
DISTRIBUTED SYSTEMS [COMP9243]

Lecture 7: Security

➀ Introduction

➁ Cryptography

➂ Secure protocols and communication

➃ Authentication

➄ Authorisation

DISTRIBUTED SYSTEMS [COMP9243] 1

SECURITY IN DISTRIBUTED SYSTEMS

Confidentiality: information disclosed/services provided only

to authorised parties

Integrity: alterations can only be made in an authorised way

Availability: system is ready to be used by authorised parties

SECURITY IN DISTRIBUTED SYSTEMS 2

THE CAST

THE CAST 3

THE CAST 4

The Good Guys:

➜ Alice, Bob

➜ Want to communicate securely

The Bad Guys:

➜ Eve

➜ The eavesdropper — tries to thwart Alice and Bob’s plans

The Alice and Bob After Dinner Speech:

➜ google it for more about Alice and Bob

THE CAST 5

AUTHORISED ACTIONS

Security is about making sure that only authorised

actions are performed in the system.

Example Actions:
➜ Reading data

➜ Modifying data (writing, creating, deleting)

➜ Using a service

➜ Managing a service

All of these could be abused if performed in

unauthorised ways.

Examples?

AUTHORISED ACTIONS 6

SECURITY POLICY

Security is a question of tradeoffs

Security Policy:

➜ A statement of security requirements

➜ Describes which actions entities in a system are allowed to take

and which ones are prohibited

• Entities: users, services, data, machines, etc.

• Operations: read, write, send, start, stop, etc.

Example:

➜ Everyone (staff and students) has an account

➜ Access to course accounts must be approved

➜ Only course accounts can modify grades

Anything missing?

SECURITY POLICY 7

BREAKING SECURITY

Vulnerability:

A vulnerability is a weakness in the system that could

potentially be exercised (accidentally triggered or

intentionally exploited) to cause a breach or violation

of the system’s security policy.

Threat:

A threat is a possible breach of security policy (the

potential for an attack). A concrete threat consists of

a threat-source and an exercisable vulnerability.

Attack:

When a vulnerability is exercised we call this an

attack.

BREAKING SECURITY 8

CLASSES OF SECURITY THREATS

Interception: unauthorised party has gained access to a

service or data

Interruption: service or data become unavailable, unusable,

destroyed, etc.

Modification: unauthorised changing of data or tampering

with a service (so that it no longer adheres to its

specifications)

Fabrication: additional data or activity are generated that

would normally not exist

CLASSES OF SECURITY THREATS 9

ATTACKING A DISTRIBUTED SYSTEM

Attacking the Communication Channel:

➜ Eavesdropping

➜ Masquerading

➜ Message tampering

➜ Denial of service

Attacking the Interfaces:

➜ Unauthorised access

➜ Denial of Service

Attacking the Systems:

➜ Applications

➜ OS

➜ Hardware

ATTACKING A DISTRIBUTED SYSTEM 10

PROTECTING A DISTRIBUTED SYSTEM

Controls:

Authentication: verify the claimed identity of an entity

Authorisation: determine what actions an authenticated

entity is authorised to perform

Auditing: trace which entities access what

Message Confidentiality: secret communication

Message Integrity: tamperproof messages

PROTECTING A DISTRIBUTED SYSTEM 11

SECURITY MECHANISMS

Good Mechanisms:

Encryption: transform data into something an attacker

cannot understand

• A means to implement confidentiality

• Support for integrity checks (check if data has been

modified)

Signatures and Digests support for integrity, authentication

Secure Protocols support for authentication, authorisation

Secure Communication support confidentiality and integrity

Security Architecture based on sound principles such as:

small TCB, Principle of Least Privilege, support for

authorisation

SECURITY MECHANISMS 12

Less Good Mechanisms:

Obscurity: count on system details being unknown

Intimidation: count on fear to keep you safe

SECURITY MECHANISMS 13

WHY SECURITY IS HARD

Weakest Link:

➜ Security of a system is only as strong as its weakest link

➜ Need to make sure all weak links are removed

➜ One bug is enough

➜ People are often the weakest link

Complexity:

➜ Security involves many separate subsystems

➜ Complex to set up and use

➜ People won’t use complex systems

Pervasiveness:

➜ Application level

➜ Middleware level

➜ Network level

➜ OS level, Hardware Level

WHY SECURITY IS HARD 14

HOW TO MAKE IT EASIER

Distribution of Mechanisms:

➜ Trusted Computing Base (TCB): those parts of the system that

are able to compromise security

➜ The smaller the TCB the better.

