
Distributed Systems [COMP9243]

Session 1, 2018

Ihor Kuz

cs9243@cse.unsw.edu.au

1

DISTRIBUTED SYSTEMS [COMP9243]

Lecture 1: Introduction

➀ Distributed Systems - what and why

➁ Hardware and Software

➂ Goals

➃ Overview - principles and paradigms

➄ Course details

➅ Erlang

DISTRIBUTED SYSTEMS [COMP9243] 2

DISTRIBUTED SYSTEMS

What is a distributed system?

➜ Andrew Tannenbaum defines it as follows:

A distributed system is a collection of independent

computers that appear to its users as a single coherent

system.

➜ Is there any such system? Hardly!———– Kind of

➜ We will learn about the challenges in building “true” distributed

systems

For the time being, we go by a weaker definition of

distributed system:

A distributed system is a collection of independent

computers that are used jointly to perform a single

task or to provide a single service.

DISTRIBUTED SYSTEMS 3

Examples of distributed systems

➜ Cray XK7 & CLE (massive multiprocessor)

➜ Distributed file system on a LAN

➜ Domain Name Service (DNS)

➜ Collection of Web servers: distributed database of hypertext

and multimedia documents

DISTRIBUTED SYSTEMS 4

Find more examples of distributed systems:

Remember

A distributed system is a collection of independent

computers that are used jointly to perform a single

task or to provide a single service.

What’s the difference between a distributed application and

distributed system?

DISTRIBUTED SYSTEMS 5

INTERDEPENDENCE OF DISTRIBUTED SYSTEMS

Internet

ISP

LAN

Datacenter

UI
Stream
Server

Search Storage

INTERDEPENDENCE OF DISTRIBUTED SYSTEMS 6

THE ADVANTAGES OF DISTRIBUTED SYSTEMS

What are economic and technical reasons for having

distributed systems?

Cost. Better price/performance as long as commodity hardware is

used for the component computers

Performance. By using the combined processing and storage

capacity of many nodes, performance levels can be reached

that are out of the scope of centralised machines

Scalability. Resources such as processing and storage capacity

can be increased incrementally

Reliability. By having redundant components, the impact of

hardware and software faults on users can be reduced

Inherent distribution. Some applications like the Web are naturally

distributed

THE ADVANTAGES OF DISTRIBUTED SYSTEMS 7

THE DISADVANTAGES OF DISTRIBUTED SYSTEMS

What problems are there in the use and development of

distributed systems?

New component: network. Networks are needed to connect

independent nodes, are subject to performance limits

Software complexity. Distributed software is more complex

and harder to develop than conventional software;

hence, it is more expensive and harder to get right

Failure. More elements that can fail, and the failure must be

dealt with

Security. Easier to compromise distributed systems

Distributed systems are hard to build and understand

➼ this course is going to be very challenging!

THE DISADVANTAGES OF DISTRIBUTED SYSTEMS 8

HARDWARE ARCHITECTURE

Uniprocessor:

P

M

Properties:

➜ Single processor

➜ Direct memory access

HARDWARE ARCHITECTURE 9

Multiprocessor:

MMM

P P PP P P PP

M M M M

Uniform Nonuniform

Properties:

➜ Multiple processors

➜ Direct memory access

• Uniform memory access (e.g., SMP, multicore)

• Nonuniform memory access (e.g., NUMA)

HARDWARE ARCHITECTURE 10

Multicomputer:

P

M

P

M

P

M

P

M

Properties:

➜ Multiple computers

➜ No direct memory access

➜ Network

➜ Homogeneous vs. Heterogeneous

HARDWARE ARCHITECTURE 11

SOFTWARE ARCHITECTURE

Uniprocessor OS:

Applications

Operating
System
Services

Kernel

Machine A

SOFTWARE ARCHITECTURE 12

Multiprocessor OS:

Kernel

Applications

Machine A

Operating System Services

Similar to a uniprocessor OS but:

➜ Kernel designed to handle multiple CPUs

➜ Number of CPUs is transparent

➜ Communication uses same primitives as uniprocessor OS

➜ Single system image

What’s the limitation here?

SOFTWARE ARCHITECTURE 13

Network OS:

Network OS
services

Network OS
services

Network OS
services

Machine A Machine B Machine C

KernelKernelKernel

Network

Distributed applications

Properties:

➜ No single system image. Individual nodes are highly autonomous

➜ All distribution of tasks is explicit to the user

➜ Examples: Linux, Windows

What’s the challenge with this approach?

SOFTWARE ARCHITECTURE 14

Distributed OS:

KernelKernelKernel

Machine A Machine B Machine C

Network

Distributed operating system services

Distributed applications

Properties:

➜ High degree of transparency

➜ Single system image (FS, process, devices, etc.)

➜ Homogeneous hardware

➜ Examples: Amoeba, Plan 9, Chorus, Mungi

Are there any problems with this approach?

