DISTRIBUTED SYSTEMS (COMP9243)

Lecture 2: System Architecture & Communication

Client

Distributed
Systems

@ System Architectures

@ Processes & Server Architecture

® Communication in a Distributed System
@ Communication Abstractions

DISTRIBUTED SYSTEMS (COMP9243)

ARCHITECTURE

ARCHITECTURE

BUILDING A DISTRIBUTED SYSTEM

Two questions:

@® Where to place the hardware?
@ Where to place the software?

BUILDING A DISTRIBUTED SYSTEM

System Architecture:

=* placement of machines
=* placement of sofftware on machines

Where to place?:
=» processing capacity, load balancing
=» communication capacity
= locality

Mapping of services to servers:
=» Partitioning

-» Replication

=» Caching

BUILDING A DISTRIBUTED SYSTEM

ARCHITECTURAL PATTERNS

ARCHITECTURAL PATTERNS

CLIENT-SERVER

Client

Request

Reply

Kernel

Server

Kernel

CLIENT-SERVER

Client-Server from another perspective:

Walit for result

Client

Server
Provide service

How scalable is this?

CLIENT-SERVER

Example client-server code in C.

client (void) {
struct sockaddr_in cin;
char buffer[bufsize];

int sd;

sd = socket (AF_INET,SOCK_STREAM,O0);
connect (sd, (void *)&cin,sizeof(cin));
send (sd,buffer,strlen(buffer),0);
recv(sd,buffer,bufsize,0);

close (sd);

CLIENT-SERVER

server (void) {
struct sockaddr_in cin, sin;

int sd, sd_client;

sd = socket (AF_INET,SOCK_STREAM,O0);

bind(sd, (struct sockaddr *)&sin,sizeof(sin));

listen(sd, queuesize);

while (true) A
sd_client = accept(sd, (struct sockaddr *)&cin,&addrlen));
recv(sd_client ,buffer,sizeof (buffer),0);
DoService(buffer) ;
send(sd_client,buffer,strlen(buffer),0);
close (sd_client);

}

close (sd);

CLIENT-SERVER Q

Example client-server code in Erlang:

%» Client code using the increment server
client (Server) ->
Server ! {self (), 10},
receive
{From, Reply} -> io:format ("Result: “w™n", [Replyl)

end.

% Server loop for increment server

loop () ->
receive
{From, Msg} -> From ! {self (), Msg + 1},
loop O);
stop -> true
end.

% Initiate the server

start_server() -> spawn (fun () -> loop () end).

CLIENT-SERVER

10

Splitting Functionality:

Client machine

User interface

User interface

User interface

User interface

-~ \

‘ User interfage

User interface

Application

Application

Application

Database

Application Application —Application | e
Database Database Database Database { Database
Server machine
@ (b) (c) (d) (e)

Which is the best approach?

CLIENT-SERVER

11

VERTICAL DISTRIBUTION (MULTI-TIER)

1

Request
Client)
h Reply

Kernel

App.
Server

Request

I

;

Kernel

Reply

Dbase
Server

Kernel

Three ‘layers’ of functionality:

e User inferface

e Processing/Application logic

e Data

=» Logically different components on different machines

Leads to Service-Oriented architectures (e.g. microservices).

VERTICAL DISTRIBUTION (MULTI-TIER)

12

Vertical Distribution from another perspective:

User interface Wait for result
(presentation) T\ T TTTTTTTTTTTTTTTIII I

Request

Return

operation result
Application _____________ _/\{a}@ _f?[_dfa_t? _________________
server
Request data Return data
Database N I
server

How scalable is this?

VERTICAL DISTRIBUTION (MULTI-TIER)

13

HORIZONTAL DISTRIBUTION

Front end
handling
incoming Replicated Web servers each
requests containing the same Web pages
Requests - - @4_/ Disks
handled in] B
round-robin = = = >
fashion
Internet

=» Logically equivalent components replicated on different

machines

How scalable is this?

HORIZONTAL DISTRIBUTION

14

Note: Scaling Up vs Scaling Out?

Horizontal and Vertical Distribufion not the same as Horizontal
and Vertical Scaling.

Vertical Scaling: Scaling UP Increasing the resources of a
single machine

Horizontal Scaling: Scaling OUT Adding more machines.
Horizontal and Vertical Distribution are both examples of

this.