➜ May have to implement key services yourself

V Physically separate security services from other services

Simplicity:

➜ Simplicity contributes to trust

➜ Very difficult to make a simple secure system

HOW TO MAKE IT EASIER 15

FOUNDATIONS

➜ Cryptography

• Ciphers

• Signatures and Digests

• Secure Communication

• Security Protocols

➜ Authentication

➜ Authorisation

FOUNDATIONS 16

CRYPTOGRAPHY

The Basic Idea:

Plaintext, P

Decryption
key, D

Encryption
key, E

Encryption
method

Decryption
method

Passive intruder
only listens to C

Active intruder
can alter messages

Active intruder
can insert messages

Plaintext

K K

Ciphertext
C = E (P)K

Sender Receiver

➜ Map cleartext (or plaintext) T to ciphertext (or cryptogram) C

➜ Mapping is by a well-known function parameterised by a key K

➜ T infeasible to reconstruct from C without knowledge of key

➜ E(KE , T) = {T}KE
; D(KD, C) = {C}KD

; {{T}KE
}KD

= T

CRYPTOGRAPHY 17

Cryptographer:

➜ Uses cryptography to convert plaintext into ciphertext

Cryptanalyst:

➜ Uses cryptanalysis to attempt to turn ciphertext back into

plaintext

➜ Cryptanalysis: the science of making encrypted data

unencrypted

CRYPTOGRAPHY 18

ENCRYPTION

The essence of encryption functions:

Find a function E that is easy to compute, but for which it is

hard to compute T from {T}KE
without a matching

decryption key KD for KE .

➜ “Hard to compute” means that it must take at least hundreds of

years to reverse E without knowledge of KD or to compute KD

➜ Such functions are known as one-way functions.

Cipher must be resilient to:

➜ Ciphertext only attacks

➜ Known plaintext attacks

➜ Chosen plaintext attacks

➜ Brute-force attacks

ENCRYPTION 19

What properties should a good cipher possess?

➜ Confusion and Diffusion

➜ Confusion: every bit of key influences large number of

ciphertext bits

➜ Diffusion: every bit of plaintext influences large number of

ciphertext bits

➜ Fast to compute, ideally in hardware. Is this always good?

➜ Not critically depend on users selecting “good” keys

➜ Have been heavily scrutinised by experts

➜ Based on operations which are provably “hard” to invert

➜ Easy to use

ENCRYPTION 20

In practice, keys are of finite length. Consequences?

➜ Finite key space⇒ susceptible to exhaustive search

➜ Longer keys⇒ more time needed for brute-force attack

• Time to guess a key is exponential in the number of bits of

the key

X Longer keys also make E and D more expensive

➜ Cipher must be secure against any systematic attack

significantly faster than exhaustive search of key space

ENCRYPTION 21

BASIC CIPHERS

Substitution Ciphers:

➜ Each plaintext character replaced by a ciphertext character

➜ Caesar cipher: shift alphabet x positions

• Easy to break using statistical properties of language

➜ Book cipher: replace words by location of word in book

• Knowledge of book is the key

One Time Pads:

➜ Random string XORed with plaintext

➜ Information theoretically secure

➜ Random string must:

• Have no pattern or be predictable

• Not be reused

• Not be known by cryptanalyst

➜ Key distribution problem

BASIC CIPHERS 22

SYMMETRIC CIPHERS

text

Encrypt

Decrypt

KPlaintext
Cipher

➜ Secret key: KE = KD

V fast⇒ suited for large data volumes

X Secure channel is needed to establish the shared, secret key

➜ How many keys needed for N agents?

