
Linux, Locking and Lots of
Processors

Peter Chubb
Senior Consultant
peter.chubb@unsw.edu.au

21 June, 2022

1

A little bit of history

— MULTICS in the ’60s

— Ken Thompson and Dennis Ritchie in 1967–70
— USG and BSD
— John Lions 1976–95
— Andrew Tanenbaum 1987
— Linus Torvalds 1991

2

A little bit of history

— MULTICS in the ’60s
— Ken Thompson and Dennis Ritchie in 1967–70

— USG and BSD
— John Lions 1976–95
— Andrew Tanenbaum 1987
— Linus Torvalds 1991

2

A little bit of history

— MULTICS in the ’60s
— Ken Thompson and Dennis Ritchie in 1967–70
— USG and BSD

— John Lions 1976–95
— Andrew Tanenbaum 1987
— Linus Torvalds 1991

2

A little bit of history

— MULTICS in the ’60s
— Ken Thompson and Dennis Ritchie in 1967–70
— USG and BSD
— John Lions 1976–95

— Andrew Tanenbaum 1987
— Linus Torvalds 1991

2

A little bit of history

— MULTICS in the ’60s
— Ken Thompson and Dennis Ritchie in 1967–70
— USG and BSD
— John Lions 1976–95
— Andrew Tanenbaum 1987

— Linus Torvalds 1991

2

A little bit of history

— MULTICS in the ’60s
— Ken Thompson and Dennis Ritchie in 1967–70
— USG and BSD
— John Lions 1976–95
— Andrew Tanenbaum 1987
— Linus Torvalds 1991

2

— Basic concepts well established
◦ User model
◦ Process model
◦ File system model
◦ IPC — pipes, MERT

— Additions:
◦ Paged virtual memory (3BSD, 1979)

◦ TCP/IP Networking (BSD 4.1, 1983)
◦ Multiprocessing (Vendor Unices such as Sequent’s ‘Balance’, 1984)

3

— Basic concepts well established
◦ User model
◦ Process model
◦ File system model
◦ IPC — pipes, MERT

— Additions:
◦ Paged virtual memory (3BSD, 1979)

◦ TCP/IP Networking (BSD 4.1, 1983)
◦ Multiprocessing (Vendor Unices such as Sequent’s ‘Balance’, 1984)

3

— Basic concepts well established
◦ User model
◦ Process model
◦ File system model
◦ IPC — pipes, MERT

— Additions:
◦ Paged virtual memory (3BSD, 1979)
◦ TCP/IP Networking (BSD 4.1, 1983)

◦ Multiprocessing (Vendor Unices such as Sequent’s ‘Balance’, 1984)

3

— Basic concepts well established
◦ User model
◦ Process model
◦ File system model
◦ IPC — pipes, MERT

— Additions:
◦ Paged virtual memory (3BSD, 1979)
◦ TCP/IP Networking (BSD 4.1, 1983)
◦ Multiprocessing (Vendor Unices such as Sequent’s ‘Balance’, 1984)

3

Abstractions

Processor Memory

DMA device

Processor Memory

DMA device

Processor Memory

DMA device

Processor Memory

DMA device

Interconnect

Linux Kernel

F
ile

s

T
h

re
ad

 o
f

C
o

n
tr

o
l

M
em

o
ry

 S
p

ac
e

4

Process model

— Root process (init)
— fork() creates (almost) exact copy

◦ Much is shared with parent — Copy-On-Write avoids overmuch copying
— exec() overwrites memory image from a file
— Allows a process to control what is shared

5

fork() and exec()

— A process can clone itself by calling fork().
— Most attributes copied:

◦ Address space (actually shared, marked copy-on-write)
◦ current directory, current root
◦ File descriptors
◦ permissions, etc.

— Some attributes shared:
◦ Memory segments marked MAP SHARED
◦ Open files

6

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process A

7

Open file descriptor

Offset

In-kernel inode

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process A

7

dup()

Open file descriptor

Offset

In-kernel inode

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process A

7

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process B

fork()

dup()

Open file descriptor

Offset

In-kernel inode

.

.