HORIZONTAL DISTRIBUTION 15

=» All processes have client and server roles

PEER TO PEER

/ / Kernel

reply request

/

request

request

reply

//
|

Kernel

request

reply

% Peer

é Peer N

Kernel

Why is this special?

reply

Kernel

Kernel

- servent

PEER TO PEER

16

PEER TO PEER AND OVERLAY NETWORKS

How do peers keep track of all other peers?

=» static structure: you already know

=» dynamic structure: Overlay Network
@ structured

@ unstructured

Overlay Network:
=* Application-specific network
=» Addressing
=» Roufing
=» Specialised features (e.Q., encryption, multicast, efc.)

PEER TO PEER AND OVERLAY NETWORKS

17

Example:

PEER TO PEER AND OVERLAY NETWORKS

18

Example:

PEER TO PEER AND OVERLAY NETWORKS

19

Example:

PEER TO PEER AND OVERLAY NETWORKS

20

Example:

PEER TO PEER AND OVERLAY NETWORKS

21

Example:

PEER TO PEER AND OVERLAY NETWORKS

22

UNSTRUCTURED OVERLAY

(a) Random network (b) Scale-free network

=» Data stored at random nodes
=» Partial view: node’s list of neighbours
=» Exchange partial views with neighbours fo update

What’s a problem with this?

UNSTRUCTURED OVERLAY

23

STRUCTURED OVERLAY
Distributed Hash Table:
Actual node

/@/ﬁi@ﬁ}\@ﬂ

147 {13,14,15} {01} {2}

13 (3
{8,9,10,11,12} {2,3,4}
- N Associated -
11 data keys 50
{10 567} 16}

-:‘..9;\.:;;.‘;;;;;/®/
=» Nodes have idenfifier and range, Data has identifier
=» Node is responsible for data that falls in ifs range

=» Search is routed to appropriate node
=> Examples: Chord, Pastry, Kaodemlia

What's a problem with this?

STRUCTURED OVERLAY

24

HYBRID ARCHITECTURES

Combination of architectures.

Examples:
e Superpeer networks
e Collaborative distributed systems

e Edge-server systems

HYBRID ARCHITECTURES

25

Superpeer Networks:
=» Regular peers are clients of superpeers
=» Superpeers are servers for regular peers
=» Superpeers are peers among themselves
=» Superpeers may maintain large index, or act as brokers
= Example: Skype

Regular peers

Superpeer / Superpeer

What are potential issues?

HYBRID ARCHITECTURES

26

Collaborative Distributed Systems:

Example: BitTorrent
=*» Node downloads chunks of file from many other nodes
=» Node provides downloaded chunks to other nodes

=» [racker keeps track of active nodes that have chunks of file

=» Enforce collaboration by penalising selfish nodes

Node 1

Tracker -
O Node 4

What problems does Bit Torrent face?

HYBRID ARCHITECTURES

27

Edge-Server Networks:
= Servers placed at the edge of the network
=» Servers replicate content
=» Mostly used for content and application distribution
=» Content Distribution Networks: Akamai, CloudFront, CoralCDN

Replica nterprise networks

server E E

What are the challenges?

HYBRID ARCHITECTURES

28

SERVER DESIGN

Dispatcher thread

\

Request dispatched
to a worker thread / Server

// <

/’\—‘%—’//z Worker thread

Request coming in
from the network

Operating system

Model Characteristics

Single-threaded process | No parallelism, blocking system calls
Threads Parallelism, blocking system calls
Finite-state machine Parallelism, non-blocking system calls

SERVER DESIGN

29

STATEFUL VS STATELESS SERVERS
Stateful:

=» Keeps persistent information about clients
v Improved performance

x Expensive crash recovery

x Must track clients

Stateless:

=» Does not keep state of clients

=» soff stafe design: limited client state

v Can change own state without informing clients
v No cleanup after crash

v Easy to replicate

x Increased communication

Note: Session state vs. Permanent state

STATEFUL VS STATELESS SERVERS

30

Logical switch
(possibly multiple)

Disp

Client requests F_‘
=

First tier

CLUSTERED SERVERS

request

Application/compute servers

aﬁ/

~

>

Distributed
file/database
system

—
—

Second tier

N~
Third tier

CLUSTERED SERVERS

31

REQUEST SWITCHING

Transport layer switch:

Logically a
single TCP
connection

Response

Request

Client

Switch

DNS-based:
=> Round-robin DNS

Application layer switch:

=» Analyse requests
=» Forward to appropriate server

Server

Request
(handed off)

Server

REQUEST SWITCHING

32

VIRTUALISATION

Virtual Machines

Server Server Server
’ Guest ‘ ’ Guest ‘ ’ Guest ‘
oS) | oS) | (0133

Virtual Machine Monitor

Host OS

Hardware

What are the benefits?

