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Today’s Lecture

« Caches
« What are caches, why do we have them?
* How do they work (in detail)?
« Why you need to understand them? — Software effects
« Cache hierarchy
 Translation caches: TLB

* Devices

Later: Concurrency effects and memory models

VVVVVV
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Cache Basics
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Caches

Chip ii

Disk

Slow: 10s—100s cycles
Large: GiB
Fast: 1-3 cycles

Small: 32 KiB — 16 MiB

5 COMP9242 2023 T3 W03 Part 1: HW Considerations © Gernot Heiser 2019 — CC BY 4.0




Cache Organisation: Unit of Data Transfer
byte...word line
Regiters .~ CPU Cache ~————— Main Memory

Line is also unit of allocation, holds data and
« valid bit

» modified (dirty) bit Reduce memory transactions:
« tag  Reads - locality

« access stats (for replacement) » Writes — clustering
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Cache Access

Virtual Physical Physical
Address Address Address

G——-
Data Data Data
« Looked up by virtual address » Looked up by physical address
« Operates concurrently with « Requires result of address
address translation translation

Usually a hierarchy: L1, L2, ..., LLC

* L1 closest to CPU

 LLC: last-level cache

* Only L1 may be virtually addressed
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Indexing

COMP9242 2023 T3 W03 Part 1: HW Considerations

© Gernot Heiser 2019 — CC BY 4.0

(]

«



9

Cache Indexing

e

Address

Address hashed to
produce set index
Hashing must be
simple (HW) — usually

just the low-order bits

Within set associate lookup: match fag
Tag = high-order addresses not used for indexing
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Cache Indexing

Set 0 Line 1
Line 2
_
Many conflicts n lines per set: n-way set-associative cache
= low hit rate n = 1: direct mapped

« 2<n<#lines: set associative
 n = #lines: fully associative

Slow & power-hungry
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Cache Indexing: Direct Mapped  cruioie wed o

tag ;s

index ;)

offset 4,

11

select appropriate
bytes from line

Index bits

unique line

used to select
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Tag used to check
whether line contains

requested address
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Cache Indexing: Fully Associative

Offset bits used to select

tag s

offset 4

appropriate bytes from line

|

Lookup hardware for many tags is
large and slow = does not scale
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Tag compared with
all lines for a match
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Cache Indexing: 2-Way Associative

tag e

index

offset,,

13

Offset bits used to
select appropriate
bytes from line

Index bits
used to select
unique set to
match within
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Tag checked against
both lines for match
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Cache Associativity vs Paging

0
page number || oo | When index overlaps page number,

a particular page can only reside in a
specific subset (colour) of the cache!

}

VD | Tag | Word 0 Word 1 Word 2 | Word 3
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Cache Mapping Implications

11 10 01 OO0 Colour
Cache
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Misses & Replacement Policy
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Cache Misses

* n-way associative cache can hold n lines with the same index value
* More than n lines are competing for same index forces a miss!

» There are four different types of cache misses (“the four Cs”):
« Compulsory miss: data cannot be in the cache (of infinite size)
» First access (after loading data into memory or cache flush) — unavoidable
« Capacity miss: all cache entries are in use by other data
* Would not miss on infinite-size cache
« Conflict miss: all lines with the same index value are in use by other data
» Would not miss on fully-associative cache
« Coherence miss: miss forced by hardware coherence protocol
» Covered later (multiprocessing lecture)

17 COMP9242 2023 T3 W03 Part 1: HW Considerations © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV



18

Cache Replacement Policy

* Indexing (using address) points to specific line set

* On miss (no match and all lines valid): replace existing line

 Dirty-bit determines whether write-back needed

« Replacement strategy must be simple (hardware!)

