
DISTRIBUTED SYSTEMS [COMP9243]

Lecture 4: Synchronisation and Coordination

(Part 1)

➀ Distributed Algorithms

➁ Time and Clocks

➂ Global State

➃ Concurrency Control

DISTRIBUTED SYSTEMS [COMP9243] 1



DISTRIBUTED ALGORITHMS

Algorithms that are intended to work in a distributed

environment

Used to accomplish tasks such as:

➜ Communication

➜ Accessing resources

➜ Allocating resources

➜ Consensus

➜ etc.

Synchronisation and coordination inextricably linked to

distributed algorithms

➜ Achieved using distributed algorithms

➜ Required by distributed algorithms

DISTRIBUTED ALGORITHMS 2



SYNCHRONOUS VS ASYNCHRONOUS DISTRIBUTED SYSTEMS

Timing model of a distributed system

Affected by:

➜ Execution speed/time of processes

➜ Communication delay

➜ Clocks & clock drift

SYNCHRONOUS VS ASYNCHRONOUS DISTRIBUTED SYSTEMS 3



Synchronous Distributed System:

Time variance is bounded

Execution : bounded execution speed and time

Communication : bounded transmission delay

Clocks : bounded clock drift (and differences in clocks)

Effect:

➜ Can rely on timeouts to detect failure

V Easier to design distributed algorithms

X Very restrictive requirements

• Limit concurrent processes per processor Why?

• Limit concurrent use of network Why?

• Require precise clocks and synchronisation

SYNCHRONOUS VS ASYNCHRONOUS DISTRIBUTED SYSTEMS 4



Asynchronous Distributed System:

Time variance is not bounded

Execution : different steps can have varying duration

Communication : transmission delays vary widely

Clocks : arbitrary clock drift

Effect:

➜ Allows no assumption about time intervals

X Cannot rely on timeouts to detect failure

X Most asynch DS problems hard to solve

V Solution for asynch DS is also a solution for synch DS

➜ Most real distributed systems are hybrid synch and asynch

SYNCHRONOUS VS ASYNCHRONOUS DISTRIBUTED SYSTEMS 5



EVALUATING DISTRIBUTED ALGORITHMS

Key Properties:

➀ Safety: Nothing bad happens

➁ Liveness: Something good eventually happens

General Properties:

➜ Performance

• number of messages exchanged

• response/wait time

• delay, throughput: 1/(delay + executiontime)

• complexity: O()

➜ Efficiency

• resource usage: memory, CPU, etc.

➜ Scalability

➜ Reliability

• number of points of failure (low is good)

EVALUATING DISTRIBUTED ALGORITHMS 6



SYNCHRONISATION AND COORDINATION

Important:

Doing the right thing at the right time.

Two fundamental issues:

➜ Coordination (the right thing)

➜ Synchronisation (the right time)

SYNCHRONISATION AND COORDINATION 7



COORDINATION

Coordinate actions and agree on values.

Coordinate Actions:

➜ What actions will occur

➜ Who will perform actions

Agree on Values:

➜ Agree on global value

➜ Agree on environment

➜ Agree on state

COORDINATION 8



SYNCHRONISATION

Ordering of all actions

➜ Total ordering of events

➜ Total ordering of instructions

➜ Total ordering of communication

➜ Ordering of access to resources

➜ Requires some concept of time

SYNCHRONISATION 9



MAIN ISSUES

Time and Clocks: synchronising clocks and using time in

distributed algorithms

Global State: how to acquire knowledge of the system’s

global state

Concurrency Control: coordinating concurrent access to

resources

MAIN ISSUES 10



TIME AND CLOCKS

TIME AND CLOCKS 11



TIME

Global Time:

➜ ’Absolute’ time

• Einstein says no absolute time

• Absolute enough for our purposes

➜ Astronomical time

• Based on earth’s rotation

• Not stable

➜ International Atomic Time (IAT)

• Based on oscillations of Cesium-133

➜ Coordinated Universal Time (UTC)

• Leap seconds

• Signals broadcast over the world

TIME 12



Local Time:

➜ Relative not ’absolute’

➜ Not synchronised to Global source

TIME 13



USING CLOCKS IN COMPUTERS

Timestamps:

