
Slide 1

DISTRIBUTED SYSTEMS [COMP9243]

Lecture 8c: Middleware

➀ Introduction

➁ Publish/Subscribe Middleware

➂ Distributed Object Middleware

• Remote Objects & CORBA

• Distributed Shared Objects & Globe

Slide 2

MIDDLEWARE

Network OS
services

Network OS
services

Network OS
services

Machine A Machine B Machine C

KernelKernelKernel

Network

Middleware services

Distributed applications

K INDS OF M IDDLEWARE 1

Slide 3

KINDS OF MIDDLEWARE

Distributed Object based:

➜ Objects invoke each other’s methods

Manager

newAccount()
closeAccount()
getAccount()

Bank
lookup()
add()
remove()

AccountDB

withdraw()
deposit()
getBalance()

Account

withdraw()
deposit()
getBalance()

Account

withdraw()
deposit()
getBalance()

Account withdraw()
deposit()
getBalance()

Account

withdraw()
deposit()
getBalance()

Account

withdraw()
deposit()
getBalance()

Account

Customer

Slide 4

Message-oriented:

➜ Messages are sent between processes

➜ Message queues

Application

Send queue

Application

Application

Application
Router

Message

Sender A

R2

R1

Receiver B

Receive
queue

K INDS OF M IDDLEWARE 2



Slide 5

Coordination-based:

➜ Tuple space

Tuple instance

A

A B T

C

B A

C
BB

Insert a
copy of A

Write A Write B Read T

Insert a
copy of B

Look for
tuple that
matches T

Return C
(and optionally

remove it)

A JavaSpace

Slide 6

➜ Publish/Subscribe

Publish/Subscribe Middleware

���
���
���
���

���
���
���
���

��
��
��

��
��
��

������
������
������

������
������
������

����
����
����

����
����
����

Publisher Subscriber Subscriber

Match

Match

SubscriptionData Item

K INDS OF M IDDLEWARE 3

Slide 7

Transaction Processing Monitors:

TP monitor

Server

Server

Server

Client
application

Requests

Reply

Request

Request

Request

Reply

Reply

Reply

Transaction

Slide 8

Web Services:

Auction Service

Stock Service

Bank Service

Photo Service

HTTP

add_photo
delete_photo

search

Client

XML−RPC

query_stock

get_auction

buy

manage_auction
bid

sell

update_photo

balance
tansfer

HTTP

HTTP

XML−RPC

SOAP

search

PUBLISH/SUBSCRIBE (EVENT-BASED) M IDDLEWARE 4



Slide 9

PUBLISH/SUBSCRIBE (EVENT-BASED) MIDDLEWARE

Publish/Subscribe Middleware

���
���
���
���

���
���
���
���

��
��
��
��

������
������
������
������

������
������
������
������

����
����
����

����
����
����

Publisher Subscriber Subscriber

Match

Match

SubscriptionData Item

Slide 10

CHALLENGES

Transparency:

➜ loose coupling → good transparency

Scalability:

➜ Potentially good due to loose coupling

X In practice hard to achieve

➜ Number of subscriptions

➜ Number of messages

Flexibility:

➜ Loose coupling gives good flexibility

➜ Language & platform independence

➜ Policy separate from mechanism

Programmability:

➜ Inherent distributed design

➜ Doesn’t use non-distributed concepts

EXAMPLES 5

Slide 11

EXAMPLES

Real-time Control Systems:

➜ External events (e.g. sensors)

➜ Event monitors

Stock Market Monitoring:

➜ Stock updates

➜ Traders subscribed to updates

Network Monitoring:

➜ Status logged by routers, servers

➜ Monitors screen for failures, intrusion attempts

Enterprise Application Integration:

➜ Independent applications

➜ Produce output as events

➜ Consume events as input

➜ Decoupled

Slide 12

MESSAGE FILTERING

Topic-based

Content-based

Data item:
���
���
���

���
���
���

��
��
��
��

�����
�����
�����
�����

�����
�����
�����
�����

Publisher Subscriber

Publish/Subscribe Middleware

Subscription:
comp.os.*

Match
comp.os.unix

comp.os.distributed

name=john

���
���
���

���
���
���

���
���
���
���

������
������
������

������
������
������

Publisher Subscriber

Publish/Subscribe Middleware

Subscription:

Match

Data item:
name=john

gender = male

name=john
age=30

ARCHITECTURE 6



Slide 13

ARCHITECTURE

Centralised:

Broker

Publisher Subscriber

Send
Event

Send
Subscribe

Send
Event

Peer-to-Peer:

Subscriber

Publisher
Subscriber

Publisher
Subscriber

Publisher
Subscriber

����
����
����
����

����
����
����
����

Send
Event

���
���
���

���
���
���

Send
Event

Publisher

Multicast-based:

No Match

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

Send
Event

Publisher Subscriber Subscriber
Publisher

No Match Match

����
����
����
����

����
����
����
����

Slide 14

COMMUNICATION

➜ Point-to-point

➜ Multicast

• hard part is building appropriate multicast tree

➜ Content-based routing

• point-to-point based router network

• make forwarding decisions based on message content

• store subscription info at router nodes

REPLICATION 7

Slide 15

REPLICATION

Replicated Brokers:

➜ Copy subscription info on all nodes

➜ Keep nodes consistent

➜ What level of consistency is needed?