0

1

2

3

4

5

6

7

File descriptor table

Process A

7

switch (kidpid = fork()) {
case 0: /* child */

close(0); close(1); close(2);
dup(infd); dup(outfd); dup(outfd);
execve("path/to/prog", argv, envp);
_exit(EXIT_FAILURE);

case -1:
/* handle error */

default:
waitpid(kidpid, &status, 0);

}

8

Standard File Descriptors

0 Standard Input
1 Standard Output
2 Standard Error

— Inherited from parent
— On login, all are set to controlling tty

9

The problem with fork()

— Almost perfect in original system
◦ Implemented in a few lines of assembly
◦ Alowed re-use of system calls for changing state
◦ Fast for segment-style (not paged) MMU

— But:
◦ Address spaces now bigger and managed with pages

• Slow to copy page tables
◦ Multi-threading breaks semantics

• Child no longer an exact copy — only one thread fork()ed
• Much more per-process state, not all inheritable

10

Permissions Model

— Processes are procies for authenticated real people
— UID, GID, Other — rwx

— Mainly for File access.
— A process can signal any other process with the same UID

— A process with UID 0 can signal any process, operate on any file∗

11

Permissions Model

— Processes are procies for authenticated real people
— UID, GID, Other — rwx

— Mainly for File access.
— A process can signal any other process with the same UID
— A process with UID 0 can signal any process, operate on any file∗

* Conditions apply

11

File model

— Separation of names from content.
— ‘regular’ files ‘just bytes’ → structure/meaning supplied by userspace
— Devices represented by files.
— Directories map names to index node indices (inums)
— Simple permissions model based on who you are.

12

.

..

bash

sh

ls

which

rnano

busybox

setserial

bzcmp

367

368

402

401

265

/ bin / ls

.

..

boot

sbin

bin

dev

var

vmlinux

etc

usr

inode 324

2

300

300

301

324
3

4

5

7

6

2

2

324

8

125

13

namei

— translate name → inode
— abstracted per filesystem in VFS layer
— Can be slow: extensive use of caches to speed it up dentry cache

—
becomes SMP bottleneck

— hide filesystem and device boundaries
— walks pathname, translating symbolic links

14

namei

— translate name → inode
— abstracted per filesystem in VFS layer
— Can be slow: extensive use of caches to speed it up dentry cache —

becomes SMP bottleneck
— hide filesystem and device boundaries
— walks pathname, translating symbolic links

14

Evolution
KISS

— Simplest possible algorithm used at first

◦ Easy to show correctness
◦ Fast to implement

— As drawbacks and bottlenecks are found, replace with faster/more
scalable alternatives

15

Evolution
KISS

— Simplest possible algorithm used at first
◦ Easy to show correctness
◦ Fast to implement

— As drawbacks and bottlenecks are found, replace with faster/more
scalable alternatives

15

Evolution
KISS

— Simplest possible algorithm used at first
◦ Easy to show correctness
◦ Fast to implement

— As drawbacks and bottlenecks are found, replace with faster/more
scalable alternatives

15

Linux C Dialect

— Extra keywords:
◦ Section IDs: init, exit, percpu etc
◦ Info Taint annotation user, rcu, kernel, iomem
◦ Locking annotations acquires(X), releases(x)
◦ extra typechecking (endian portability) bitwise

16

— Extra iterators
◦ type name foreach()

— Extra O-O accessors
◦ container of()

— Macros to register Object initialisers

17

— Massive use of inline functions
— Quite a big use of CPP macros
— Little #ifdef use in code: rely on optimiser to elide dead code.

18

Internal Abstractions

— MMU
— Memory consistency model
— Device model

19

Scheduling
Goals

— dispatch O(1) in number of runnable processes, number of processors
◦ good uniprocessor performance

— ‘fair’
— Good interactive response
— topology-aware
— O(log n) for scheduling in number of runnable processes.

20

— Changes from time to time.
— Currently ‘CFS’ by Ingo Molnar.

21

Dual Entitlement Scheduler

0.5 0.7 0.1

0 0

Expired

Running

22

1. Keep tasks ordered by effective CPU runtime weighted by nice in
red-black tree

2. Always run left-most task.
Devil’s in the details:

— Avoiding overflow
— Keeping recent history
— multiprocessor locality
— handling too-many threads
— Sleeping tasks
— Group hierarchy

23

(hyper)Thread

24

Core

24

(hyper)Threads

Packages

Cores

24

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

RAM

RAM

RAM

NUMA Node

24

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

RAM

RAM

RAM

NUMA Node

— Best to reschedule on same
processor (don’t move cache
footprint, keep memory close)

— Try to keep whole sockets idle (can
power them off)

— Somehow identify cooperating
threads, co-schedule ‘close by’?

25

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

RAM

RAM

RAM

NUMA Node

— Best to reschedule on same
processor (don’t move cache
footprint, keep memory close)

◦ Otherwise schedule on a ‘nearby’
processor

— Try to keep whole sockets idle (can
power them off)

— Somehow identify cooperating
threads, co-schedule ‘close by’?