➜ Used to denote at which time an event occurred

Synchronisation Using Clocks:

➜ Performing events at an exact time (turn lights on/off,

lock/unlock gates)

➜ Logging of events (for security, for profiling, for debugging)

➜ Tracking (tracking a moving object with separate cameras)

➜ Make (edit on one computer build on another)

➜ Ordering messages

USING CLOCKS IN COMPUTERS 14



PHYSICAL CLOCKS

Based on actual time:

➜ Cp(t): current time (at UTC time t) on machine p

➜ Ideally Cp(t) = t

X Clock differences causes clocks to drift

➜ Must regularly synchronise with UTC

Computer Clocks:

➜ Crystal oscillates at known frequency

➜ Oscillations cause timer interrupts

➜ Timer interrupts update clock

Clock Skew:

➜ Crystals in different computers run at slightly different rates

➜ Clocks get out of sync

➜ Skew: instantaneous difference

➜ Drift: rate of change of skew

PHYSICAL CLOCKS 15



PHYSICAL CLOCKS 16



SYNCHRONISING PHYSICAL CLOCKS

Internal Synchronisation:

➜ Clocks synchronise locally

➜ Only synchronised with each other

External Synchronisation:

➜ Clocks synchronise to an external time source

➜ Synchronise with UTC every δ seconds

Time Server:

➜ Server that has the correct time

➜ Server that calculates the correct time

SYNCHRONISING PHYSICAL CLOCKS 17



BERKELEY ALGORITHM

Time daemon

3:00 3:00 3:053:00 0 +5

3:00 -10 +15

3:00 +25 -20

3:25 3:25 3:052:50 2:50 3:05

Network

(a) (b) (c)

Accuracy: 20-25 milliseconds

When is this useful?

BERKELEY ALGORITHM 18



CRISTIAN’S ALGORITHM

Time Server:

➜ Has UTC receiver

➜ Passive

Algorithm:

➜ Clients periodically request the time

➜ Don’t set time backward Why not?

➜ Take propagation and interrupt handling delay into account

• (T1− T0)/2

• Or take a series of measurements and average the delay

➜ Accuracy: 1-10 millisec (RTT in LAN)

What is a drawback of this approach?

CRISTIAN’S ALGORITHM 19



NETWORK TIME PROTOCOL (NTP)

Hierarchy of Servers:

➜ Primary Server: has UTC clock

➜ Secondary Server: connected to primary

➜ etc.

Synchronisation Modes:

Multicast: for LAN, low accuracy

Procedure Call: clients poll, reasonable accuracy

Symmetric: Between peer servers. highest accuracy

NETWORK TIME PROTOCOL (NTP) 20



Synchronisation:

➜ Estimate clock offsets and transmission delays between two

nodes

➜ Keep estimates for past communication

➜ Choose offset estimate for lowest transmission delay

➜ Also determine unreliable servers

➜ Accuracy 1 - 50 msec

NETWORK TIME PROTOCOL (NTP) 21



LAMPORT

➜ Safety, Liveness

➜ Logical clocks and vector

clocks

➜ Snapshots

➜ Byzantine generals

➜ Paxos consensus

➜ TLA+, LaTeX

➜ Turing Award 2013

Comments about his pa-

pers: Google: lamport my

writings

LAMPORT 22



LOGICAL CLOCKS

Event ordering is more important than physical time:

➜ Events (e.g., state changes) in a single process are ordered

➜ Processes need to agree on ordering of causally related events

(e.g., message send and receive)

Local ordering:

➜ System consists of N processes pi, i ∈ {1, . . . , N}

➜ Local event ordering →i:

If pi observes e before e′, we have e →i e
′

Global ordering:

➜ Leslie Lamport’s happened before relation →

➜ Smallest relation, such that

1. e →i e
′ implies e → e′

2. For every message m, send(m) → receive(m)

3. Transitivity: e → e′ and e′ → e′′ implies e → e′′

LOGICAL CLOCKS 23



The relation → is a partial order:

➜ If a → b, then a causally affects b

➜ We consider unordered events to be concurrent:

a 6→ b and b 6→ a implies a ‖ bExample:

P1

P2

E11

E21 E22

E12

E23

E13

E24

E14

Real Time

➜ Causally related: E11 → E12, E13, E14, E23, E24, . . .