➼ For any two agents, one key is needed

SYMMETRIC CIPHERS 23

TINY ENCRYPTION ALGORITHM (TEA)

Symmetric encryption algorithm by Wheeler & Needham:

➜ Encode a 64-bit block (text) consisting of two 32-bit integers

➜ Using a 128-bit key (k) represented by four 32-bit integers

➜ Despite its simplicity, TEA is a secure and reasonably fast

encryption algorithm

➜ Can easily be implemented in hardware

➜ Approximately three times as fast as DES

➜ Achieves complete diffusion

TINY ENCRYPTION ALGORITHM (TEA) 24

void encrypt (unsigned long k[], unsigned long text[])

{

unsigned long y = text[0], z = text[1];

unsigned long delta = 0x9e3779b9, sum = 0; int n;

for (n = 0; n < 32; n++) {

sum += delta;

y += ((z << 4) + k[0]) ^ (z+sum) ^ ((z >> 5) + k[1]);

z += ((y << 4) + k[2]) ^ (y+sum) ^ ((y >> 5) + k[3]);

}

text[0] = y; text[1] = z;}

➜ 32 rounds: shift and combine the halves of text with the four

parts of the key

➜ Constant delta is used to obscure the key in portions of the

plaintext that do not vary

➜ Confusion (xor operations and shifting of the text) and diffusion

(shifting and swapping of the two halves of the text)

TINY ENCRYPTION ALGORITHM (TEA) 25

void decrypt (unsigned long k[], unsigned long text[])

{

unsigned long y = text[0], z = text[1];

unsigned long delta = 0x9e3779b9, sum = delta << 5; int n;

for (n = 0; n < 32; n++) {

z -= ((y << 4) + k[2]) ^ (y + sum) ^ ((y >> 5) + k[3]);

y -= ((z << 4) + k[0]) ^ (z + sum) ^ ((z >> 5) + k[1]);

sum -= delta;

}

text[0] = y; text[1] = z;

}

TINY ENCRYPTION ALGORITHM (TEA) 26

OTHER SYMMETRIC CIPHERS

Data Encryption Standard (DES):

➜ Developed by IBM for US government

➜ 56 bit key. No longer considered safe.

➜ Triple DES: 2x56 bit key. encrypt-decrypt-encrypt

International Data Encryption Algorithm (IDEA):

➜ Uses 128-bit key to encrypt 64-bit blocks

➜ Approximately three times as fast as DES

➜ Same function for encryption and decryption (like DES)

Advanced Encryption Standard (AES):

➜ Defined in 2001, to replace DES

➜ Variable block and key length; specification 128, 192, or 256 bit

keys and 128, 192 or 256 bit blocks

OTHER SYMMETRIC CIPHERS 27

ASYMMETRIC CIPHERS

textPlaintext

Encrypt

Decrypt

KE

KD

Cipher

➜ Due to Diffie & Hellman & Merkle (1976)

➜ Instead of one secret key per pair of agents, one public/private

key pair per agent

➜ KE 6= KD, KD infeasible to compute from KE

ASYMMETRIC CIPHERS 28

➜ each agent can publish public key KE =: KP ,

keep private key KD =: Kp secret

➜ Too slow to encrypt large volumes of data

➜ Examples: RSA and variants of Diffie & Hellman’s original

algorithm, such as ElGamal

ASYMMETRIC CIPHERS 29

How they work:

➜ Trap-door functions: one-way functions with a secret exit

➜ Easy to compute in one direction, but infeasible to invert unless

a secret (secret key) is known

➜ Key pair is usually derived from a common root (such as large

prime numbers) such that it is infeasible to reconstruct the root

from the public key

ASYMMETRIC CIPHERS 30

BLOCK CIPHERS

➜ Encrypt fixed-size blocks of data (e.g., 64 bits), one at a time

➜ Requires some padding in the last block why is this a weakness?

➜ Blocks of ciphertext are independent

• Attacker may spot repeating patterns and infer relationship

to plaintext how?