Address | tag s

indelx(z) byte ,

Typical policies:
- LRU
* pseudo-LRU

e FI FO VD | Tag Word 0 Word 1 Word 2 Word 3
“ ” VD | Tag Word 0 Word 1 Word 2 Word 3
* “random .
» toss clean
VD | Tag Word 0 Word 1 Word 2 Word 3
VD | Tag Word 0 Word 1 Word 2 | Word 3
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Cache Write Policy

Typical combinations:

* Treatment of store operations
P ! * write-back &

« write back: Stores only update cache;

memory is updated once dirty line is replaced (flushed) Wr!te allocate
clusters writes  write-through &
Fmemory inconsistent with cache no-allocate

Fmulti-processor cache-coherency challenge
« write through: stores update cache and memory immediately
memory is always consistent with cache
Feincreased memory/bus traffic

* On store to a line not presently in cache (write miss):
» write allocate: allocate a cache line and store there
» typically requires reading line into cache first!
* no allocate: store directly to memory, bypassing the cache
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Cache Indexing Schemes
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Cache Indexing Schemes

« So far pretended cache only sees one type of address: virtual or physical
« However, indexing and tagging can use different addresses!

« Four possible addressing schemes: Rare these days
* virtually-indexed, virtually-tagged (VV) cache
* virtually-indexed, physically-tagged (VP) cache
» physically-indexed, virtually-tagged (PV) cache

» physically-indexed, physically-tagged (PP) cache : :
Py y Py y-tagged (PF) Nonsensical except with

weird MMU designs
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Virtually-Indexed, Physically-Tagged Cache

* Virtual address for accessing line (lookup)

CPU
« Physical address for tagging
* Needs complete address translation
for looking up retrieving data lVlMU
 Indexing concurrent with MMU access indexo, || bytew, | | teges,

 Used for on-core L1 ©

Use MMU for
tag check &
permissions
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Page offset invariant under VA—PA:

Physically-Indexed, Physically-Tagged Cache

« Only uses physical addresses
« Address translation result needed for lookup
* Only sensible choice for L2...LLC

Speed matters
less after L1 miss

Index bits c offset bits

= don’'t need MMU for indexing!
VP = PP in this case

= fast, suitable for L1
Single-colour cache!
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CPU
MMU
tag o6 index ) byte 4
v

VD [Tag| word0 | Word 1 | Word 2 | Word 3
VD | Tag| WordO | Word1 | Word 2 | Word 3
VD | Tag| WordO | Word1 | Word 2 | Word 3
VD | Tag| WordO | Word1 | Word 2 | Word 3

Physical Memory
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Software-Visible Effects
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Cache Issues

« Caches are managed by hardware transparently to software,
so OS doesn’t have to worry about them, #ght2 Wrong!

o Software-visible cache effects:

» performance
 cache-friendly data layout

* homonyms:
 same address, different data

« can affect correctness!
(on VV caches — ignoring)

* synonyms (aliases):
» different address, same data
e can affect correctness!

(on VV and VP caches) - A
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Virtually-Indexed Cache Issues: Aliasing

Multiple names for same data:

« Several VAs map to the same PA CPU
« frame shared between ASs
« frame multiply mapped within AS tag g, index ) byte s,

« May access stale data!
* same data cached in multiple lines
- ... if aliases differ in colour
* on write, one synonym updated
* read on other synonym returns old value
« physical tags or ASIDs don’t help! MMU

 Are aliases a problem? !
» don’t exist in single-colour cache
* no problem for R/O data or I-caches
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Aliasing Problem [1/2]

‘ write

Address Space 1
Page 00018000, he

—

Address Space 2
Page 0x0208P00

Colour, — 2nd

half of cache

Coloury — 1st
half of cache

» Page aliased in different address spaces
® AS»]: VA12 = 1,ASZ: VA12 =0

* One alias gets modified
* in a write-back cache, other alias sees stale data
* lost-update problem
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Aliasing Problem [2/2]

‘ write

Address Space 1
Page 00018000, he

Address Space 2
age 0x0208D00

RAM

« Unmap aliased page, remaining page has a dirty cache line
» Re-use (remap) frame for a different page (in same or different AS)

» Access new page
« alias may write back after remapping: “cache bomb”
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Avoiding Aliasing Problems

Flush cache on context switch
« doesn’t help for aliasing within address space!

