DISTRIBUTED SYSTEMS (COMP9243)

Lecture 8c: Middleware

- 1 Introduction
- ② Publish/Subscribe Middleware
- 3 Distributed Object Middleware
 - Remote Objects & CORBA
 - Distributed Shared Objects & Globe

MIDDLEWARE

KINDS OF MIDDLEWARE

Distributed Object based:

→ Objects invoke each other's methods

Message-oriented:

- → Messages are sent between processes
- → Message queues

Coordination-based:

→ Tuple space

→ Publish/Subscribe

Publish/Subscribe Middleware

Transaction Processing Monitors:

Web Services:

PUBLISH/SUBSCRIBE (EVENT-BASED) MIDDLEWARE

Publish/Subscribe Middleware

CHALLENGES

Transparency:

→ loose coupling → good transparency

Scalability:

- → Potentially good due to loose coupling
- In practice hard to achieve
- → Number of subscriptions
- → Number of messages

Flexibility:

- → Loose coupling gives good flexibility
- → Language & platform independence
- → Policy separate from mechanism

Programmability:

- → Inherent distributed design
- → Doesn't use non-distributed concepts

EXAMPLES

Real-time Control Systems:

- → External events (e.g. sensors)
- → Event monitors

Stock Market Monitoring:

- → Stock updates
- → Traders subscribed to updates

Network Monitoring:

- → Status logged by routers, servers
- → Monitors screen for failures, intrusion attempts

Enterprise Application Integration:

- → Independent applications
- → Produce output as events
- → Consume events as input
- → Decoupled

Message Filtering

Topic-based

Content-based

Publish/Subscribe Middleware

Message Filtering 12

ARCHITECTURE

Centralised:

Peer-to-Peer:

Multicast-based:

ARCHITECTURE 13

COMMUNICATION

- → Point-to-point
- → Multicast
 - hard part is building appropriate multicast tree
- → Content-based routing
 - point-to-point based router network
 - make forwarding decisions based on message content
 - store subscription info at router nodes

COMMUNICATION 14

REPLICATION

Replicated Brokers:

- → Copy subscription info on all nodes
- → Keep nodes consistent
- → What level of consistency is needed?
- → Avoid sending redundant subscription update messages

Partitioned Brokers:

- → Different subscription info on different nodes
- → Events have to travel through all nodes
- → Route events to nodes that contain their subscriptions

REPLICATION

FAULT TOLERANCE

Reliable Communication:

→ Reliable multicast

Process Resilience (Broker):

- → Process groups
- → Active replication by subscribing to group messages

Routing:

- → Stabilise routing if a broker crashes
- → Lease entries in routing tables

EXAMPLE SYSTEMS

TIB/Rendezvous:

- → Topic-based
- → Multicast-based

Java Message Service (JMS):

- → API for MOM
- → Topic-based
- → centralised or peer-to-peer implementations possible

Scribe:

- → Topic-based
- → Peer-to-peer architecture, based on Pastry (DHT)
- → Topics have unique IDs and map onto nodes
- → Multicast for sending events
 - Tree is built up as nodes subscribe

DISTRIBUTED OBJECTS

DISTRIBUTED OBJECTS 18

CHALLENGES

- → Transparency
 - Failure transparency
- → Reliability
 - Dealing with partial failures
- → Scalability
 - Number of clients of an object
 - Distance between client and object
- → Design
 - Must take distributed nature into account from beginning
- → Performance
- → Flexibility

OBJECT MODEL

→ Classes and Objects

Class: defines a type

Object: instance of a class

→ Interfaces

- → Object references
- → Active vs Passive objects
- → Persistent vs Transient objects
- → Static vs Dynamic method invocation

OBJECT MODEL

REMOTE OBJECT ARCHITECTURAL MODEL

Remote Objects:

- → Single copy of object state (at single object server)
- → All methods executed at single object server
- → All clients access object through proxy
- → Object's location is location of state

CLIENT

Client Process:

- → Binds to distributed object
- → Invokes methods on object

Proxy:

- → Proxy: RPC stub + destination details
- → Binding causes a proxy to be created
- → Responsible for marshaling
- → Static vs dynamic proxies
- → Usually generated

Run-Time System:

- → Provides services (translating references, etc.)
- → Send and receive

OBJECT SERVER

Object:

- → State & Methods
- → Implements a particular interface

Skeleton:

- → Server stub
- → Static vs dynamic skeletons

Run-Time System:

- → Dispatches to appropriate object
- → Invocation policies

Object Server:

- → Hosts object implementations
- → Transient vs Persistent objects
- → Concurrent access
- → Support legacy code

OBJECT REFERENCE

Local Reference:

→ Language reference to proxy

OBJECT REFERENCE

Remote Reference:

→ Server address + object ID

→ Reference to proxy code (e.g., URL) & init data

→ Object name (human friendly, object ID, etc.)