VIRTUALISATION

33

CoDE MOBILITY

Why move code”?

=» Optimise computation (load balancing)
=» Opftimise communication

Weak vs Strong Mobility:

Weak fransfer only code

Strong tfransfer code and execution segment
sender vs Receiver Intitated migration:
Sender Send program to compute server
Receiver Download applets

Examples: Java, JavaScript, Virtual Machines, Mobile Agents

What are the challenges of code mobility?

CODE MOBILITY

34

COMMUNICATION

COMMUNICATION

35

Why Communication?

Cooperating processes need o communicate.

=» For synchronisation and control
=» o share data

COMMUNICATION

36

In a Non-Distributed System:

Two approaches to communication:
=» Shared memory

COMMUNICATION

37

Shared Memory:

Process B

Process A

Shared
memory

Address space 1 Address space 2

COMMUNICATION

38

In a Non-Distributed System:

Two approaches to communication:

=» Shared memory

e Direct memory access (Threads)
e Mapped memory (Processes)

=» Message passing

COMMUNICATION

39

Message Passing:

Process A

Address space 1

Process B

Address space 2

COMMUNICATION

40

In a Non-Distributed System:

Two approaches to communication:

=» Shared memory

e Direct memory access (Threads)
e Mapped memory (Processes)

=» Message passing

e OS’s IPC mechanisms

COMMUNICATION

41

COMMUNICATION IN A DISTRIBUTED SYSTEM

Previous slides assumed a uniprocessor or a mulfiprocessor.
In a distributed system (mulficomputer) things change:

Shared Memory:
=» There is no way to physically share memory

Message Passing:

=» Over the network

=» Introduces latencies

=» Intfroduces higher chances of failure

-» Heterogeneity intfroduces possible incompatibilities

COMMUNICATION IN A DISTRIBUTED SYSTEM 42

MESSAGE PASSING

Basics:
= send()

=» receive()

Variations:

=» Connection oriented vs Connectionless
Point-to-point vs Group

Synchronous vs Asynchronous

Buffered vs Unbuffered

Reliable vs Unreliable

=» Message ordering guarantees

$d 4 4 I

Data Representation:

=» Marshalling
=» Endianness

MESSAGE PASSING

43

COUPLING
Dependency between sender and receiver

Temporal do sender and receiver have 1o be active af the
same time”?

Spatial do sender and receiver have to know about each
other? explicitly address each other?

Semantic do sender and receiver have to share knowledge
of content syntax and semantics?

Platform do sender and receiver have to use the same
platform?

Tight vs Loose coupling: yes vs no

COUPLING

44

COMMUNICATION MODES

Data-Oriented vs Control-Oriented Communication:
Data-orienfed communication

=» Facilitates data exchange between threads

=» Shared address space, shared memory & message passing

Control-oriented communication

=> Associates a transfer of control with communication

=» Active messages, remote procedure call (RPC) & remote
method invocation (RMI)

COMMUNICATION MODES 45

Synchronous vs Asynchronous Communication:

Synchronous
=» Sender blocks unftil message received
e Often sender blocked until message is processed and a
reply received

=» Sender and receiver must be active at the same fime

=» Receiver waits for requests, processes them (ASAP), and returns
reply

=» Client-Server generally uses synchronous communication

Asynchronous

=» Sender continues execution after sending message (does not
block waiting for reply)

=*» Message may be queued if receiver not active
=» Message may be processed later af receiver’'s convenience

When is Synchronous suitable? Asynchronous?

COMMUNICATION MODES 46

Transient vs Persistent Communication:

Transient

=» Message discarded if cannot be delivered to receiver
immediately

=*» Example: HTTP request

Persistent

-*» Message stored (somewhere) until receiver can accept it
= Example: email

Coupling?