25

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

RAM

RAM

RAM

NUMA Node

— Best to reschedule on same
processor (don’t move cache
footprint, keep memory close)

◦ Otherwise schedule on a ‘nearby’
processor

— Try to keep whole sockets idle (can
power them off)

— Somehow identify cooperating
threads, co-schedule ‘close by’?

25

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

(hyper)Threads

Packages

Cores

RAM

RAM

RAM

NUMA Node

— Best to reschedule on same
processor (don’t move cache
footprint, keep memory close)

◦ Otherwise schedule on a ‘nearby’
processor

— Try to keep whole sockets idle (can
power them off)

— Somehow identify cooperating
threads, co-schedule ‘close by’?

25

— One queue per processor (or hyperthread)
— Processors in hierarchical ‘domains’
— Load balancing per-domain, bottom up
— Aims to keep whole domains idle if possible (power savings)

26

Memory Management

Memory in zones
Highmem

Normal

DMA

Normal

Physical address 0

16M

900M

DMA

3GLinux kernel

User VM

VirtualPhysical

Id
en

ti
ty

 M
ap

p
ed

 w
it

h
 o

ff
se

t

27

— Direct mapped pages become logical addresses
◦ pa() and va() convert physical to virtual for these

— small memory systems have all memory as logical
— More memory → ∆ kernel refer to memory by struct page

28

— Direct mapped pages become logical addresses
◦ pa() and va() convert physical to virtual for these

— small memory systems have all memory as logical

— More memory → ∆ kernel refer to memory by struct page

28

— Direct mapped pages become logical addresses
◦ pa() and va() convert physical to virtual for these

— small memory systems have all memory as logical
— More memory → ∆ kernel refer to memory by struct page

28

— Every frame has a struct page (up to 10 words)
— Track:

◦ flags
◦ backing address space
◦ offset within mapping or freelist pointer
◦ Reference counts
◦ Kernel virtual address (if mapped)

29

Memory Management

File
(or swap)

struct

address_space

struct

vm_area_struct
struct

vm_area_struct
struct

vm_area_struct

struct mm_struct

In virtual address order....

struct task_struct

P
ag

e
T

ab
le

(h
ar

d
w

ar
e

d
ef

in
ed

)

owner

30

Memory Management
Address Space

— Misnamed: means collection of pages mapped from the same object
— Tracks inode mapped from, radix tree of pages in mapping
— Has ops (from file system or swap manager) to:

dirty mark a page as dirty
readpages populate frames from backing store
writepages Clean pages — make backing store the same as

in-memory copy
migratepage Move pages between NUMA nodes
Others. . . And other housekeeping

31

Page fault time

— Special case in-kernel faults
— Find the VMA for the address

◦ segfault if not found (unmapped area)
— If it’s a stack, extend it.
— Otherwise:

1. Check permissions, SIG SEGV if bad
2. Call handle mm fault():

• walk page table to find entry (populate higher levels if nec. until leaf found)
• call handle pte fault()

32

Page Fault Time
handle pte fault()

Depending on PTE status, can
— provide an anonymous page
— do copy-on-write processing
— reinstantiate PTE from page cache
— initiate a read from backing store.

and if necessary flushes the TLB.

33

Driver Interface

Three kinds of device:
A enumerable-bus device
B Non-enumerable-bus device

34

Driver Interface: Device Discovery
Enumerable buses

static DEFINE PCI DEVICE TABLE(cp pci tbl) = {
{ PCI DEVICE(PCI VENDOR ID REALTEK,

PCI DEVICE ID REALTEK 8139), },
{ PCI DEVICE(PCI VENDOR ID TTTECH,

PCI DEVICE ID TTTECH MC322), },
{ },

};
MODULE DEVICE TABLE(pci, cp pci tbl);

35

Driver Interface
Driver interface

init called to register driver
exit called to deregister driver, at module unload time

probe() called when bus-id matches; returns 0 if driver claims device
open, close, etc as necessary for driver class

36

Device Tree

— Describe board+peripherals

◦ replaces ACPI on embedded systems
— Names in device tree trigger driver instantiation

37

Device Tree

— Describe board+peripherals
◦ replaces ACPI on embedded systems

— Names in device tree trigger driver instantiation

37

Device Tree

— Describe board+peripherals
◦ replaces ACPI on embedded systems

— Names in device tree trigger driver instantiation

37

uart_A: serial@84c0 {
compatible = "amlogic,meson6-uart", "amlogic,meson-uart";
reg = <0x84c0 0x18>;
interrupts = <GIC_SPI 26 IRQ_TYPE_EDGE_RISING>;
status = "ok";

};

38

Debugging device discovery

Add debug initcalls to Linux boot args
— traces all calls to init() functions at boot time.

