Continuations
msg_send_rcv(msg, option,

send_size, rcv_size, ...) {
rc = msg_send(msg, option,

send_size, ...);
if (rc != SUCCESS)

return rc;
cur_thread->continuation.msg = msg;
cur_thread->continuation.option = option;
cur_thread->continuation.rcv_size = rcv_size;

...
rc = msg_rcv(msg, option, rcv_size, ...,

msg_rcv_continue);
return rc;

}
msg_rcv_continue() {

msg = cur_thread->continuation.msg;
option = cur_thread->continuation.option;
rcv_size = cur_thread->continuation.rcv_size;

...
rc = msg_rcv(msg, option, rcv_size, ...,

msg_rcv_continue);
return rc;

}

The function to
continue with if
blocked

IPC Examples – stateless kernel

msg_send_rcv(cur_thread) {

rc = msg_send(cur_thread);

if (rc != SUCCESS)

return rc;

rc = msg_rcv(cur_thread);

if (rc == WOULD_BLOCK) {

set_pc(cur_thread, msg_rcv_entry);

return RESCHEDULE;

}

return rc;

}

Set user-level PC
to restart msg_rcv
only

RESCHEDULE changes
curthread on exiting the
kernel

Single Kernel Stack
per Processor, event model

either continuations
– complex to program
– must be conservative in state saved (any state that might be needed)
– Mach (Draves), L4Ka::Strawberry, NICTA Pistachio, OKL4

or stateless kernel
– no kernel threads, kernel not interruptible, difficult to program
– request all potentially required resources prior to execution
– blocking syscalls must always be re-startable
– Processor-provided stack management can get in the way
– system calls need to be kept simple “atomic”.
» e.g. the fluke kernel from Utah

low cache footprint
» always the same stack is used !
» reduced memory footprint

Per-Thread Kernel Stack

simple, flexible
» kernel can always use threads, no special techniques required for

keeping state while interrupted / blocked

» no conceptual difference between kernel mode and user mode

» e.g. traditional L4, Linux, Windows, OS/161

but larger cache footprint

and larger memory consumption

Yet Another Simple Example

;;; Return the first element in LST for which WANTED? returns a true

;;; value.

(define (search wanted? lst)

(call/cc (lambda (arg)

(for-each (lambda (element)

(if (wanted? element)

(arg element)))

lst)

#f)))

© Kevin Elphinstone 67

What is this?

© Kevin Elphinstone 68

Stack

Kernel-only Memory

TCB
A

Code

Data

Stack

TCB
B

Stack

TCB
C

Scheduling
& Switching

User Memory

Stack

User
Code

User
Data

PC
SP

REGS

CPU

Stack Stack

