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A little bit of history

— MULTICS in the ’60s

— Ken Thompson and Dennis Ritchie in 1967–70
— USG and BSD
— John Lions 1976–95
— Andrew Tanenbaum 1987
— Linus Torvalds 1991
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— Basic concepts well established
◦ User model
◦ Process model
◦ File system model
◦ IPC — pipes, MERT

— Additions:
◦ Paged virtual memory (3BSD, 1979)

◦ TCP/IP Networking (BSD 4.1, 1983)
◦ Multiprocessing (Vendor Unices such as Sequent’s ‘Balance’, 1984)
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Process model

— Root process (init)
— fork() creates (almost) exact copy

◦ Much is shared with parent — Copy-On-Write avoids overmuch copying
— exec() overwrites memory image from a file
— Allows a process to control what is shared
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fork() and exec()

— A process can clone itself by calling fork().
— Most attributes copied:

◦ Address space (actually shared, marked copy-on-write)
◦ current directory, current root
◦ File descriptors
◦ permissions, etc.

— Some attributes shared:
◦ Memory segments marked MAP SHARED
◦ Open files
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switch (kidpid = fork()) {
case 0: /* child */

close(0); close(1); close(2);
dup(infd); dup(outfd); dup(outfd);
execve("path/to/prog", argv, envp);
_exit(EXIT_FAILURE);

case -1:
/* handle error */

default:
waitpid(kidpid, &status, 0);

}
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Standard File Descriptors

0 Standard Input
1 Standard Output
2 Standard Error

— Inherited from parent
— On login, all are set to controlling tty
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The problem with fork()

— Almost perfect in original system
◦ Implemented in a few lines of assembly
◦ Alowed re-use of system calls for changing state
◦ Fast for segment-style (not paged) MMU

— But:
◦ Address spaces now bigger and managed with pages

• Slow to copy page tables
◦ Multi-threading breaks semantics

• Child no longer an exact copy — only one thread fork()ed
• Much more per-process state, not all inheritable
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Permissions Model

— Processes are procies for authenticated real people
— UID, GID, Other — rwx

— Mainly for File access.
— A process can signal any other process with the same UID

— A process with UID 0 can signal any process, operate on any file∗
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— UID, GID, Other — rwx

— Mainly for File access.
— A process can signal any other process with the same UID
— A process with UID 0 can signal any process, operate on any file∗

* Conditions apply
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File model

— Separation of names from content.
— ‘regular’ files ‘just bytes’ → structure/meaning supplied by userspace
— Devices represented by files.
— Directories map names to index node indices (inums)
— Simple permissions model based on who you are.
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namei

— translate name → inode
— abstracted per filesystem in VFS layer
— Can be slow: extensive use of caches to speed it up dentry cache

—
becomes SMP bottleneck

— hide filesystem and device boundaries
— walks pathname, translating symbolic links
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Evolution
KISS

— Simplest possible algorithm used at first

◦ Easy to show correctness
◦ Fast to implement

— As drawbacks and bottlenecks are found, replace with faster/more
scalable alternatives
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Linux C Dialect

— Extra keywords:
◦ Section IDs: init, exit, percpu etc
◦ Info Taint annotation user, rcu, kernel, iomem
◦ Locking annotations acquires(X), releases(x)
◦ extra typechecking (endian portability) bitwise
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— Extra iterators
◦ type name foreach()

— Extra O-O accessors
◦ container of()

— Macros to register Object initialisers
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— Massive use of inline functions
— Quite a big use of CPP macros
— Little #ifdef use in code: rely on optimiser to elide dead code.
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Internal Abstractions

— MMU
— Memory consistency model
— Device model
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Scheduling
Goals

— dispatch O(1) in number of runnable processes, number of processors
◦ good uniprocessor performance