(See Documentation/admin-guide/kernel-parameters.txt in
the linux kernel source for other useful boot args)

39

Containers

— Namespace isolation

— Plus Memory and CPU isolation
— Plus other resources

40

Containers

— Namespace isolation
— Plus Memory and CPU isolation

— Plus other resources

40

Containers

— Namespace isolation
— Plus Memory and CPU isolation
— Plus other resources

40

Containers

— Namespace isolation
— Plus Memory and CPU isolation
— Plus other resources

In hierarchy of control groups

40

Containers

— Namespace isolation
— Plus Memory and CPU isolation
— Plus other resources

In hierarchy of control groups
Used to implement, e.g., Docker

40

Summary

— I’ve told you status today

◦ Next week it may be different
— I’ve simplified a lot. There are many hairy details

41

Summary

— I’ve told you status today
◦ Next week it may be different

— I’ve simplified a lot. There are many hairy details

41

Summary

— I’ve told you status today
◦ Next week it may be different

— I’ve simplified a lot. There are many hairy details

41

Scalability
The Multiprocessor Effect

— Some fraction of the system’s cycles are not available for application
work:

◦ Operating System Code Paths
◦ Inter-Cache Coherency traffic
◦ Memory Bus contention
◦ Lock synchronisation
◦ I/O serialisation

42

If a process can be split such that σ of
the running time cannot be sped up,
but the rest is sped up by running on
p processors, then overall speedup is

p
1 + σ(p − 1)

T(1- σ) Tσ

Tσ

T(1- σ)

T(1- σ)

T(1- σ)

43

Scalability

1 processor

Throughput

Applied load

44

Scalability

1 processor

Throughput

Applied load

44

Scalability

1 processor

Throughput

Applied load

44

Scalability

1 processor

Throughput

Applied load

44

Scalability

1 processor

Throughput

Applied load

2 processors

3 processors

44

Scalability

1 processor

Throughput

Applied load

2 processors

3 processors

44

Scalability

1 processor

Throughput

Applied load

2 processors

3 processors

44

Scalability

3 processors

2 processors

Applied load

Throughput

Latency

Throughput

45

Scalability
Gunther’s law

C(N) =
N

1 + α(N − 1) + βN(N − 1)

where:
N is demand
α is the amount of serialisation: represents Amdahl’s law
β is the coherency delay in the system.
C is Capacity or Throughput

46

Scalability

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

Load

USL with alpha=0,beta=0

α = 0, β = 0

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

Load

USL with alpha=0.015,beta=0

α > 0, β = 0

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

Load

USL with alpha=0.001,beta=0.0000001

α > 0, β > 0

47

Scalability

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

Load

USL with alpha=0,beta=0

α = 0, β = 0

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

Load

USL with alpha=0.015,beta=0

α > 0, β = 0

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

Load

USL with alpha=0.001,beta=0.0000001

α > 0, β > 0

47

Scalability

 0

 2000

 4000

 6000

 8000

 10000

 0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

Load

USL with alpha=0,beta=0

α = 0, β = 0

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

Load

USL with alpha=0.015,beta=0

α > 0, β = 0

 0

 100

 200

 300

 400

 500

 600

 700

 0 2000 4000 6000 8000 10000

T
h
ro

u
g
h
p
u
t

Load

USL with alpha=0.001,beta=0.0000001

α > 0, β > 0

47

Scalability
Queueing Models

ServerQueue

Poisson

arrivals

Poisson

service times

ServerQueue

Poisson

service times

High Priority

Normal Priority

Sink

Same Server

48

Scalability
Queueing Models

ServerQueue

Poisson

arrivals

Poisson

service times

ServerQueue

Poisson

service times

High Priority

Normal Priority

Sink

Same Server

48

Scalability
Real examples

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

p
u

t

Load

Postgres TPC throughput

49

Scalability

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

p
u

t

Load

USL with alpha=0.342101,beta=0.017430
Postgres TPC throughput

50

Scalability

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 10 20 30 40 50 60 70 80

T
h

ro
u

g
h

p
u

t

Load

Postgres TPC throughput, separate log disc

51

Scalability
Another example

reAIM-7 on HP
16-way Itanium:

α
huge; 12-way
curve below 8 way.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10 20 30 40 50

J
o

b
s
 p

e
r

M
in

u
te

Number of Clients

01-way
02-way
04-way
08-way
12-way

52

Scalability
Another example

reAIM-7 on HP
16-way Itanium: α
huge; 12-way
curve below 8 way.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10 20 30 40 50