Detect aliases and ensure:
« all read-only, or
* only one alias mapped

Restrict VM mapping so all aliases are of the same colour
* eg ensure VA,, = PA;, — colour memory!

Hardware alias detection

=]
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Hardware Alias Detection (Arm A53)

31 12 11
page nunmber

=» \/D|Tag| Data
VD|Tag| Data
4
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Lookup accesses sets of both colours
« |f tag matches in both set: have alias

* |f the access is a store then invalidate the

alias of the “wrong” colour

» VP cache behaves like PP despite multiple

colours!
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Summary: VP Caches

* Medium speed
lookup in parallel with address translation
Fotag comparison after address translation

No homonym problem
FPotential synonym problem

FeBigger tags (cannot leave off set-number bits)
Feincreases area, latency, power consumption

« Used on most contemporary architectures for L1 cache
* but mostly single-colour (pseudo-PP) or with HW alias prevention (Arm)
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Summary: PP Caches

FSlowest
Ferequires result of address translation before lookup starts

No synonym problem

No homonym problem

Easy to manage

Cache can use for DMA/multicore coherency
Obvious choice for L2—LLC where speed matters less
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Cache Hierarchy
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Write Buffer

« Store operations can take a long time to complete
- eg if a cache line must be read or allocated t 1

« Can avoid stalling the CPU by buffering writes

» Write buffer is a FIFO queue of incomplete stores slere i
* Also called store buffer or write-behind buffer Store B

* May exist at any cache level, or between cache and memory
Store A

» Can fetch intermediate values out of buffer —
* to service read of a value that is still in write buffer
 avoids unnecessary stalls of load operations l

 Implies that memory contents are temporarily stale

« on a multiprocessor, CPUs see different order of writes! -
« “‘weak memory ordering”, to be revisited in SMP context

CPU
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Cache Hierarchy

_ Registers
 Hierarchy of caches to balance memory accesses: 1 $

» small, fast, virtually-indexed L1 |-Cache D-Cache

« large, slow, physically indexed L2-LLC ! 1
« Each level reduces and clusters traffic Wl"“e ILICT
* L1 split into I- and D-caches L2 Cache

- “Harvard architecture” 4 | 1

* requirement of pipelining Write buffer —»
» Other levels unified }

, _ , Last-Level Cache (LLC)

» Chip multiprocessors (aka multicores): \ l

 Usually LLC shared chip-wide Write buffer _|

» L2 private (Intel) or clustered (AMD) |
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ODROID-C2 (Cortex A53) System Architecture

L1 cache:

+ 32 KiB, 64-B lines
A53 core  A53core  Ad33core  AS3core * L1-1: 2-way, VP

« 512 KiB, 16-way

eeegee
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* L1-D: 4-way, pseudo-PP
L2 cache:
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TLB

=]

38 COMP9242 2023 T3 W03 Part 1: HW Considerations © Gernot Heiser 2019 — CC BY 4.0 UNSW



Translation Lookaside Buffer (TLB)

« TLB is a (VV) cache for page-table entries

« TLB can be

» software loaded,
maintained by OS ASID VPN

* hardware loaded,
transparent to OS
(standard these days)

« TLB can be:
« split: I- and D-TLBs
* unified

39 COMP9242 2023 T3 W03 Part 1: HW Considerations

VYV VYV YV VY

ASID VPN PFN flags
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TLB Size

TLB coverage

* Memory sizes are increasing
« Number of TLB entries are roughly constant

» Base page sizes are steady

» 4 KiB (SPARC, Alpha used 8KiB)

» OS designers have trouble using superpages effectively
« Consequences:

» Total amount of RAM mapped by TLB is not changing much
* Fraction of RAM mapped by TLB is shrinking dramatically!
* Modern architectures have very low TLB coverage!