➜ Avoid sending redundant subscription update messages

Partitioned Brokers:

➜ Different subscription info on different nodes

➜ Events have to travel through all nodes

➜ Route events to nodes that contain their subscriptions

Slide 16

FAULT TOLERANCE

Reliable Communication:

➜ Reliable multicast

Process Resilience (Broker):

➜ Process groups

➜ Active replication by subscribing to group messages

Routing:

➜ Stabilise routing if a broker crashes

➜ Lease entries in routing tables

EXAMPLE SYSTEMS 8



Slide 17

EXAMPLE SYSTEMS

TIB/Rendezvous:

➜ Topic-based

➜ Multicast-based

Java Message Service (JMS):

➜ API for MOM

➜ Topic-based

➜ centralised or peer-to-peer implementations possible

Scribe:

➜ Topic-based

➜ Peer-to-peer architecture, based on Pastry (DHT)

➜ Topics have unique IDs and map onto nodes

➜ Multicast for sending events

• Tree is built up as nodes subscribe

Slide 18

DISTRIBUTED OBJECTS

CHALLENGES 9

Slide 19

CHALLENGES

➜ Transparency

• Failure transparency

➜ Reliability

• Dealing with partial failures

➜ Scalability

• Number of clients of an object

• Distance between client and object

➜ Design

• Must take distributed nature into account from beginning

➜ Performance

➜ Flexibility

Slide 20

OBJECT MODEL

➜ Classes and Objects

Class: defines a type

Object: instance of a class

➜ Interfaces

➜ Object references

➜ Active vs Passive objects

➜ Persistent vs Transient objects

➜ Static vs Dynamic method invocation

REMOTE OBJECT ARCHITECTURAL MODEL 10



Slide 21

REMOTE OBJECT ARCHITECTURAL MODEL

Client OS

Interface

Client

Server OS

Methods

State

Object

Interface

Server

SkeletonProxy

Run−Time System Run−Time System

Remote Objects:

➜ Single copy of object state (at single object server)

➜ All methods executed at single object server

➜ All clients access object through proxy

➜ Object’s location is location of state

Slide 22

CLIENT

Client Process:

➜ Binds to distributed object

➜ Invokes methods on object

Proxy:

➜ Proxy: RPC stub + destination

details

➜ Binding causes a proxy to be

created

➜ Responsible for marshaling

➜ Static vs dynamic proxies

➜ Usually generated

Run-Time System:

➜ Provides services (translating

references, etc.)

➜ Send and receive

Client OS

Client

Proxy

Run−Time System

OBJECT SERVER 11

Slide 23

OBJECT SERVER

Object:

➜ State & Methods

➜ Implements a particular interface

Skeleton:

➜ Server stub

➜ Static vs dynamic skeletons

Run-Time System:

➜ Dispatches to appropriate object

➜ Invocation policies

Object Server:

➜ Hosts object implementations

➜ Transient vs Persistent objects

➜ Concurrent access

➜ Support legacy code

Server OS

Server

Skeleton

Run−Time System

Slide 24

OBJECT REFERENCE

Local Reference:

➜ Language reference to proxy

P
roxy

OBJECT REFERENCE 12



Slide 25

OBJECT REFERENCE

Remote Reference:

➜ Server address + object ID

Remote
Object

address id type

Proxy

OR

Slide 26

➜ Reference to proxy code (e.g., URL) & init data

Remote
Object

initURL to proxy
code

OR

OBJECT REFERENCE 13

Slide 27

➜ Object name (human friendly, object ID, etc.)

Naming Service

Remote
Object

name

Proxy

OR

What are the drawbacks and/or benefits of each approach?

Slide 28

REMOTE METHOD INVOCATION (RMI)

Standard invocation (synchronous):

➜ Client invokes method on proxy

➜ Proxy performs RPC to object server

➜ Skeleton at object server invokes method on object

➜ Object server may be required to create object first

Other invocations:

➜ Asynchronous invocations

➜ Persistent invocations

➜ Notifications and Callbacks

CORBA 14



Slide 29

CORBA

Features:

➜ Object Management Group (OMG) Standard (version 3.1)

➜ Range of language mappings

➜ Transparency: Location & some migration transparency

➜ Invocation semantics: at-most-once semantics by default;

maybe semantics can be selected

➜ Services: include support for naming, security, events, persistent

storage, transactions, etc.

