DISTRIBUTED SYSTEMS (COMP9243)

Lecture 8c: Middleware

Slide 1 @ Introduction

@ Publish/Subscribe Middleware
® Distributed Object Middleware

e Remote Objects & CORBA

o Distributed Shared Objects & Globe

MIDDLEWARE
Machine A Machine B Machine C
| |
‘ Distributed applications ‘
— —
. Middleware services
Slide 2 ‘ ‘
Network OS Network OS Network OS
services services services
‘ Kernel ‘ Kernel ‘ Kernel ‘
| I |
Network

KINDS OF MIDDLEWARE

KINDS OF MIDDLEWARE

Distributed Object based:
=» Objects invoke each other’s methods

Bank : 1 | AccountDB i
newAccount() | | _[Tookup() |
: closeAccount() [! "] add()]
s"de 3 getAccount] | Lremove]
Y O v WY
d Account V[Account]|
) I withdraw() 1
] S deposit() ol deposit() !
i b o getBalance| !
Message-oriented:
-» Messages are sent between processes
-» Message queues
Sender A
Application Application
Receive
Slide 4 &h« —
> 11T
Send queue

S|
T

Application

|Application

]
[T

Receiver B

Router

KINDS OF MIDDLEWARE

Slide 5

Slide 6

Coordination-based:
=» Tuple space

Write A [B] write B Read T

Look for
Insert a Insert a tuple that
copy of A copy of B matches T

Return C
(and optionally

! Y remove it)
Tuple instance —f—- 3 C,‘
A Javaspace
=» Publish/Subscribe
Publisher Subscriber Subscriber
I 5
Data Item ,” Subscription :I

Publish/Subscribe Middleware

KINDS OF MIDDLEWARE

Transaction Processing Monitors:

Server
Reply

Transaction Reques
Requests
Slide 7 Ciiont N Request
S (] TP monitor Server
application \
Reply
Repl
Py Request

Reply Server 4@

Web Services:

Stock Service query_stock
bu

sell

Slide 8 e

P
Auction Service search
e a”uc.m
Photo Service seavch
‘F?\ "».““.’
PuUBLISH/SUBSCRIBE (EVENT-BASED) MIDDLEWARE 4

PuBLISH/SUBSCRIBE (EVENT-BASED) MIDDLEWARE

Publisher Subscriber Subscriber

Slide 9

h -
Data Item Subscription

RRR=N
o

Publish/Subscribe Middleware

CHALLENGES

Transparency:
=» loose coupling — good transparency

Scalability:
-» Potentially good due to loose coupling
x In practice hard to achieve
-» Number of subscriptions
Slide 10 => Number of messages

Flexibility:
=» Loose coupling gives good flexibility
=» Language & platform independence
=» Policy separate from mechanism

Programmability:

= Inherent distributed design
=» Doesn’t use non-distributed concepts

EXAMPLES

EXAMPLES

Real-time Control Systems:
=» External events (e.g. sensors)
-» Event monitors

Stock Market Monitoring:
=» Stock updates
=» Traders subscribed to updates

Slide 11 Network Monitoring:
=» Status logged by routers, servers
-» Monitors screen for failures, intrusion attempts

Enterprise Application Integration:
=» Independent applications
=» Produce output as events
=» Consume events as input
=» Decoupled

MESSAGE FILTERING

Publisher

Subscriber

i)
Topic-based ;
—-.) e
© & o
. NG compotun Q)
SIIde] 2 ‘Pubhsh/Subscnhe Middleware
Content-based
Publisher Subscriber
4§
Data item:] Subscription:
@)

) nameiom @)

gender = male

Publish/Subscribe Middleware

ARCHITECTURE

ARCHITECTURE

Cenfralised: Peer-to-Peer:
Broker
Publisher 9) e sibd Subscriber
Send @
Event Esgg‘
®
Slide 13
Multicast-based:
Publisher Subscriber Subscriber
Publisher
No Match Match No Match
@
| = | |
I I I
COMMUNICATION
-» Point-to-point
-» Multicast
slide 14 e hard part is building appropriate multicast tree

=» Content-based routing
e point-to-point based router network
o make forwarding decisions based on message content
e store subscription info at router nodes

REPLICATION

REPLICATION

Replicated Brokers:
=» Copy subscription info on all nodes
-» Keep nodes consistent
=> What level of consistency is needed?