➜ Cipher block chaining

Block cypher

Register

+
T i + C i-1 C iT

BLOCK CIPHERS 31

STREAM CIPHER

keystream

stream
XOR

number
generator

plaintext
stream

E(K,M) ciphertext

➜ Encode a given plaintext bit by bit (e.g., voice)

➜ Xor a keystream (sequence of ’random’ bits) with the plaintext

➜ Keystream: Output of a random number generator encoded

with a block cipher algorithm

➜ How does the receiver reconstruct the plaintext?

• Generate the same keystream and xor it with the ciphertext

• requires starting value of RNG and the secret key

➜ Under which conditions can partial message loss be tolerated?

Note: This is not the same as a One Time Pad

STREAM CIPHER 32

SECURE HASH (DIGEST)

Cryptographically ensure message integrity and

authenticate originator.

How can we check whether a message has been altered?

➜ Secure digest or hash

➜ Fixed-length value condensing information in the message

➜ Given message M and hash H(M), it must be very hard to find

M ′ with H(M) = H(M ′)

➜ If hash H(M) is the same after transmission, message is

unaltered with very high likelihood

SECURE HASH (DIGEST) 33

Hash functions:

Padded message (multiple of 512 bits)

Digest

Digest

Message digest

128-bit constant

512 bits

512 bits

➜ Not unlike encryption functions, but not information preserving

➜ Most widely used algorithms: MD5 and SHA

➜ Rivest’s MD5 algorithm: 128-bit digest; more efficient than SHA.

But considered broken.

➜ SHA is standardised, more secure. Current SHA-2, SHA-3.

➜ Any symmetric encryption algorithm could be used as hashing

function with cipher block chaining, but

• less efficient and

• requires use of a key

SECURE HASH (DIGEST) 34

Must be resilient to:

➜ Collision:

• find m1 and m2 such that H(m1) = H(m2)

• related to birthday attack

➜ Pre-image:

• given h, find m such that H(m) = h

➜ Second pre-image:

• given m1 find m2 such that H(m1) = H(m2)

Does a hash provide:

➜ confidentiality?

➜ integrity?

➜ authenticity?

➜ non-repudiation?

SECURE HASH (DIGEST) 35

DIGITAL SIGNATURE

➜ How to verify who sent the message

Sender:

signatureEncrypt
hash

function
Message

Kpri

Message

H(M)

➜ Given a message M and sender private key Kpri, signed

message:

(M, {H(M)}Kpri
)

DIGITAL SIGNATURE 36

Receiver:

h = h’?

Message hash
function

Decrypt

Kpub

h’

hsignature

➜ Recipient uses matching public key Kpub to recover digest

➜ Compare recovered digest to result of computing H(M)

➜ If same, sent message must be unaltered and sender the owner

of Kpri

DIGITAL SIGNATURE 37

SECURE PROTOCOLS

Protocol: rules governing communication

Security protocol: protocol that performs a security-related

function (usually authentication)

Goal: Survive malicious attacks:

➜ Lies

➜ Modifying data

➜ Injecting data

➜ Malicious behaviour

Threat Assumptions:

➜ Can communication channel be intercepted?

➜ Can data stream be modified?

➜ Are participants malicious?

SECURE PROTOCOLS 38

HOW TO BUILD A CRYPTOGRAPHIC PROTOCOL

Use:

➜ encryption

➜ secure digest

➜ signatures

➜ random number generators

Protocol mechanisms:

➜ Challenge-Response

• nonce – used to uniquely relate two messages together

What properties should a nonce have?

➜ Ticket – secured information to be passed to another party Why

is this useful?

➜ Session keys – for secure communication Why is this useful?