What are the drawbacks and/or benefits of each approach?

REMOTE METHOD INVOCATION (RMI)

Standard invocation (synchronous):

- → Client invokes method on proxy
- → Proxy performs RPC to object server
- → Skeleton at object server invokes method on object
- → Object server may be required to create object first

Other invocations:

- → Asynchronous invocations
- → Persistent invocations
- → Notifications and Callbacks

CORBA

Features:

- → Object Management Group (OMG) Standard (version 3.1)
- → Range of language mappings
- → Transparency: Location & some migration transparency
- → Invocation semantics: at-most-once semantics by default; maybe semantics can be selected
- → Services: include support for naming, security, events, persistent storage, transactions, etc.

CORBA ARCHITECTURE

CORBA Architecture 30

INTERFACES: OMG IDL

Example: A Simple File System:

```
module CorbaFS {
  interface File; // forward declaration
  interface FileSystem {
   exception CantOpen {string reason;};
   enum OpenMode {Read, Write, ReadWrite};
   File open (in string fname, in OpenMode mode)
     raises (CantOpen);
  };
  interface File { // an open file
    string read (in long nchars);
   void write (in string data);
   void close ();
 };
};
```

INTERFACES: OMG IDL

OBJECT REFERENCE (OR)

Object Reference (OR):

- → Refers to exactly one object, but an object can have multiple, distinct ORs
- → ORs are implementation specific

Interoperable Object Reference (IOR)

→ Can be shared between different implementations

OBJECT REQUEST BROKER (ORB)

- → Provides run-time system
- → Translate between remote and local references
- → Send and receive messages
- → Maintains interface repository
- → Enables dynamic invocation (client and server side)
- → Locates services

INTERCEPTORS

Interceptors 34

BINDING

Direct Binding:

- → Create proxy
- → ORB connects to server (using info from IOR)
- → Invocation requests are sent over connection

Indirect Binding:

CORBA SERVICES

Some of the standardised services are the following:

- → Naming Service
- → Event Service
- → Transaction Service
- → Security Service
- → Fault Tolerance

CORBA BIBLIOGRAPHY

- (1) *IIOP Complete*, W. Ruh, T. Herron, and P. Klinker, Addison Wesley, 1999.
- (2) The Common Object Request Broker: Architecture and Specification (2.3.1), Object Management Group, 1999.
- (3) C Language Mapping Specification, Object Management Group, 1999.
- (4) CORBAservices: Common Object Services Specification, Object Management Group, 1998.

Play with CORBA. Many implementations available, including ORBit: http://www.gnome.org/projects/ORBit2/

CORBA BIBLIOGRAPHY

DISTRIBUTED SHARED OBJECT (DSO) MODEL

Distributed Shared Objects:

- → Object state can be replicated (at multiple object servers)
- → Object state can be partitioned
- → Methods executed at some or all replicas
- → Object location no longer clearly defined

CLIENT

- → Client has local representative (LR) in its address space
- → Stateless LR
 - Equivalent to proxy
 - Methods executed remotely
- → Statefull LR
 - Full state
 - Partial state
 - Methods (possibly) executed locally

OBJECT

Remote Object

Replicated Object

Partitioned Object

Replicated and Partitioned Object

OBJECT 40

OBJECT SERVER

- → Server dedicated to hosting LRs
- → Provides resources (network, disk, etc.)
- → Static vs Dynamic LR support
- → Transient vs Persistent LRs
- → Security mechanisms

Location of LRs:

- → LRs only hosted by clients
- → Statefull LRs only hosted by object servers
- → Statefull LRs on both clients and object servers

OBJECT SERVER

41

GLOBE (GLOBAL OBJECT BASED ENVIRONMENT)

Scalable wide-area distributed system:

- → Wide-area scalability requires replication
- → Wide-area scalability requires flexibility

Features:

- → Per-object replication and consistency
- → Per-object communication
- → Mechanism not policy
- → Transparency (replication, migration)
- → Dynamic replication

HOMEWORK

→ Could you turn CORBA into a distributed shared object middleware using interceptors?

Hacker's edition:

→ Implement the simple filesystem presented using a freely available version of CORBA (or other middleware if you prefer).

HOMEWORK 43

READING LIST

Globe: A Wide-Area Distributed System An overview of Globe

CORBA: Integrating Diverse Applications Within Distributed Heterogeneous Environments An overview of CORBA

New Features for CORBA 3.0 More CORBA