TLB can become a bottleneck!
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Multi-Level TLBs

» Multi-level design (like I/D cache)
» Improve size-performance tradeoff

Intel Core i7

I-Mm

4 KiB
1 D 4 KiB
1 | 2/4 MiB
1 D 2/4MiB
2 unif 4 KiB

4-way
4-way

fully
4-way
4-way

64
7
32
512
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L1 D-TLB

B

L1I-TLB

Unified L2 TLB

Arm A53

IM“

4 KiB-1 GiB? full?
1 D 4 KiB-1 GiB? full? 10
2 unif 4KiB-512MiB 4-way 512
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Intel Core i7 (Haswell) Cache Structure

Instruction Decoder and front end

Instruction
ITLB <= + Cache

Chipset

- —
Out-of-Order Engine ‘
QPI
¢ Y
STLB ‘ IMC
Data TLB | > ¢
i
L3 Cache

Source: Intel
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Intel Haswell L3 Cache

N AN
PCle DMI
DRAM
>
Eng Brdg
System Agent
CPU Core L3 Slice |
CPU Core L3 Slice
CPU Core L3 Slice |
| cPu core L3 Slice

Source: Intel

Processor Graphics/
Media Engine
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Peripheral Devices
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Background: The Memory Contract [1/2]

Programmer’s model of memory:

loadi rl, <addr>
loadi r0@, <val>

store r0@, rl /| store <val> at <addr>
load r2, rl /l r2 now contains <val>
Note: with shared
_ memory, the last value
Memory contract: _ written may be from
A read will return the last value written someone else!
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Background: The Memory Contract [2/2]

Programmer’s model of memory:

char *cp, c;

int32 *ip, i, j, k;

ip = <addr>;

cp = (char*)ip;

j = 0; for (k=0; k<4; k++) j = (j<<8)+*cp++ ;
i = *ip; /I now i==j, assuming big-endian;

Memory contract:
Order or granularity of access don’'t matter
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Peripheral Devices

Memory-mapped

device registers Interrupts/polling
(or x86 1/0 instruct.)
Notification
Control
CPU Device
Meta- _
data Direct memory

Data access (DMA)
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Device-Access Caveats

Device access bypasses cache!
 Device registers must be

Notification mapped uncached
Control « DMA buffers must be
CPU Device flushed/invalidated before
initiating 1/O
Mde;,?a_ e Else: x86 keeps DMA

. cache-coherent
Data » write stale data

 read data overwritten by old
data (cache bomb!)
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Devices Are State Machines

S State transitions triggered by:
1
>\  Device register access
R « write to device register
R1-x s R; S - read from device register
R, _ :/ EXte”;al - External events
- even .
y=R3 R, F L7 « data available
R Ss e « transmit complete ...
4 ™o
NN N State transitions:
\ []
f' No S « Change register content
————————— S
IRQ 4  Raise IRQs
Ss
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Implication: Device Registers Aren't Memory!

S » Writing same value twice may
! have different effects
,>\ « Reading same register twice may
R1=x memp| R, |~ S, return different values
- 1
R External * Reading after writing:
= _ - :/ event * may return different value
y=R5 R3 ~ 7 . t .
- IR may trigger error
3
Ry \<:  Result of access may depend on
elapsed time
_ S « Reading 4 bytes is different from
ra T 7 reading one int32
S; * ... and may result in error
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Device Protocol Examples

_ Device-
81 1 erte ChaI’ tO R1 speciﬂed or
>\ 2. wait 10 ms bus latency
7’
R1=x memp| R, |~ S, 3. read int32 from R,
R, :/ External 4. wait for IRQ or
- event
y=R3 R, F o poll R, for # 0
R, Ss \<:/ S
f. ______ S4 Specified in device data sheet
rRa =7 ... which is usually full of errors
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