COMMUNICATION MODES

47

Provider-Initiated vs Consumer-Initiated Communication:

Provider-Initiated

=» Message sent when data is available
=*» Example: noftifications

Consumer-Initiated

=» Request sent for data
=» Example: HTTP request

COMMUNICATION MODES

48

Direct-Addressing vs Indirect-Addressing Communication:

Direct-Addressing

=» Message sent directly to receiver
=*» Example: HTTP request

Indirect-Addressing

=» Message not sent to a particular receiver
=» Example: broadcast, publish/subscribe

Coupling?

COMMUNICATION MODES

49

Combinations:

Starts processing

Request
ACK request Received Accepted
B M M) B M M)
N\ N\ N N\

Transient Synchronous
(Receipt Based)

Transient Synchronous
(Delivery Based)

Examples?

A)
Message can be
sentonly if B is
running

8 - —O

Transient Asynchronous

Request

Received Accepted

5 ——O—O—O------

Transient Synchronous
(Response Based)

COMMUNICATION MODES

50

COMMUNICATION ABSTRACTIONS

Absfractions above simple message passing make
communication easier for the programmer.

Provided by higher level APIs

® Message-Oriented Communication

@ Request-Reply, Remote Procedure Call (RPC) & Remote
Method Invocation (RMI)

® Group Communication
@ Event-based Communication
® Shared Space

COMMUNICATION ABSTRACTIONS

51

MESSAGE-ORIENTED COMMUNICATION

Communication models based on message passing

Traditional send () /receive () provides:

=» Asynchronous and Synchronous communication
=» Transient communication

What more does it provide than send () /receive()?
=» Persistent communication (Message queues)
=» Hides implementation details
=» Marshalling

MESSAGE-ORIENTED COMMUNICATION

52

EXAMPLE: MESSAGE PASSING INTERFACE (MPI)

Designed for parallel applications

Makes use of available underlying network
Tailored to fransient communication

No persistent communication

d il

Primitives for all forms of fransient communication
=» Group communication

MPI is BIG. Standard reference has over 100 functions and is
over 350 pages long!

EXAMPLE: MESSAGE PASSING INTERFACE (MPI)

53

EXAMPLE: MESSAGE QUEUING SYSTEMS

Sender A
Application o
Application
lReceive)
ueue
q| || <€—] R2 El\f
Message <] [T
I |k\\ o [
Send queue Ty / .
[11 [«
. Application
|11
R1 \ — | 1 1
hﬂl o [T
v 1T ° Receiver B
I - ™ [T
Application
Router

EXAMPLE: MESSAGE QUEUING SYSTEMS

Provides:

=» Persistent communication
=*> Message Queues: store/forward
=» Transfer of messages between queues

Model:
=» Application-specific queues
=» Messages addressed to specific queues
=» Only guarantee delivery to queue. Not when.,
=» Message fransfer can be in the order of minutes

Examples:

= IBM MQSeries, Java Message Service, Amazon SQS, Advanced
Message Queuing Protocol, MQTT, STOMP

Very similar to email but more general purpose (i.e., enables
communication between applications and noft just people)

EXAMPLE: MESSAGE QUEUING SYSTEMS

955

REQUEST-REPLY COMMUNICATION

Request:

=>» qQservice
=> data

Reply:
=» result of executing service
-» data

Requirement;

=*» Message formatting
=» Protocol

REQUEST-REPLY COMMUNICATION

56

EXAMPLE: REMOTE PROCEDURE CALL (RPC)

ldea: Replace |/O oriented message passing model by
execution of a procedure call on a remote node (BN84):

=» Synchronous - based on blocking messages

=*» Message-passing details hidden from application

=¥ Procedure call parameters used to fransmit data

=» Client cdlls local “stub” which does messaging and marshalling

Confusing local and remote operations can be dangerous,
why?

EXAMPLE: REMOTE PROCEDURE CALL (RPC) 57

Remember Erlang client/server example?:

%» Client code using the increment server

client (Server) ->
Server ! {self (), 10},

receive
{From, Reply} -> io:format ("Result: “w™n",

end.

% Server loop for increment server

loop () ->
receive
{From, Msg} -> From ! {self (), Msg + 1},
loop ();
stop -> true
end.

% Initiate the server
start_server() -> spawn (fun () -> loop () end).

[Replyl)

EXAMPLE: REMOTE PROCEDURE CALL (RPC)

58

This is what it’s like in RPC:

% Client code

client (Server) ->
register(server, Server),
Result = inc (10),

io:format ("Result: “w™n",

% Server code

inc (Value) -> Value + 1.

Where is the communication?

[Result]).