SOFTWARE ARCHITECTURE 15

Middleware:

Network OS
services

Network OS
services

Network OS
services

Machine A Machine B Machine C

KernelKernelKernel

Network

Middleware services

Distributed applications

Properties:

➜ System independent interface for distributed programming

➜ Improves transparency (e.g., hides heterogeneity)

➜ Provides services (e.g., naming service, transactions, etc.)

➜ Provides programming model (e.g., distributed objects)

SOFTWARE ARCHITECTURE 16

Why is Middleware ’Winning’?:

➜ Builds on commonly available abstractions of network OSes

(processes and message passing)

➜ Examples: RPC, NFS, CORBA, MQSeries, SOAP, REST, MapReduce

➜ Also languages (or language modifications) specially designed

for distributed computing

➜ Examples: Erlang, Ada, Limbo, Go, etc.

V Usually runs in user space

V Raises level of abstraction for programming ➼ less error-prone

V Independence from OS, network protocol, programming

language, etc. ➼ Flexibility

X Feature dump and bloated interfaces

SOFTWARE ARCHITECTURE 17

DISTRIBUTED SYSTEMS AND PARALLEL COMPUTING

➜ Parallel computing: improve performance by using multiple

processors per application

➜ There are two flavours:

1. Shared-memory systems:

• Multiprocessor (multiple processors share a single bus and

memory unit)

• SMP support in OS

• Much simpler than distributed systems

• Limited scalability

2. Distributed memory systems:

• Multicomputer (multiple nodes connected via a network)

• These are a form of distributed systems

• Share many of the challenges discussed here

• Better scalability & cheaper

DISTRIBUTED SYSTEMS AND PARALLEL COMPUTING 18

DISTRIBUTED SYSTEMS IN CONTEXT

Networking:

➜ Network protocols, routing protocols, etc.

➜ Distributed Systems: make use of networks

Operating Systems:

➜ Resource management for single systems

➜ Distributed Systems: management of distributed resources

This Course:

➜ Generalised solutions to distributed systems problems and

challenges

➜ Infrastructure software to help build distributed applications

DISTRIBUTED SYSTEMS IN CONTEXT 19

BASIC GOALS OF DISTRIBUTED SYSTEMS

We want distributed systems to have the following properties:

➜ Transparency

➜ Dependability

➜ Scalability

➜ Performance

➜ Flexibility

This course will examine approaches and techniques for

designing and building distributed systems that achieve

these goals.

BASIC GOALS OF DISTRIBUTED SYSTEMS 20

TRANSPARENCY

Concealment of the separation of the components

of a distributed system (single image view).

There are a number of forms of transparency

Access: Local and remote resources accessed in same way

Location: Users unaware of location of resources

Migration: Resources can migrate without name change

Replication: Users unaware of existence of multiple copies

Failure: Users unaware of the failure of individual components

Concurrency: Users unaware of sharing resources with others

Is transparency always desirable? Is it always possible?

TRANSPARENCY 21

DEPENDABILITY

➜ Dependability of distributed systems is a double-edged sword:

• Distributed systems promise higher availability:

– Replication

• But availability may degrade:

– More components ➼ more potential points of failure

➜ Dependability requires consistency, security, and fault tolerance

DEPENDABILITY 22

SCALABILITY

A system is said to be scalable if it can handle the addition

of users and resources without suffering a noticeable loss of

performance or increase in administrative complexity

[B. Clifford Neuman]

Scale has three dimensions:

Size: number of users and resources (problem: overloading)

Geography: distance between users and resources (problem:

communication)

Administration: number of organisations that exert administrative

control over parts of the system (problem: administrative mess)

Note:

➜ Scalability often conflicts with (small system) performance

➜ Claim of scalability is often abused

SCALABILITY 23

Scaling Up or Out?

Vertical Scaling: Scaling UP Increasing the resources of a

single machine

Horizontal Scaling: Scaling OUT Adding more machines

SCALABILITY 24

Techniques for scaling:

➜ Hiding communication latencies (asynchronous

communication, reduce communication)

➜ Distribution (spreading data and control around)

➜ Replication (making copies of data and processes)

➜ Decentralisation

SCALABILITY 25

Decentralisation

Avoid centralising:

➜ Services (e.g., single server)

➜ Data (e.g., central directories)

➜ Algorithms (e.g., based on complete information).

With regards to algorithms:

➜ Do not require machine to hold complete system state Why?

➜ Allow nodes to make decisions based on local info Why?

➜ Algorithms must survive failure of nodes Why?

➜ No assumption of a global clock Why?

Decentralisation is hard

SCALABILITY 26

PERFORMANCE

➜ Any system should strive for maximum performance

➜ In distributed systems, performance directly conflicts with some

other desirable properties

• Transparency

• Security

• Dependability

• Scalability

How?