Principles:

➜ A message must contain all relevant information

➜ Don’t allow parties to do things identically

➜ Don’t give away valuable information to strangers

HOW TO BUILD A CRYPTOGRAPHIC PROTOCOL 39

A SIMPLE PROTOCOL

Authentication

➜ Alice knows it’s Bob, Bob knows it’s Alice

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)

A
lic

e

B
ob

1

2

3

4

5

A SIMPLE PROTOCOL 40

HOW TO BREAK A PROTOCOL

Man-in-the-Middle:

➜ Take on the role of Alice to Bob and Bob to Alice

➜ Alice→ Eve: challenge

➜ Eve→ Bob: challenge

➜ Eve← Bob: response

➜ Alice← Eve: response

HOW TO BREAK A PROTOCOL 41

Reflection:

➜ Use Alice to respond to Alice’s challenge

➜ Alice→ Eve: challenge

➜ Alice← Eve: challenge

➜ Alice→ Eve: response

➜ Alice← Eve: response

HOW TO BREAK A PROTOCOL 42

Replay:

➜ Re-use Bob’s old message to respond to Alice’s challenge

➜ Alice→ Bob: challenge

➜ Alice← Eve← Bob: response

➜ Alice→ Eve: challenge

➜ Alice← Eve: response

HOW TO BREAK A PROTOCOL 43

Message Manipulation:

➜ Change the message from Alice to Bob

➜ Alice sends: let’s meet at 3pm by the bridge

➜ Eve intercepts and changes

➜ Bob receives: let’s meet at 2pm by the oak

Changed Environment/Assumptions:

➜ Bob is no longer trustworthy

➜ Bob sells Alice’s secrets to the tabloid press!

HOW TO BREAK A PROTOCOL 44

A SIMPLE PROTOCOL: REVISITED

Authentication

A

RB

RBKA,B

KA,B

RA

RA

(

(

)

)

A
lic

e

B
ob

1

2

3

4

5

Vulnerable?

A SIMPLE PROTOCOL: REVISITED 45

OPTIMISING THE PROTOCOL

A,

RBKA,B

RA

()

A
lic

e

B
ob

1

2

3

RB KA,B RA(),

Oops!

➜ Vulnerable to reflection attack

OPTIMISING THE PROTOCOL 46

A,

A,

RBKA,B

RC

RB

()

C
hu

ck

B
ob

1

3

2

4

5

RB KA,B RC(),

RB2 KA,B RB(),

First session

Second session

First session

Is this different from Man-in-the-middle?

OPTIMISING THE PROTOCOL 47

KEY DISTRIBUTION

A set of keys provides a secure channel for communication.

How does the secure channel get established in the first

place?

➜ Use separate channel to establish keys

➜ Use key distribution protocols

➜ Protocols vary depending on whether symmetric or asymmetric

encryption is used

➜ Often symmetric keys are communicated over a channel using

an asymmetric cipher

KEY DISTRIBUTION 48

DISTRIBUTION OF SYMMETRIC KEYS (NEEDHAM-SCHROEDER)

Ticket

A B

m3 KAB K
B

:

1

[{A, }]

N Bm5 K
AB

: [{ -1}]

K
B

m

K

N

A
KABm2 N A KAB

A

: [{ , B, , {A, } }]

:

K A
K B

agent key

A
B
... ...

Key Distribution
Centre

[A, B,]

N Bm4 K
AB

: [{ }]

➜ Central key distribution centre D

➜ Each agent A shares a (symmetric) key KA with D

➜ A wants to communicate with B, asks D for session key KAB

➜ After key distribution protocol, both A and B know that they

share a key provided by D.

DISTRIBUTION OF SYMMETRIC KEYS (NEEDHAM-SCHROEDER) 49

Properties of the symmetric key distribution protocol:

➜ Ticket and challenge implicitly authenticate A and B.

➜ Nonce and challenge protect against replay attacks.

➜ D is centralised resource (hierarchical scheme possible).

➜ Every agent must trust D.

➜ D maintains highly sensitive information (secret keys),

compromising D compromises all communication.

➜ Large number of keys required (one per pair of agents),

manufactured by D on-the-fly.

➜ D must take care to make key sequence non-predictable.

Any vulnerabilities?