E21 → E22, E23, E24, E13, E14, . . .

➜ Concurrent: E11‖E21, E12‖E22, E13‖E23, E11‖E22, E13‖E24,

E14‖E23, . . .

LOGICAL CLOCKS 24



Lamport’s logical clocks:

➜ Software counter to locally compute the happened-before

relation →

➜ Each process pi maintains a logical clock Li

➜ Lamport timestamp:

• Li(e): timestamp of event e at pi

• L(e): timestamp of event e at process it occurred at

Implementation:

➀ Before timestamping a local event pi executes Li := Li + 1

➁ Whenever a message m is sent from pi to pj :

• pi executes Li := Li + 1 and sends Li with m

• pj receives Li with m and executes Lj := max(Lj , Li) + 1

(receive(m) is annotated with the new Lj)

Properties:

➜ a → b implies L(a) < L(b)

➜ L(a) < L(b) does not necessarily imply a → b

LOGICAL CLOCKS 25



Example:

P1

P2

E11

E21 E22

E12

E23

Real Time

E13

E24

1 2

1 2

E14 E15 E16 E17

E25

P1

P2

E11

E21 E22

E12

E23

Real Time

E13

E24

1 2

1 2

E14 E15 E16 E17

E25

3 4
P1

P2

E11

E21 E22

E12

E23

Real Time

E13

E24

1 2

1 2

E14 E15 E16 E17

E25

3

3 4
P1

P2

E11

E21 E22

E12

E23

Real Time

E13

E24

1 2

1 2

E14 E15 E16 E17

E25

3

3 4 5
P1

P2

E11

E21 E22

E12

E23

Real Time

E13

E24

1 2

1 2

E14 E15 E16 E17

E25

3

3 4 5 6

4

P1

P2

E11

E21 E22

E12

E23

Real Time

E13

E24

1 2

1 2

E14 E15 E16 E17

E25

3

3 4 5 6 7

4 7

How can we order E13 and E23 ?

LOGICAL CLOCKS 26



Total event ordering:

➜ Complete partial to total order by including process identifiers

➜ Given local time stamps Li(e) and Lj(e
′), we define global time

stamps 〈Li(e), i〉 and 〈Lj(e
′), j〉

➜ Lexicographical ordering: 〈Li(e), i〉 < 〈Lj(e
′), j〉 iff

• Li(e) < Lj(e
′) or

• Li(e) = Lj(e
′) and i < j

E13 = 3, E24 = 4. Did E13 happen before E24?

LOGICAL CLOCKS 27



VECTOR CLOCKS

Main shortcoming of Lamport’s clocks:

➜ L(a) < L(b) does not imply a → b

➜ We cannot deduce causal dependencies from time stamps:

P3

E31

1

E32

2

E33

3
Real Time

P2

E21

1

E22

3

P1

E11

1

E12

2

➜ We have L1(E11) < L3(E33), but E11 6→ E33

➜ Why?

• Clocks advance independently or via messages

• There is no history as to where advances come from

VECTOR CLOCKS 28



Vector clocks:

➜ At each process, maintain a clock for every other process

➜ I.e., each clock Vi is a vector of size N

➜ Vi[j] contains i’s knowledge about j’s clock

➜ Events are timestamped with a vector

Implementation:

➀ Initially, Vi[j] := 0 for i, j ∈ {1, . . . , N}

➁ Before pi timestamps an event: Vi[i] := Vi[i] + 1

➂ Whenever a message m is sent from pi to pj :

• pi executes Vi[i] := Vi[i] + 1 and sends Vi with m

• pj receives Vi with m and merges the vector clocks Vi and

Vj :

Vj [k] :=







max(Vj [k], Vi[k]) + 1 , if j = k

max(Vj [k], Vi[k]) ,otherwise

VECTOR CLOCKS 29



Properties:

➜ For all i, j, Vi[i] ≥ Vj [i]

➜ a → b iff V (a) < V (b) where

• V = V ′ iff V [i] = V ′[i] for i ∈ {1, . . . , N}

• V ≥ V ′ iff V [i] ≥ V ′[i] for i ∈ {1, . . . , N}

• V > V ′ iff V ≥ V ′ ∧ V 6= V ′

• V ‖V ′ iff V 6≥ V ′ ∧ V ′ 6≥ V

Example:

Real Time

P1
E11 E12 E13

P2
E24E23E22E21

P3
E31 E32

(1,0,0) (2,0,0)

(0,1,0)

(0,0,1)
Real Time

P1
E11 E12 E13

P2
E24E23E22E21

P3
E31 E32

(1,0,0) (2,0,0)

(2,2,0)(0,1,0)

(0,0,1) (0,0,2)
Real Time

P1
E11 E12 E13

P2
E24E23E22E21

P3
E31 E32

(1,0,0) (2,0,0)

(2,4,1)(2,3,1)(2,2,0)(0,1,0)

(0,0,1) (0,0,2)
P3

E31

(0,0,1)

E32

(0,0,2)
Real Time

P2
E21

(0,1,0)

E23

(2,3,1)

E22

(2,2,0)

E24

(2,4,1)

P1
E13

(3,4,1)

E12

(2,0,0)

E11

(1,0,0)

P3
E31

(0,0,1)

E32

(0,0,2)
Real Time

P2
E21

(0,1,0)

E23

(2,3,1)

E22

(2,2,0)

E24

(2,4,1)

P1
E13

(3,4,1)

E12

(2,0,0)

E11

(1,0,0)

1 2 6

1 3 4 5

1 2

➜ For L1(E12) and L3(E32), 2 = 2 versus (2, 0, 0) 6= (0, 0, 2)

VECTOR CLOCKS 30



GLOBAL STATE

GLOBAL STATE 31



GLOBAL STATE

Determining global properties:

➜ Distributed garbage collection:

Do any references exist to a given object?

➜ Distributed deadlock detection:

Do processes wait in a cycle for each other?

➜ Distributed termination detection:

Did a set of processes cease all activity? (Consider messages in

transit!)

➜ Distributed checkpoint:

What is a correct state of the system to save?

GLOBAL STATE 32



CONSISTENT CUTS

Determining global properties:

➜ We need to combine information from multiple nodes

➜ Without global time, how do we know whether collected local

information is consistent?

➜ Local state sampled at arbitrary points in time surely is not

consistent

➜ We need a criterion for what constitutes a globally consistent

collection of local information

CONSISTENT CUTS 33



Local history:

➜ N processes pi, i ∈ {1, . . . , N}

➜ For each pi,

• event: eji local action or communication

• history: hk
i = 〈e0i , e

1
i , . . . e

k
i 〉

• May be finite or infinite

Process state:

➜ ski : state of process pi immediately before event eki

➜ ski records all events included in the history hk−1

i

➜ Hence, s0i refers to pi’s initial state

CONSISTENT CUTS 34



Global history and state:

➜ Using a total event ordering, we can merge all local histories

into a global history:

H =

N
⋃

i=1

hi

➜ Similarly, we can combine a set of local states s1, . . . , sN into a

global state:

S = (s1, . . . , sN )

➜ Which combination of local state is consistent?

CONSISTENT CUTS 35



Cuts:

➜ Similar to the global history, we can define cuts based on

k-prefixes:

C =

N
⋃

i=1

hci
i

➜ hci
i is history of pi up to and including event ecii

➜ The cut C corresponds to the state

S = (sc1+1

1 , . . . , scn+1

N )

➜ The final events in a cut are its frontier:

{ecii | i ∈ {1, . . . , N}}

CONSISTENT CUTS 36



P2

P3

P1

cut 2cut 1

0r 2

0
1s

r 1
2

0
2s 1

2s

0
3r

0
1r

3
1s

1
1r

2
2s

3r 10
3s

CONSISTENT CUTS 37



Consistent cut:

➜ We call a cut consistent iff,

for all events e′ ∈ C, e → e′ implies e ∈ C

➜ A global state is consistent if it corresponds to a consistent cut

➜ Note: we can characterise the execution of a system as a

sequence of consistent global states

S0 → S1 → S2 → · · ·

Linearisation:

➜ A global history that is consistent with the happened-before

relation → is also called a linearisation or consistent run

➜ A linearisation only passes through consistent global states

➜ A state S′ is reachable from state S if there is a linearisation that

passes thorough S and then S′

CONSISTENT CUTS 38



CHANDY & LAMPORT’S SNAPSHOTS

➜ Determines a consistent global state

➜ Takes care of messages that are in transit

➜ Useful for evaluating stable global properties

Properties:

➜ Reliable communication and failure-free processes

➜ Point-to-point message delivery is ordered

➜ Process/channel graph must be strongly connected

➜ On termination,

• processes hold only their local state components and

• a set of messages that were in transit during the snapshot.