EXAMPLE: REMOTE PROCEDURE CALL (RPC)

59

RPC Implementation:

Client machine

Client process

@

/Client stub

j = inc(i);
10 =l
proc: "inc"
int: val(i)
(3
Client OS y

@

Server machine

Server stub__|

Server process

Implementation
of inc

A@

j =inc(i);

proc: "inc"
int: val(i)

A
©)

Server OS

Message

proc: "inc"

int: val(i)

EXAMPLE: REMOTE PROCEDURE CALL (RPC)

60

RPC Implementation:

@

®@ QO @ @ ® @ ©

©

client calls client stubb (nhormal procedure call)

client stub packs parameters into message data structure
client stub performs send () syscall and blocks

kernel transfers message to remote kernel

remote kernel delivers to server stub, blocked in receive ()
server stub unpacks message, calls server (normal proc call)
server returns to stub, which packs result info message
server stub performs send () syscall

kernel delivers to client stub, which unpacks and returns

EXAMPLE: REMOTE PROCEDURE CALL (RPC)

61

Example client stub in Erlang:

% Client code using RPC stub

client (Server) ->
register(server, Server),
Result = inc (10),

io:format ("Result: “w™n", [Result]).

% RPC stub for the increment server
inc (Value) ->
server ! {self (), inc, Value},
receive
{From, inc, Reply} -> Reply

end.

EXAMPLE: REMOTE PROCEDURE CALL (RPC)

62

Example server stub in Erlang:

%» increment implementation
inc (Value) -> Value + 1.

% RPC Server dispatch loop
server () ->
receive
{From, inc, Value} ->
From ! {self(), inc, inc(Value)}
end,

server ().

EXAMPLE: REMOTE PROCEDURE CALL (RPC)

63

Parameter marshalling:

=» stub must pack ("marshal”) parameters into message structure
=» message data must be pointer free

(by-reference data must be passed by-value)
=» Mmay have to perform other conversions:

e Dyfe order (big endian vs littfle endian)

e floating point format

e dedling with pointers

e convert everything to standard ("network”) format, or

e Message indicates format, receiver converts if necessary

=*» stubs may be generated automatically from interface specs

EXAMPLE: REMOTE PROCEDURE CALL (RPC)

64

Examples of RPC frameworks:
=» SUN RPC (aka ONC RPC): Internet RFC1050 (V1), RFC1831 (V2)

e Based on XDR data representation (RFCT1014)(RFC1832)

e Basis of standard distributed services, such as NFS and NIS
=» Distributed Computing Environment (DCE) RPC
=» XML (data representation) and HITTP (fransport)

e Text-based data stream is easier to debug

e HITP simplifies integration with welb servers and works
through firewalls

e For example, XML-RPC (lightweight) and SOAP (more
powerful, but often unnecessarily complex)

=» Many More: Facebook Thrift, Google Protocol Buffers RPC,
Microsoft .NET

EXAMPLE: REMOTE PROCEDURE CALL (RPC) 65

Sun RPC Example:

Run example code from welsite

EXAMPLE: REMOTE PROCEDURE CALL (RPC)

66

Sun RPC - interface definition:

program DATE_PROG {
version DATE_VERS {
long BIN_DATE(void) = 1;
string STR_DATE(long) = 2;
=1,
} = 0x31234567;

/ *
/ *
/ *
/ *

proc num = 1 */
proc num = 2 */
version = 1 */

prog num */

EXAMPLE: REMOTE PROCEDURE CALL (RPC)

67

Sun RPC - client code:

#include <rpc/rpc.h> /* standard RPC include file */
#include "date.h" /* this file is generated by rpcgen */

main(int argc, char **argv) {
CLIENT *cl; /* RPC handle */

cl = clnt_create(argv[1], DATE_PROG, DATE_VERS, "udp");

lresult = bin_date_1(NULL, cl);

printf ("time on host %s = %1d\n", server, *lresult);

sresult = str_date_1(lresult, cl);

printf ("time on host %s = %s", server, *sresult);

clnt_destroy(cl); /* done with the handle */

EXAMPLE: REMOTE PROCEDURE CALL (RPC)

68

Sun RPC - server code:

#include <rpc/rpc.h> /* standard RPC include file */
#include "date.h" /* this file is generated by rpcgen */

long * bin_date_1() {
static long timeval; /* must be static */
long time(); /* Unix function */
timeval = time((long *) 0);
return(&timeval) ;
+
char **x str_date_1(long *bintime) {
static char *ptr; /* must be static */
char *ctime(); /* Unix function x*/
ptr = ctime(bintime); /* convert to local time */

return(&ptr) ; /* return the address of pointer */

EXAMPLE: REMOTE PROCEDURE CALL (RPC)

69

ONE-WAY (ASYNCHRONOUS) RPC

Client Wait for result Client Wait for acceptance

A * A\ 4)

Call remote Return Call remote Return
procedure from call procedure from call
Request Reply Request Accept request
Server Call local procedure Time —3» Server Call local procedure Time —»

and return results

(@) (b)

=* When no reply is required

=> When reply isn’t needed immediately (2 asynchronous RPCs -
deferred synchronous RPC)

ONE-WAY (ASYNCHRONOUS) RPC

/70

REMOTE METHOD INVOCATION (RMI)

Like RPC, but fransition from the server metaphor o
the object metaphor.

Why is this important?
=> RPC: explicit handling of host identfification to determine the
destination
= RMI: addressed to a particular object
=» Objects are first-class citizens
=» Can pass object references as parameters
=» More natural resource management and error handling
=» Buf still, only a small evolutionary step

REMOTE METHOD INVOCATION (RMI) /1

TRANSPARENCY CAN BE DANGEROUS

Why is the transparency provided by RPC and RMI
dangerous?
=* Remote operations can fail in different ways
-*» Remote operations can have arbitrary latency
=* Remote operations have a different memory access model
=» Remote operations can involve concurrency in subtle ways

What happens if this is ignored?

=» Unreliable services and applications
=» Limited scalability
=» Bad performance

See "A note on distributed computing” (Waldo et al. 94)

TRANSPARENCY CAN BE DANGEROUS 72

GROUP-BASED COMMUNICATION

machine

machine
B

machine
C

A

=» Sender performs a single send ()

What are the difficulties with group communication?

machine
D

machine
E

GROUP-BASED COMMUNICATION

73

Two kinds of group communication:;

=» Broadcast (message sent fo everyone)
=» Mulficast (message sent 1o specific group)

Used for:

=» Replication of services
=*» Replication of data

=» Service discovery

=» Event notification

Issues:
= Reliability
=» Ordering

Example:

=» |P multicast
=* Flooding

GROUP-BASED COMMUNICATION

74

EXAMPLE: GOSSIP-BASED COMMUNICATION

Technique that relies on epidemic behaviour, e.g. spreading
diseases among people.

Variant: rumour spreading, or gossiping.

e When node P receives data item z, it tries o push it to
arbifrary node Q.

e If zisNnew to @, then P keeps on spreading = To other
nodes.

e [f NOode @ already has x, P stops spreading = with certain
probability.

Analogy from redl life: Spreading rumours among people.

EXAMPLE: GOSSIP-BASED COMMUNICATION /75

EVENT-BASED COMMUNICATION

$d 4 4 I

ones it is interested in.

I J

Sender process publishes events

Loose coupling: space, time
Example: OMG Data Distribution Service (DDS), JMS, Tibco

Component

Communication through propagation of events
Generally associated with publish/subscribe systems

Receiver process subscribes to events and receives only the

Component

I Event delivery I l

Publish T

Event bus

Component

EVENT-BASED COMMUNICATION

76

SHARED SPACE COMMUNICATION

Example: Distributed Shared Memory:

Shared global address space

CPU 1 CPU 2 CPU 3 CPU 4

Coupling?

SHARED SPACE COMMUNICATION

Example: Tuple Space:

A

\

Write A

B | Write B

Insert a

copy of A

Tuple instance

Coupling”?

copy of B
i)

Insert a

— B :C'

A JavaSpace

Look for
tuple that
matches T

-_— —_—— e ————

Return C
(and optionally
remove it)

SHARED SPACE COMMUNICATION

/8

READING LIST

Implementing Remote Procedure Calls A classic paper
about the design and implementation of one of the first
RPC systems.

READING LIST

79

HOMEWORK

RPC:
=» Do Exercise Client server exercise (Erlang) Part B

Synchronous vs Asynchronous:

=» Explain how you can implement synchronous communication
using only asynchronous communication primitives.

-» How about the opposite?

Hacker’s Edition: Client-Server vs Ring:
=» Do Exercise Client-Server vs. Ring (Erlang)

HOMEWORK

80