Slide 30

CORBA ARCHITECTURE

Client application

Static
IDL

proxy

Dynamic
Invocation
Interface

Client ORB Server ORB

Skeleton Dynamic
Skeleton
Interface

Object
adapter

Object implementation

ORB
interface

ORB
interface

Local OS Local OS

Client machine Server machine

Network

INTERFACES: OMG IDL 15

Slide 31

INTERFACES: OMG IDL

Example: A Simple File System:

module CorbaFS {

interface File; // forward declaration

interface FileSystem {

exception CantOpen {string reason;};

enum OpenMode {Read, Write, ReadWrite};

File open (in string fname, in OpenMode mode)

raises (CantOpen);

};

interface File { // an open file

string read (in long nchars);

void write (in string data);

void close ();

};

};

Slide 32

OBJECT REFERENCE (OR)

Object Reference (OR):

➜ Refers to exactly one object, but an object can have multiple,

distinct ORs

➜ ORs are implementation specific

Interoperable Object Reference (IOR)

➜ Can be shared between different implementations

Repository
identifier

IIOP
version Host Port Object key Components

Profile
ID

Tagged Profile

Object
identifier

POA
identifier

Other server-
specific information

Profile

Interoperable Object Reference (IOR)

OBJECT REQUEST BROKER (ORB) 16



Slide 33

OBJECT REQUEST BROKER (ORB)

➜ Provides run-time system

➜ Translate between remote and local references

➜ Send and receive messages

➜ Maintains interface repository

➜ Enables dynamic invocation (client and server side)

➜ Locates services

Slide 34

INTERCEPTORS

Client
proxy

Client
ORB

Client application

Request-level
interceptor

Message-level
interceptor

To server

Local OS

Invocation request

B INDING 17

Slide 35

BINDING

Direct Binding:

➜ Create proxy

➜ ORB connects to server (using info from IOR)

➜ Invocation requests are sent over connection

Indirect Binding:

IOR

Implementation
repository

Object
server

Client

1. First invocation
or binding request

2. Activate/start object
3. Ack object is active

4. Redirect message

5. Actual invocation

IOR refers to implementation repository

Slide 36

CORBA SERVICES

Some of the standardised services are the following:

➜ Naming Service

➜ Event Service

➜ Transaction Service

➜ Security Service

➜ Fault Tolerance

CORBA B IBLIOGRAPHY 18



Slide 37

CORBA BIBLIOGRAPHY

[1] IIOP Complete, W. Ruh, T. Herron, and P. Klinker, Addison

Wesley, 1999.

[2] The Common Object Request Broker: Architecture and

Specification (2.3.1), Object Management Group, 1999.

[3] C Language Mapping Specification, Object

Management Group, 1999.

[4] CORBAservices: Common Object Services Specification,

Object Management Group, 1998.

Play with CORBA. Many implementations available, including

ORBit: http://www.gnome.org/projects/ORBit2/

Slide 38

DISTRIBUTED SHARED OBJECT (DSO) MODEL

Network

Local Representative
(Local Object)

Distributed Shared Object

Interface

Process

State

Distributed Shared Objects:

➜ Object state can be replicated (at multiple object servers)

➜ Object state can be partitioned

➜ Methods executed at some or all replicas

➜ Object location no longer clearly defined

CLIENT 19

Slide 39

CLIENT

➜ Client has local representative (LR) in its ad-

dress space

➜ Stateless LR

• Equivalent to proxy

• Methods executed remotely

➜ Statefull LR

• Full state

• Partial state

• Methods (possibly) executed locally

Client
app

LR

Slide 40

OBJECT

��
��
��
��

���
���
���
���

���
���
���
���

���

���

���

���

���
���
���
���

���
���
���
���

��
��
��

��

���

���

���

���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

Remote Object Replicated Object

Partitioned Object Replicated and Partitioned Object

OBJECT SERVER 20



Slide 41

OBJECT SERVER

➜ Server dedicated to hosting LRs

➜ Provides resources (network, disk, etc.)

➜ Static vs Dynamic LR support

➜ Transient vs Persistent LRs

➜ Security mechanisms
LR

Obj A
LR

Obj B

Location of LRs:

➜ LRs only hosted by clients

➜ Statefull LRs only hosted by object servers

➜ Statefull LRs on both clients and object servers

Slide 42

GLOBE (GLOBAL OBJECT BASED ENVIRONMENT)

Scalable wide-area distributed system:

➜ Wide-area scalability requires replication

➜ Wide-area scalability requires flexibility

Features:

➜ Per-object replication and consistency

➜ Per-object communication

➜ Mechanism not policy

➜ Transparency (replication, migration)

➜ Dynamic replication

HOMEWORK 21

Slide 43

HOMEWORK

➜ Could you turn CORBA into a distributed shared object

middleware using interceptors?

Hacker’s edition:

➜ Implement the simple filesystem presented using a freely

available version of CORBA (or other middleware if you prefer).

Slide 44

READING LIST

Globe: A Wide-Area Distributed System An overview of

Globe

CORBA: Integrating Diverse Applications Within Distributed

Heterogeneous Environments An overview of CORBA

New Features for CORBA 3.0 More CORBA

READING L IST 22