CHANDY & LAMPORT’S SNAPSHOTS 39



Outline of the algorithm:

➀ One process initiates the algorithm by

• recording its local state and

• sending a marker message * over each outgoing channel

➁ On receipt of a marker message over incoming channel c,

• if local state not yet saved, save local state and send marker

messages, or

• if local state already saved, channel snapshot for c is

complete

➂ Local contribution complete after markers received on all

incoming channels

Result for each process:

➜ One local state snapshot

➜ For each incoming channel, a set of messages received after

performing the local snapshot and before the marker came

down that channel

CHANDY & LAMPORT’S SNAPSHOTS 40



P3

P1

P2

m1

m2

m3

*

*

*

CHANDY & LAMPORT’S SNAPSHOTS 41



SPANNER AND TRUETIME

Globally Distributed Database

➜ Want external consistency (linearisability)

➜ Want lock-free read transactions (for scalability)

WWGD? (what would Google do?)

SPANNER AND TRUETIME 42



USE A GLOBAL CLOCK!

USE A GLOBAL CLOCK! 43



EXTERNAL CONSISTENCY WITH A GLOBAL CLOCK

Data:

➜ versioned using timestamp

Read:

➜ Read operations performed on a snapshot

➜ Snapshot: latest version of data items <= given timestamp

Write:

➜ Each write operation (transaction actually) has unique

timestamp

• Timestamps must not overlap!

➜ Write operations are protected by locks

➜ Means they don’t overlap

➜ So get global time during the transaction

➜ Means timestamps won’t overlap

EXTERNAL CONSISTENCY WITH A GLOBAL CLOCK 44



BUT CLOCKS ARE NOT PERFECTLY SYNCHRONISED.

So transaction A could get the same timestamp as

transaction B

BUT CLOCKS ARE NOT PERFECTLY SYNCHRONISED. 45



TRUE TIME

Add uncertainty to timestamps:

➜ TT.now(): current local clock value

➜ TT.now().earliest(), TT.now().latest: maximum skew of clock

Add delay to transaction:

➜ so timestamps can’t possibly overlap

➜ s = TT.now(); wait until TT.now().earliest > s.latest

TRUE TIME 46



TRUETIME ARCHITECTURE

[from http://research.google.com/archive/spanner-osdi2012.pptx]

TRUETIME ARCHITECTURE 47



SYNCHRONISATION

[from http://research.google.com/archive/spanner-osdi2012.pptx]

SYNCHRONISATION 48



CONCURRENCY

CONCURRENCY 49



CONCURRENCY

Concurrency in a Non-Distributed System:

Typical OS and multithreaded programming problems

➜ Prevent race conditions

➜ Critical sections

➜ Mutual exclusion

• Locks

• Semaphores

• Monitors

➜ Must apply mechanisms correctly

• Deadlock

• Starvation

CONCURRENCY 50



Concurrency in a Distributed System:

Distributed System introduces more challenges

➜ No directly shared resources (e.g., memory)

➜ No global state

➜ No global clock

➜ No centralised algorithms

➜ More concurrency

CONCURRENCY 51



DISTRIBUTED MUTUAL EXCLUSION

➜ Concurrent access to distributed resources

➜ Must prevent race conditions during critical regions

Requirements:

➀ Safety: At most one process may execute the critical section at

a time

➁ Liveness: Requests to enter and exit the critical section

eventually succeed

➂ Ordering: Requests are processed in happened-before

ordering (also Fairness)

DISTRIBUTED MUTUAL EXCLUSION 52



RECALL: EVALUATING DISTRIBUTED ALGORITHMS

General Properties:

➜ Performance

• number of messages exchanged

• response/wait time

• delay

• throughput: 1/(delay + executiontime)

• complexity: O()

➜ Efficiency

• resource usage: memory, CPU, etc.