Slide 15 =» Avoid sending redundant subscription update messages

Partitioned Brokers:
= Different subscription info on different nodes
=» Events have to travel through all nodes
-» Route events to nodes that contain their subscriptions

FAULT TOLERANCE

Reliable Communication:
-» Reliable multicast

Process Resilience (Broker):
Slide 16 =» Process groups
=» Active replication by subscribing to group messages

Routing:

=» Stabilise routing if a broker crashes
-» Lease entries in routing tables

EXAMPLE SYSTEMS

EXAMPLE SYSTEMS

TIB/Rendezvous:
-» Topic-based
- Multicast-based

Java Message Service (JMS):
=> API for MOM
slide 17 -» Topic-based
=» centralised or peer-to-peer implementations possible

Scribe:
-» Topic-based
=» Peer-to-peer architecture, based on Pastry (DHT)
=» Topics have unique IDs and map onto nodes
=» Multicast for sending events

e Tree is built up as nodes subscribe

DISTRIBUTED OBJECTS

Winner! 1896 Software Devel
Jolt Productivity Awar

Robert Orfali ® Dan Harkey ® J lwards

‘The Essential

Distributed Objects

Survival Guide
Slide 18 B

3

CHALLENGES

Slide 19

Slide 20

CHALLENGES

Transparency

e Failure transparency
Reliability

e Dealing with parfial failures
Scalability

o Number of clients of an object

e Distance between client and object
Design

e Must take distributed nature into account from beginning
Performance
Flexibility

¢

L2 2 e 4

OBJECT MODEL
Classes and Objects
Class: defines a type
Object: instance of a class
Interfaces
Object references
Active vs Passive objects
Persistent vs Transient objects
Static vs Dynamic method invocation

REMOTE OBJECT ARCHITECTURAL MODEL 10

REMOTE OBJECT ARCHITECTURAL MODEL

Client

Interface

Run-Time System

Server

Run-Time System|

Object

State

Skeleton

Client 0S \—*

Slide 21

’—T Server OS

']

Remote Objects:

=» Single copy of object state (at single object server)
-» All methods executed at single object server

=» All clients access object through proxy
-» Object’s location is location of state

Methods

—]
[T Interface

CLIENT

Client Process:
=» Binds to distributed object
=» Invokes methods on object

Proxy:

=» Proxy: RPC stub + destination
details

-» Binding causes a proxy to be
created

-» Responsible for marshaling

=» Static vs dynamic proxies

=» Usually generated

Slide 22

Run-Time System:

-» Provides services (translating
references, etc.)

-» Send and receive

Client é

1
Run-Time System

Client OS

OBJECT SERVER

Slide 23

Slide 24

OBJECT SERVER

Object:
- State & Methods
=» Implements a particular interface

Skeleton:
=» Server stub
=» Static vs dynamic skeletons

Run-Time System:
=» Dispatches to appropriate object
=» Invocation policies

Object Server:
=» Hosts object implementations
=» Transient vs Persistent objects
=» Concurrent access
=» Support legacy code

Server

1
Skeleton

Run-Time System

Server OS

OBJECT REFERENCE

Local Reference:
-» Language reference to proxy

ga

Axoid

11 OBJECT REFERENCE

OBJECT REFERENCE

Remote Reference:

=» Server address + object ID

Slide 25 /x

OR
address| id | type
1
Tron F]

—
—

Remote
Object

=» Reference to proxy code (e.g., URL) & init data

URL to proxy| it
code

EO‘R’
Slide 26

|

Remote
Object

OBJECT REFERENCE

=» Object name (human friendly, object ID, etc.)

/EEEEEEI

Slide 27 OR[name | Remote
Object
—
ety g

[

What are the drawbacks and/or benefits of each approach?

REMOTE METHOD INVOCATION (RMI)

Standard invocation (synchronous):
=» Client invokes method on proxy
=» Proxy performs RPC to object server
-» Skeleton at object server invokes method on object
=» Object server may be required to create object first

Slide 28

Other invocations:
-» Asynchronous invocations
=» Persistent invocations
=» Notifications and Callbacks

13 CORBA

CORBA
Features:
=» Object Management Group (OMG) Standard (version 3.1)
-» Range of language mappings
Slide 29 =» Transparency: Location & some migration fransparency
=» Invocation semantics: at-most-once semantics by default;
maybe semantics can be selected
=» Services: include support for naming, security, events, persistent
storage, transactions, etc.
CORBA ARCHITECTURE
Client machine Server machine
Client application Object implementation
Static Dynamic ORB Object Skeleton | Dynamic ORB
. IDL Invocation | interface adapter Skeleton | interface
Sllde 30 proxy Interface Interface
Client ORB Server ORB
Local OS Local OS
Network