PERFORMANCE 27

NUMBERS EVERY PROGRAMMER SHOULD KNOW

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 25 ns

Main memory reference 100 ns

Compress 1K bytes with Zippy 3,000 ns = 3 us

Send 2K bytes over 1 Gbps network 20,000 ns = 20 us

Read 1 MB sequentially from memory .. 250,000 ns = 250 us

Round trip within same datacenter ... 500,000 ns = 0.5 ms

Disk seek 10,000,000 ns = 10 ms

Read 1 MB sequentially from disk . 20,000,000 ns = 20 ms

Send packet CA->Netherlands->CA . 150,000,000 ns = 150 ms

[from Peter Norvig, Jeff Dean, see also http://www.eecs.berkeley.edu/~rcs/research/interactive_latency.html]

NUMBERS EVERY PROGRAMMER SHOULD KNOW 28

FLEXIBILITY

➜ Build a system out of (only) required components

➜ Extensibility: Components/services can be changed or added

➜ Openness of interfaces and specification

• allows reimplementation and extension

➜ Interoperability

➜ Separation of policy and mechanism

• standardised internal interfaces

FLEXIBILITY 29

COMMON MISTAKES

False assumptions commonly made:

➀ Reliable network

➁ Zero latency

➂ Infinite bandwidth

➃ Secure network

➄ Topology does not change

➅ One administrator

➆ Zero transport cost

➇ Everything is homogeneous

COMMON MISTAKES 30

PRINCIPLES

Several key principles underlying the functioning of all

distributed systems

➜ System Architecture

➜ Communication

➜ Partitioning, Replication and Consistency

➜ Synchronisation & Coordination

➜ Naming

➜ Fault Tolerance

➜ Security

Discussion of these principles will form the core

content of the course

PRINCIPLES 31

PARADIGMS

Most distributed systems are built based on a particular

paradigm (or model)

➜ Shared memory

➜ Distributed objects

➜ Distributed file system

➜ Distributed coordination

➜ Service Oriented Architecture and Web Services

➜ Distributed Database

➜ Shared documents

➜ Agents

This course will cover the first five in detail.

PARADIGMS 32

MISCELLANEOUS ’RULES OF THUMB’

Trade-offs Many of the challenges provide conflicting requirements. For

example better scalability can cause worse overall performance. Have

to make trade-offs - what is more important?

Separation of Concerns Split a problem into individual concerns and

address each separately

End-to-End Argument Some communication functions can only be reliably

implemented at the application level

Policy vs. Mechanism A system should build mechanisms that allow flexible

application of policies. Avoid built-in policies.

Keep It Simple, Stupid make things as simple as possible, but no simpler.

MISCELLANEOUS ’RULES OF THUMB’ 33

READING LIST

End-to-end Arguments in System Design A classic paper

arguing the end-to-end argument with excellent

examples.

A Note on Distributed Computing Another classic paper

showing the dangers of too much transparency in

RPC-based distributed systems.

Fallacies of Distributed Computing Explained A good

explanation of the 8 common mistakes made by

architects and designers of distributed systems.

Scale in Distributed Systems A really good paper to read if

you are interested in understanding more about

scalability in distributed systems.

READING LIST 34

OVERVIEW OF COURSE

➀ Introduction and Erlang

➁ System Architecture and Communication

➂ Replication and Consistency, Distributed Shared Memory

➃ Synchronisation and Coordination

➄ Dependability and Fault Tolerance

➅ Naming

➆ Distributed File Systems

➇ Middleware, Distributed Objects, Publish/Subscribe, SOA, Web

Services

➈ Cloud Computing

➉ Security

Extras:

➀ Distributed Systems in Practice

➁ Parallel Programming and Clusters

➂ Research and Other Topics

OVERVIEW OF COURSE 35

PRACTICAL COURSE DETAILS

➜ Course Outline Page

http://www.cse.unsw.edu.au/~cs9243/outline.html

➜ Papers: classic and research: some mandatory, some optional

➜ Homework/Exercises: Familiarisation, DS programming

➜ Assignments: 3 assignments. 100 marks total.

➜ Exam: Open book exam, 100 marks

➜ Final Mark:

• weighted average: exam mark (60%) and total assignment

mark (40%).

• Exam mark must be at least 50% of maximum possible exam

mark.

Note:

Difficult course. Lots of work. Be prepared.

And start the assignments on time!

PRACTICAL COURSE DETAILS 36

HOMEWORK

Examples of Distributed Systems:

➜ Choose an existing distributed system and

➀ Research its structure (i.e. what is its internal architecture?)

➁ Evaluate how it satisfies each of the goals discussed

Hacker’s edition:

➜ For your chosen system:

➀ Are there any obvious mistakes in the architecture and

design?

➁ Are there any strange design decisions? Why might they

have been made?

HOMEWORK 37