— ‘fair’
— Good interactive response
— topology-aware
— O(log n) for scheduling in number of runnable processes.
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— Changes from time to time.
— Currently ‘CFS’ by Ingo Molnar.
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Dual Entitlement Scheduler
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1. Keep tasks ordered by effective CPU runtime weighted by nice in
red-black tree

2. Always run left-most task.
Devil’s in the details:

— Avoiding overflow
— Keeping recent history
— multiprocessor locality
— handling too-many threads
— Sleeping tasks
— Group hierarchy
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(hyper)Thread
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— One queue per processor (or hyperthread)
— Processors in hierarchical ‘domains’
— Load balancing per-domain, bottom up
— Aims to keep whole domains idle if possible (power savings)
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— Direct mapped pages become logical addresses
◦ pa() and va() convert physical to virtual for these

— small memory systems have all memory as logical
— More memory → ∆ kernel refer to memory by struct page
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— Every frame has a struct page (up to 10 words)
— Track:

◦ flags
◦ backing address space
◦ offset within mapping or freelist pointer
◦ Reference counts
◦ Kernel virtual address (if mapped)
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Memory Management
Address Space

— Misnamed: means collection of pages mapped from the same object
— Tracks inode mapped from, radix tree of pages in mapping
— Has ops (from file system or swap manager) to:

dirty mark a page as dirty
readpages populate frames from backing store
writepages Clean pages — make backing store the same as

in-memory copy
migratepage Move pages between NUMA nodes
Others. . . And other housekeeping
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Page fault time

— Special case in-kernel faults
— Find the VMA for the address

◦ segfault if not found (unmapped area)
— If it’s a stack, extend it.
— Otherwise:

1. Check permissions, SIG SEGV if bad
2. Call handle mm fault():

• walk page table to find entry (populate higher levels if nec. until leaf found)
• call handle pte fault()

32



Page Fault Time
handle pte fault()

Depending on PTE status, can
— provide an anonymous page
— do copy-on-write processing
— reinstantiate PTE from page cache
— initiate a read from backing store.

and if necessary flushes the TLB.
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Driver Interface

Three kinds of device:
A enumerable-bus device
B Non-enumerable-bus device
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Driver Interface: Device Discovery
Enumerable buses

static DEFINE PCI DEVICE TABLE(cp pci tbl) = {
{ PCI DEVICE(PCI VENDOR ID REALTEK,

PCI DEVICE ID REALTEK 8139), },
{ PCI DEVICE(PCI VENDOR ID TTTECH,

PCI DEVICE ID TTTECH MC322), },
{ },

};
MODULE DEVICE TABLE(pci, cp pci tbl);
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Driver Interface
Driver interface

init called to register driver
exit called to deregister driver, at module unload time

probe() called when bus-id matches; returns 0 if driver claims device
open, close, etc as necessary for driver class
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Device Tree

— Describe board+peripherals

◦ replaces ACPI on embedded systems
— Names in device tree trigger driver instantiation

37



Device Tree

— Describe board+peripherals
◦ replaces ACPI on embedded systems

— Names in device tree trigger driver instantiation

37



Device Tree

— Describe board+peripherals
◦ replaces ACPI on embedded systems

— Names in device tree trigger driver instantiation

37



uart_A: serial@84c0 {
compatible = "amlogic,meson6-uart", "amlogic,meson-uart";
reg = <0x84c0 0x18>;
interrupts = <GIC_SPI 26 IRQ_TYPE_EDGE_RISING>;
status = "ok";

};
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Debugging device discovery

Add debug initcalls to Linux boot args
— traces all calls to init() functions at boot time.