DISTRIBUTION OF SYMMETRIC KEYS (NEEDHAM-SCHROEDER) 50

SECURE COMMUNICATION

Properties of a Secure Channel:

➜ Authentication

➜ Message confidentiality

➜ Message integrity

SECURE COMMUNICATION 51

EXAMPLE: SSL (AND TLS)

Secure Socket Layer:

➜ Application level protocol for secure channel

➜ Handshake protocol: establish and maintain session

➜ Authentication

➜ Record protocol: secure channel

➜ Confidentiality, Integrity

➜ Flexible: can choose ciphers to use

➜ Most widely used to secure HTTP (https: URLs)

➜ TLS (Transport Layer security): IETF standard based on SSL 3.0

➜ TLS 1.0: RFC 2246, TLS 1.2: RFC RFC 5246, TLS 1.3 proposed

standard

EXAMPLE: SSL (AND TLS) 52

SSL Handshake Protocol:

ServerHelloDone

ID, cipher suite, compression
method, exchange random values
Not encrypted

Change cipher suite and finish
handshake
Finish message encrypted with
session key

Send client certificate response
if requested
Send pre−master secret (encrypted
with server public key)
Compute master secret

Send server certificate

Optionally request client certificate
Optionally send server public key

ServerClient

ClientHello

ServerHello

Certificate

Certificate Verify

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Server Key Exchange

Certificate Request

Certificate

Client Key Exchange

Establish protocol version, session

EXAMPLE: SSL (AND TLS) 53

SSL Record Protocol:

Code

abc def ghi

Compressed units

Encrypted

Application Data

Fragment/combine

abcdefghi

Transmit

Record protocol units

Compress

Hash

Encrypt

TCP packet

Message Authentication

EXAMPLE: SSL (AND TLS) 54

SECURE GROUP COMMUNICATION

Two types:

Confidential group communication:

➜ All group members share the same secret key

X Need to trust all members

➜ Separate keys for each pair

X Scalability problem

➜ Public key cryptography

X Everyone knows each others keys

SECURE GROUP COMMUNICATION 55

Secure replicated servers:

➜ Secure Replicated Servers: protecting from malicious group

members

➜ Collect responses from all servers and authenticate each

X Not transparent

➜ Secret sharing:

➜ All group members know part of a secret.

➜ Recipient combines answers from k members, decrypts with

special decryption function D.

➜ If successful: these k members are honest.

➜ If not: try other combination of answers.

SECURE GROUP COMMUNICATION 56

AUTHENTICATION

Verify the claimed identity of an entity (principal)

Authentication Requires:

➜ Representation of identity

• Unix user id, email address, student number, bank account

➜ Some way to verify the identity

• Password, reply to email, student card, PIN

➜ Different levels of authentication

Credentials:

➜ Speaks for a principal

➜ Example: certificate stating identity of a principal

➜ Combine credentials

➜ Role-based credentials

AUTHENTICATION 57

Approaches to Authentication:

Password: provide some secret information

Shared secret key: challenge and response encoded with

shared secret key

Key distribution centre: keys stored at KDC, never sent over

network

Public key: exchange session key encoded with public keys

Hybrid: use public keys to set up a secure channel and then

authenticate

AUTHENTICATION 58

KERBEROS

➜ Commercial authentication system developed at MIT

➜ Based on Needham and Schroeder protocol

➜ Integrates symmetric key encryption, distribution and

authentication into commercial computer systems.

➜ Assumptions:

• secure central server

• insecure network

→ never transmit cleartext passwords

• insecure workstations (shared between users)

→ hold user passwords on workstations for very short periods

only

→ hold no system keys on workstations

KERBEROS 59

Kerberos Authentication:

Authentication
Service A

Ticket Granting
Service T

Key Distribution Centre

Login
Session Setup

Server
Session Setup

Work

Client C Server S

m

1

: [C; T; n℄

m

2

: [fK

CT

; ng

K

C

; fhC; T ig

K

T

℄

m

3

: [fC; tg

K

CT

; fhC; T ig

K

T

; S; n℄

m

4

: [fK

CS

; ng

K

CT

; fhC; Sig

K

S

℄

m

5

: [fC; tg

K

CS

; fhC; Sig

K

S

; request; n℄

m

6

: [service; fng
K

CS

℄

KERBEROS 60

➜ Central KDC contains

• Authentication service A,

knows all user logins and their passwords (secret keys)

as well as identity and key of T ;

• Ticket granting service T ,

knows all servers and their secret keys

➜ Kerberos protocol has three phases:

➀ login session setup (user authentication)

➁ server session setup (establishing secure channel to server)

➂ client-server RPC

➜ Uses time-limited tickets

KERBEROS 61

DISTRIBUTION OF PUBLIC KEYS

Major weakness of Needham-Schroeder and Kerberos:

➜ Key distribution centre as a central authority

➜ Compromised keys can be used to decrypt past

communication

Public Key Infrastructure (PKI):

➜ Public keys can be exposed without risk

➜ Distribution centre only establishes link between identities and

public keys

Certificates and certification authorities:

➜ A certificate links an identify with a public key

➜ Distribution centres are called certificate servers or certificate

directories

DISTRIBUTION OF PUBLIC KEYS 62

0

root CA
root CA Kpub

C1 CA
C1 Kpub

C2 CA
C2 Kpub

 Alice
Alice Kpub

Bob

signature root

signature C1

signature C2

1

2

3

Checking of certificates is recursive:

➜ To establish trust in Alice’s certificate signed by C2, Bob may

need to obtain C2’s certificate

➜ Bob uses the public key of C2 to validate Alice’s certificate

➜ C2 is signed by C1

➜ This may lead to a chain of certificates

➜ Terminated by self-signed certificate of a root certification

authority (who Bob trusts)

DISTRIBUTION OF PUBLIC KEYS 63

How to communicate certificates to clients?

➜ Secure channel between certificates server and client?

➜ Digital signatures establish the validity of certificates

➜ Formatted according to X509.1 standard or PGP format

Whose signature?

➜ Certification authorities sell certification as a service

➜ Alternatively, web of trust avoids any central authority

DISTRIBUTION OF PUBLIC KEYS 64

Are certificates valid forever?

➜ Certificates may have an expiry date to reduce risk of security

breach

➜ After a certificate expires, a new one must be generated and

signed

➜ Alternatively, certificates may be revoked

➜ Revocation is only effective if receiver regularly checks the

certificate server

DISTRIBUTION OF PUBLIC KEYS 65

AUTHORISATION AND ACCESS CONTROL

Determine what actions an authenticated entity is

authorised to perform

Access Rights:

➜ The rights required to access (perform an operation on) a given

resource

Two aspects:

Access Control: verify access rights

Authorisation: grant access rights

AUTHORISATION AND ACCESS CONTROL 66

Ensuring that authorisation and access control are

respected

Non-distributed Protection:

➜ Global mechanisms

➜ Global policies

➜ Examples:

• Users

• File permissions

• Separate address spaces

Distributed Protection:

➜ Service specific

• Web servers and .htaccess: authentication, access control

➜ Application specific

AUTHORISATION AND ACCESS CONTROL 67

ACCESS CONTROL MATRIX

Objects

Subjects O1 O2 O3 O4

S1 terminate wait, signal, read

send

S2 wait, signal, read, execute

terminate write, control

S3 wait, signal,

receive

S4 control execute write

➜ Access permissions of a given subject to a given object

➜ Specifies allowed operations

ACCESS CONTROL MATRIX 68

Properties of the access matrix:

➜ Rows define subjects’ protection domains

➜ Columns define objects’ accessibility

➜ Dynamic data structure: frequently changes

• permanent changes (e.g. chmod)

• temporary changes (e.g. setuid flag)

➜ Matrix is very sparse with many repeated entries

➼ usually not stored explicitly

ACCESS CONTROL MATRIX 69

Design considerations in a protection system:

➜ Propagation of rights:

➼ Can someone act as an agent’s proxy?

➜ Restriction of rights:

➼ Can an agent propagate a subset of their rights?

➜ Amplification of rights:

➼ Can an unprivileged agent perform some privileged

operations?

➜ Revocation of rights:

➼ Can a right, once granted, be remove from an agent?

➜ Determination of object accessibility

➼ Who has which rights on an object?

➜ Determination of agent’s protection domain

➼ What is the set of objects an agent can access?