➜ Scalability

➜ Reliability

• number of points of failure (low is good)

RECALL: EVALUATING DISTRIBUTED ALGORITHMS 53



METHOD 1: CENTRAL SERVER

Simplest approach:

➜ Requests to enter and exit a critical section are sent to a lock

server

➜ Permission to enter is granted by receiving a token

➜ When critical section left, token is returned to the server

(a) (b) (c)

0 0 01 1 1

3 3 3

2 2

2

2

Request
Request ReleaseOK

OK

Coordinator

Queue is
empty

No reply

METHOD 1: CENTRAL SERVER 54



Properties:

➜ Number of message exchanged?

➜ Delay before entering critical section?

➜ Reliability?

➜ Easy to implement

➜ Does not scale well

➜ Central server may fail

METHOD 1: CENTRAL SERVER 55



METHOD 2: TOKEN RING

Implementation:

➜ All processes are organised in a logical ring structure

➜ A token message is forwarded along the ring

➜ Before entering the critical section, a process has to wait until

the token comes by

➜ Must retain the token until the critical section is left

1

00

2

3

4

5

6

7

2 4 9 7 1 6 5 8 3

(a) (b)

METHOD 2: TOKEN RING 56



Properties:

➜ Number of message exchanged?

➜ Delay before entering critical section?

➜ Reliability?

➜ Ring imposes an average delay of N/2 hops (limits scalability)

➜ Token messages consume bandwidth

➜ Failing nodes or channels can break the ring (token might be

lost)

METHOD 2: TOKEN RING 57



METHOD 3: USING MULTICASTS AND LOGICAL CLOCKS

Algorithm by Ricart & Agrawala:

➜ Processes pi maintain a Lamport clock and can communicate

pairwise

➜ Processes are in one of three states:

1. Released: Outside of critical section

2. Wanted: Waiting to enter critical section

3. Held: Inside critical section

METHOD 3: USING MULTICASTS AND LOGICAL CLOCKS 58



Process behaviour:

➀ If a process wants to enter, it

• multicasts a message 〈Li, pi〉 and

• waits until it has received a reply from every process

➁ If a process is in Released, it immediately replies to any request

to enter the critical section

➂ If a process is in Held, it delays replying until it is finished with the

critical section

➃ If a process is in Wanted, it replies to a request immediately only

if the requesting timestamp is smaller than the one in its own

request

METHOD 3: USING MULTICASTS AND LOGICAL CLOCKS 59



0 0 0

1 1 12 2 2

8

8
8 12

12

12

OK OK

OK

OK

Enters
critical
region

Enters
critical
region

(a) (b) (c)

Properties:

➜ Number of message exchanged?

➜ Delay before entering critical section?

➜ Reliability?

➜ Multicast leads to increasing overhead

(try using only subsets of peer processes)

➜ Susceptible to faults

METHOD 3: USING MULTICASTS AND LOGICAL CLOCKS 60



MUTUAL EXCLUSION: A COMPARISON

Messages Exchanged:

➜ Messages per entry/exit of critical section

• Centralised: 3

• Ring: 1 → ∞

• Multicast: 2(n− 1)

Delay:

➜ Delay before entering critical section

• Centralised: 2

• Ring: 0 → n− 1

• Multicast: 2(n− 1)

Reliability:

➜ Problems that may occur

• Centralised: coordinator crashes

• Ring: lost token, process crashes

• Multicast: any process crashes

MUTUAL EXCLUSION: A COMPARISON 61



HOMEWORK

➜ How would you use vector clocks to implement causal

consistency?

➜ Could you use logical clocks to implement sequential

consistency?

Hacker’s edition:

➜ Modify the Ricart Agrawala mutual exclusion algorithm to only

require sending to a subset of the processes.

➜ Can you modify the centralised mutual exclusion algorithm to

tolerate coordinator crashes?

HOMEWORK 62



READING LIST

Optional

Time, Clocks, and the the Ordering of Events in a Distribted

system Classic on Lamport clocks.

Distributed Snapshots: Determining Global States of

Distributed Systems Chandy and Lamport algorithm.

READING LIST 63