J
o

b
s
 p

e
r

M
in

u
te

Number of Clients

01-way
02-way
04-way
08-way
12-way

52

SPINLOCKS HOLD WAIT
UTIL CON MEAN(MAX) MEAN(MAX)(% CPU) TOTAL NOWAIT SPIN RJECT NAME
72.3% 13.1% 0.5us(9.5us) 29us(20ms)(42.5%) 50542055 86.9% 13.1% 0% find lock page+0x30
0.01% 85.3% 1.7us(6.2us) 46us(4016us)(0.01%)1113 14.7% 85.3% 0% find lock page+0x130

53

struct page *find lock page(struct address space *mapping,
unsigned long offset)

{
struct page *page;
spin lock irq(&mapping->tree lock);

repeat:
page = radix tree lookup(&mapping->page tree, offset);
if (page) {

page cache get(page);
if (TestSetPageLocked(page)) {

spin unlock irq(&mapping->tree lock);
lock page(page);
spin lock irq(&mapping->tree lock);

. . .

54

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 10 20 30 40 50

J
o
b
s
 p

e
r

M
in

u
te

Number of Clients

01-way
02-way
04-way
08-way
12-way
16-way

55

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 10 20 30 40 50

J
o
b
s
 p

e
r

M
in

u
te

Number of Clients

01-way
02-way
04-way
08-way
12-way

Spin lock

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 10 20 30 40 50

J
o
b
s
 p

e
r

M
in

u
te

Number of Clients

01-way
02-way
04-way
08-way
12-way
16-way

RWlock

Note Scales!

56

Tackling scalability problems

— Find the bottleneck

— fix or work around it
— check performance doesn’t suffer too much on the low end.
— Experiment with different algorithms, parameters

57

Tackling scalability problems

— Find the bottleneck
◦ not always easy

— fix or work around it
— check performance doesn’t suffer too much on the low end.
— Experiment with different algorithms, parameters

57

Tackling scalability problems

— Find the bottleneck
— fix or work around it

◦ not always easy

— check performance doesn’t suffer too much on the low end.
— Experiment with different algorithms, parameters

57

Tackling scalability problems

— Find the bottleneck
— fix or work around it
— check performance doesn’t suffer too much on the low end.

— Experiment with different algorithms, parameters

57

Tackling scalability problems

— Find the bottleneck
— fix or work around it
— check performance doesn’t suffer too much on the low end.
— Experiment with different algorithms, parameters

57

— Each solved problem uncovers
another

— Fixing performance for one
workload can worsen another

— Performance problems can
make you cry

58

— Each solved problem uncovers
another

— Fixing performance for one
workload can worsen another

— Performance problems can
make you cry

58

Doing without locks
Avoiding Serialisation

— Lock-free algorithms
— Allow safe concurrent access without excessive serialisation

— Many techniques. We cover:
◦ Sequence locks
◦ Read-Copy-Update (RCU)

59

Doing without locks
Avoiding Serialisation

— Lock-free algorithms
— Allow safe concurrent access without excessive serialisation
— Many techniques. We cover:

◦ Sequence locks
◦ Read-Copy-Update (RCU)

59

— Readers don’t lock
— Writers serialised.

60

Reader:
volatile seq;
do {
do {
lastseq = seq;

} while (lastseq & 1);
rmb();
reader body

} while (lastseq != seq);

Writer:
spinlock(&lck);
seq++; wmb()
writer body ...
wmb(); seq++;
spinunlock(&lck);

61

RCU

McKenney (2004), McKenney et al. (2002)

1.

2.

3. 4.

62

RCU

McKenney (2004), McKenney et al. (2002)

1. 2.

3. 4.

62

RCU

McKenney (2004), McKenney et al. (2002)

1. 2.

3.

4.

62

RCU

McKenney (2004), McKenney et al. (2002)

1. 2.

3. 4.

62

Background Reading I

McKenney, P. E. (2004), Exploiting Deferred Destruction: An Analysis of
Read-Copy-Update Techniques in Operating System Kernels, PhD
thesis, OGI School of Science and Engineering at Oregon Health and
Sciences University.
URL: http://www.rdrop.com/users/paulmck/RCU/
RCUdissertation.2004.07.14e1.pdf

McKenney, P. E., Sarma, D., Arcangelli, A., Kleen, A., Krieger, O. & Russell,
R. (2002), Read copy update, in ‘Ottawa Linux Symp.’.
URL: http://www.rdrop.com/users/paulmck/rclock/rcu.
2002.07.08.pdf

63

http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/users/paulmck/rclock/rcu.2002.07.08.pdf
http://www.rdrop.com/users/paulmck/rclock/rcu.2002.07.08.pdf

	References