ACCESS CONTROL MATRIX 70

Access control lists (ACLs):

Object Subjects

S1 S2 S3 S4

/etc/passwd read read, write – read

➜ Column-wise representation of the access matrix

➜ Each object associated with a list of (subject, rights) pairs

➼ requires explicit authentication

➜ Usually supports concept of group rights (domain classes)

(granted to each agent belonging to the group)

➜ Often simplified to a simple fixed-size list

(e.g., UNIX user-group-others or VMS system-owner-group-world)

➜ Can have negative rights as well

(e.g., to simplify exclusion from groups)

ACCESS CONTROL MATRIX 71

Properties of ACLs:

➜ Propagation: meta-right to change ACL (e.g., owner can chmod)

➜ Restriction: meta-right to change ACL

➜ Amplification: (e.g., setuid)

➜ Revocation: remove from ACL

➜ Object accessibility: explicit in ACL

➜ Protection domain: hard (if not impossible)

ACCESS CONTROL MATRIX 72

Capabilities:

➜ An element of access matrix

➜ Capabilities list (C-list) associated with each subject, which

defines a protection domain

➜ Each capability can confer a single or a set of rights

➜ Capabilities can confer negative rights

➜ Capabilities must be protected against forgery and theft

➜ Capability used as an object name:

• evidence of access permission

• independent of authentication

• don’t need to trust intermediary

ACCESS CONTROL MATRIX 73

Properties of capabilities:

➜ Propagation: copy capability (but need to be careful about

confinement)

➜ Restriction: may be supported by derived capabilities

➜ Amplification: may have amplification capabilities

➜ Revocation: difficult, requires invalidation

➜ Object accessibility: hard (if not impossible)

➜ Protection domain: explicit in C-list

ACCESS CONTROL MATRIX 74

Three basic approaches to making caps tamper-proof:

➜ Tagged capabilities:

• protected by hardware (tag bit)

• controlled by OS (only kernel can turn on tag bit)

• used in most historical capability systems (Plessey 250, CAP,

Hydra, System/38)

➜ Partitioned (segregated) capabilities:

• protected by OS: Capabilities kept in kernel space

• used in Mach, Grasshopper, EROS, seL4

➜ Sparse capabilities:

• protected by sparseness (obscurity)

• used in Monash Password Capability System, Amoeba,

Mungi

ACCESS CONTROL MATRIX 75

Signature capabilities:

Access rightsObject ID

Access rights SignatureObject ID

E(K,C) Encrypted capability

V tamper proof via encryption with secret kernel key

V can be freely passed around

X need to encrypt on each validation

ACCESS CONTROL MATRIX 76

Password capabilities:

➜ Invented for Monash U’s Password Capability System

➜ “Random” bitstring is password, not derived from other parts of

capability.

➜ Validation requires checking against global object table.

PasswordObject ID

Global object table

OID access password

ACCESS CONTROL MATRIX 77

FIREWALLS

Properties:

➜ When communicating with untrusted clients/servers ‘

➜ Disconnects part of system from outside world

➜ Incoming communication inspected and filtered

Two types:

➜ Packet-filtering gateway

➜ Application-level gateway

Three Myths of Firewalls:

➀ We’ve got the place surrounded

➁ Nobody here but us chickens

➂ Sticks and Stones may break my bones, but words will never hurt

me

FIREWALLS 78

HOW TO BREAK SECURITY?

Encryption:

➜ find weaknesses in algorithms

➜ find weaknesses in implementations

➜ attack underlying intractable problem

➜ brute force

Protocols:

➜ find weakness in protocol design (try MitM, reflection attacks)

➜ find vulnerability in implementation

Authentication:

➜ find keys or passwords

➜ social engineering

Authorisation and Access Control:

➜ find problems with Access Control Matrix

➜ find and exploit bugs to escalate privileges

HOW TO BREAK SECURITY? 79

READING LIST

Ross J. Anderson Security Engineering: A Guide to Building

Dependable Distributed Systems. Covers many pitfalls of

building secure systems, with many real-world examples.

READING LIST 80

HOMEWORK

Look up how protocols have been broken in the past. Find

examples where:

➜ the protocol was broken

➜ the cryptography was broken

➜ the implementation was broken

HOMEWORK 81

HOMEWORK 82