INTERFACES: OMG IDL

INTERFACES: OMG IDL
Example: A Simple File System:

module CorbaFS {
interface File; // forward declaration
interface FileSystem {
exception CantOpen {string reason;};
enum OpenMode {Read, Write, ReadWrite};

Slide 31 File open (in string fname, in OpenMode mode)

raises (CantOpen);

};

interface File { // an open file
string read (in long nchars);
void write (in string data);
void close ();
};
}

OBJECT REFERENCE (OR)

Object Reference (OR):

=» Refers to exactly one object, but an object can have multiple,
distinct ORs

=» ORs are implementation specific

Interoperable Object Reference (IOR)
=» Can be shared between different implementations

Slide 32

Tagged Profile
Interoperable Object Reference (IOR)

Repository| | Profile i
identifier profile | s e e e
P
version| HOst ‘ Port | Object key | Components
Object Other server-

POA
identifier

identifier | specific information

OBJECT REQUEST BROKER (ORB) 16

OBJECT REQUEST BROKER (ORB)

Provides run-time system

Translate between remote and local references
Send and receive messages

Maintains interface repository

Enables dynamic invocation (client and server side)

Slide 33

A R

Locates services

INTERCEPTORS

Client application

Client
proxy < Invocation request

. Request-level
Slide 34 interceptor (=
Message-level
interceptor

Local OS

Y To server

BINDING

BINDING

Direct Binding:
-» Create proxy
=» ORB connects to server (using info from IOR)
=» Invocation requests are sent over connection

Indirect Binding:
Slide 35
IOR refers to implementation repository
CllEnl/ 5. Actual invocation oject
A;eedwea message
‘X'Ad(objectis acwi/ /; Activate/start object
1. First invocation
or binding request Implementation
repository
CORBA SERVICES
Some of the standardised services are the following:
=» Naming Service
Slide 36 Eyent Service
-» Transaction Service
=» Security Service
=» Fault Tolerance
CORBA BIBLIOGRAPHY 18

CORBA BIBLIOGRAPHY
(1) IOP Complete, W. Ruh, T. Herron, and P, Klinker, Addison
Wesley, 1999.
(2) The Common Object Request Broker: Architecture and
Specification (2.3.1), Object Management Group, 1999.
Slide 37 (3) C Language Mapping Specification, Object
Management Group, 1999.

(4) CORBAservices: Common Object Services Specification,
Object Management Group, 1998.

Play with CORBA. Many implementations available, including
ORBIt: http://www.gnome.org/projects/0RBit2/

DiISTRIBUTED SHARED OBJECT (DSO) MODEL

State . . Local Representative
(Local Object)

I Network I

Interface ———
@ . Process
Slide 38 j

T

Distributed Shared Object

Distributed Shared Objects:
-» Object state can be replicated (at multiple object servers)
-» Object state can be partitioned
-» Methods executed at some or all replicas
=» Object location no longer clearly defined

CLIENT

=» Client has local representative (LR) in its ad-

dress space
-» Stateless LR

slide 39 e Equivalent to proxy

=» Statefull LR

e Full state
e Partial state

CLIENT

¢ Methods executed remotely

e Methods (possibly) executed locally

Client
app

LR

OBJECT

g

g

Remote Object

Slide 40

o

Replicated Object

Partitioned Object

o lilie)]

&M]

Replicated and Partitioned Object

19 OBJECT SERVER

20

OBJECT SERVER

=» Server dedicated to hosting LRs

=» Provides resources (network, disk, etc.)

=» Static vs Dynamic LR support
=» Transient vs Persistent LRs LR LR
=» Security mechanisms Obj A Obj B

Slide 41

Location of LRs:
=» LRs only hosted by clients
=» Statefull LRs only hosted by object servers
=» Statefull LRs on both clients and object servers

GLOBE (GLOBAL OBJECT BASED ENVIRONMENT)

Scalable wide-area distributed system:
-» Wide-area scalability requires replication
=» Wide-area scalability requires flexibility

Slide 42 Features:
-» Per-object replication and consistency
=» Per-object communication
-» Mechanism not policy
=» Transparency (replication, migration)
=» Dynamic replication

HOMEWORK 21

HOMEWORK

=» Could you turn CORBA into a distributed shared object
middleware using interceptors?

Slide 43
Hacker’s edition:
= Implement the simple filesystem presented using a freely
available version of CORBA (or other middleware if you prefer).
READING LIST
Globe: A Wide-Area Distributed System An overview of
Globe
Slide 44
CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments An overview of CORBA
New Features for CORBA 3.0 More CORBA
READING LIST

22