(See Documentation/admin-guide/kernel-parameters.txt in
the linux kernel source for other useful boot args)
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Containers

— Namespace isolation

— Plus Memory and CPU isolation
— Plus other resources
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In hierarchy of control groups
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Containers

— Namespace isolation
— Plus Memory and CPU isolation
— Plus other resources

In hierarchy of control groups
Used to implement, e.g., Docker
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Summary

— I’ve told you status today

◦ Next week it may be different
— I’ve simplified a lot. There are many hairy details
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Scalability
The Multiprocessor Effect

— Some fraction of the system’s cycles are not available for application
work:

◦ Operating System Code Paths
◦ Inter-Cache Coherency traffic
◦ Memory Bus contention
◦ Lock synchronisation
◦ I/O serialisation
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If a process can be split such that σ of
the running time cannot be sped up,
but the rest is sped up by running on
p processors, then overall speedup is

p
1 + σ(p − 1)

T(1- σ ) Tσ

Tσ

T(1- σ )

T(1- σ )

T(1- σ )
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Scalability
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Scalability
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Scalability
Gunther’s law

C(N) =
N

1 + α(N − 1) + βN(N − 1)

where:
N is demand
α is the amount of serialisation: represents Amdahl’s law
β is the coherency delay in the system.
C is Capacity or Throughput
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Scalability
Queueing Models

ServerQueue

Poisson

arrivals

Poisson

service times

ServerQueue

Poisson

service times

High Priority

Normal Priority

Sink

Same Server

48



Scalability
Queueing Models

ServerQueue

Poisson

arrivals

Poisson

service times

ServerQueue

Poisson

service times

High Priority

Normal Priority

Sink

Same Server

48



Scalability
Real examples
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Scalability
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Scalability
Another example

reAIM-7 on HP
16-way Itanium:

α
huge; 12-way
curve below 8 way.
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SPINLOCKS HOLD WAIT
UTIL CON MEAN( MAX ) MEAN( MAX )(% CPU) TOTAL NOWAIT SPIN RJECT NAME
72.3% 13.1% 0.5us(9.5us) 29us( 20ms)(42.5%) 50542055 86.9% 13.1% 0% find lock page+0x30
0.01% 85.3% 1.7us(6.2us) 46us(4016us)(0.01%)1113 14.7% 85.3% 0% find lock page+0x130
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struct page *find lock page(struct address space *mapping,
unsigned long offset)

{
struct page *page;
spin lock irq(&mapping->tree lock);

repeat:
page = radix tree lookup(&mapping->page tree, offset);
if (page) {

page cache get(page);
if (TestSetPageLocked(page)) {

spin unlock irq(&mapping->tree lock);
lock page(page);
spin lock irq(&mapping->tree lock);

. . .
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Tackling scalability problems

— Find the bottleneck

— fix or work around it
— check performance doesn’t suffer too much on the low end.
— Experiment with different algorithms, parameters
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— Each solved problem uncovers
another

— Fixing performance for one
workload can worsen another

— Performance problems can
make you cry
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Doing without locks
Avoiding Serialisation

— Lock-free algorithms
— Allow safe concurrent access without excessive serialisation

— Many techniques. We cover:
◦ Sequence locks
◦ Read-Copy-Update (RCU)
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— Readers don’t lock
— Writers serialised.
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Reader:
volatile seq;
do {
do {
lastseq = seq;

} while (lastseq & 1);
rmb();
reader body ....

} while (lastseq != seq);

Writer:
spinlock(&lck);
seq++; wmb()
writer body ...
wmb(); seq++;
spinunlock(&lck);

61



RCU

McKenney (2004), McKenney et al. (2002)

1.

2.

3. 4.
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Background Reading I

McKenney, P. E. (2004), Exploiting Deferred Destruction: An Analysis of
Read-Copy-Update Techniques in Operating System Kernels, PhD
thesis, OGI School of Science and Engineering at Oregon Health and
Sciences University.
URL: http://www.rdrop.com/users/paulmck/RCU/
RCUdissertation.2004.07.14e1.pdf

McKenney, P. E., Sarma, D., Arcangelli, A., Kleen, A., Krieger, O. & Russell,
R. (2002), Read copy update, in ‘Ottawa Linux Symp.’.
URL: http://www.rdrop.com/users/paulmck/rclock/rcu.
2002.07.08.pdf
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