DISTRIBUTED SYSTEMS (COMP9243)

Lecture 4. Synchronisation and Coordination
(Part 1)

@ Distributed Algorithms
@ Time and Clocks

® Global State

@ Concurrency Control

DISTRIBUTED SYSTEMS (COMP2243)

DISTRIBUTED ALGORITHMS

Algorithms that are infended to work in a distributed
environment

Used to accomplish tasks such as:

= Communication

=» Accessing resources
=» Allocating resources
-» Consensus

- efc.

Synchronisation and coordination inextricably linked to
distributed algorithms

=» Achieved using distributed algorithms

=» Required by distributed algorithms

DISTRIBUTED ALGORITHMS

SYNCHRONOUS VS ASYNCHRONOUS DISTRIBUTED SYSTEMS

Timing model of a disfributed system

Affected by:

=» Execution speed/time of processes
= Communication delay
=» Clocks & clock drift

SYNCHRONOUS VS ASYNCHRONOUS DISTRIBUTED SYSTEMS

Synchronous Disfributed System:

Time variance is bounded

Execution : bounded execution speed and time
Communication : bounded transmission delay
Clocks : bounded clock drift (and differences in clocks)

Effect:

=» Canrely on timeouts to detect failure
v Easier to design distributed algorithms
x Very restrictive requirements

e Limit concurrent processes per processor \Why"?
e Limit concurrent use of network \Why?
e Require precise clocks and synchronisation

SYNCHRONOUS VS ASYNCHRONOUS DISTRIBUTED SYSTEMS

Asynchronous Distributed System:

Time variance is not bounded

Execution : different steps can have varying duration
Communication : fransmission delays vary widely
Clocks : arbitrary clock drift

Effect:

=» Allows no assumption about time intervals

x Cannot rely on timeouts fo detect failure

x Most asynch DS problems hard to solve

v Solution for asynch DS is also a solution for synch DS

=*» Most real distributed systems are hybrid synch and asynch

SYNCHRONOUS VS ASYNCHRONOUS DISTRIBUTED SYSTEMS

EVALUATING DISTRIBUTED ALGORITHMS

Key Properties:
@ Safety: Nothing bad happens
@ Liveness: Something good eventually happens

General Properties:
=» Performance
e NuMbpber of messages exchanged
e response/wait fime
e delay, throughput: 1/(delay + executiontime)
e complexity: O()
= Efficiency
e resource usage: memory, CPU, etc.
=» Scalability
- Reliability
e NumMber of points of failure (low is good)

EVALUATING DISTRIBUTED ALGORITHMS

SYNCHRONISATION AND COORDINATION
Important:
Doing the right thing at the right time.

Two fundamental issues:

=» Coordinatfion (the right thinQ)
=>» Synchronisation (the right time)

SYNCHRONISATION AND COORDINATION

COORDINATION

Coordinate actions and agree on values.

Coordinate Actions:

= What actions will occur
=* Who will perform actions

Agree on Values:
=» Agree on global value
=» Agree on environment
-» Agree on state

COORDINATION

SYNCHRONISATION

Ordering of all actions

=» Total ordering of events

=» Total ordering of insfructions

=» Total ordering of communication
=» Ordering of access 1o resources
=*» Requires some concept of fime

SYNCHRONISATION

MAIN ISSUES

Time and Clocks: synchronising clocks and using fime in
distributed algorithms

Global State: how to acquire knowledge of the system’s
global state

Concurrency Control: coordinating concurrent access o
resources

MAIN ISSUES

10

TIME AND CLOCKS

TIME AND CLOCKS

11

TIME

TIME

Global Time:
=» 'Absolute’ time
e Einstein says no absolute time
e Absolute enough for our purposes
=» Astronomical time
e Based on earth’s rotatfion
e Not stable
=>» International Atomic Time (IAT)

e Based on oscillations of Cesium-133
=» Coordinated Universal Time (UTC)

e Leap seconds
e Signals broadcast over the world

12

TIME

Local Time:

-* Relative not "absolute’
=» Not synchronised to Global source

13

USING CLOCKS IN COMPUTERS

Timestamps:
=»> Used to denote at which time an event occurred

Synchronisatfion Using Clocks:
=» Performing events at an exact time (turn lights on/off,
lock/unlock gates)
=» Logging of events (for security, for profiling, for debugging)
=» Tracking (fracking a moving object with separate cameraqs)
=*» Make (edit on one computer build on another)
=» Ordering messages

USING CLOCKS IN COMPUTERS 14

PHYSICAL CLOCKS

Based on actual time:
= C,(t): current time (at UTC fime t) on machine p
= |dedlly C,(t) =t
x Clock differences causes clocks to driff
=» Must regularly synchronise with UTC

Computer Clocks:
=» Crystal oscillates at known frequency
=» Oscillations cause timer interrupts
=» Timer interrupts update clock

Clock Skew:
=» Crystals in different computers run at slightly different rates
-» Clocks get out of sync
=» Skew: instantaneous difference
=» Drift: rate of change of skew

PHYSICAL CLOCKS 15

CCCCCCCCCCCCCC

SYNCHRONISING PHYSICAL CLOCKS

Internal Synchronisation:

=» Clocks synchronise locally
=» Only synchronised with each other

External Synchronisation:

=» Clocks synchronise to an external time source
=» Synchronise with UTC every § seconds

Time Server:

=>» Server that has the correct time
=» Server that calculates the correct time

SYNCHRONISING PHYSICAL CLOCKS

17

BERKELEY ALGORITHM

Time daemon
3:00 ¥ 300 300 305 e

@9 e = @9
Loty [y Bty
O] O] (BB

2:50 3:25 2:50 3:25 3:05 3:05
(@) (b) ()

Accuracy: 20-25 milliseconds

When is this useful?

BERKELEY ALGORITHM

18

CRISTIAN’S ALGORITHM

Time Server:

=> Has UTC receiver
=> Passive

Algorithm:

=» Clients periodically request the time
=» Don’t setf fime backward \Why not?
= Take propagation and interrupt handling delay into account
o (T1—-T0)/2
e Ortake a series of measurements and average the delay
=» Accuracy: 1-10 millisec (RTT in LAN)

What is a drawback of this approach?

CRISTIAN'S ALGORITHM

19

NETWORK TIME PROTOCOL (NTP)

Hierarchy of Servers:

=» Primary Server: has UTC clock

=» Secondary Server. connected to primary
- efc.

Synchronisation Modes:
Multicast: for LAN, low accuracy
Procedure Call: clients poll, reasonable accuracy

Symmetric: Between peer servers. highest accuracy

NETWORK TIME PROTOCOL (NTP)

20

Synchronisation:
=» Estimate clock offsets and transmission delays between two
nodes
=» Keep estimates for past communication
=» Choose offset estimate for lowest transmission delay
=» Also determine unreliable servers
=» Accuracy 1 -50 msec

NETWORK TIME PROTOCOL (NTP)

21

LAMPORT

Safety, Liveness
Logical clocks and vector

clocks

Snapshots
Byzantine generals
Paxos consensus
TLA+, LaTeX

Turing Award 2013

$

L 2 R R A

Comments about his pao-
pers. Google: lamport my
writings

LAMPORT

22

LoGICAL CLOCKS

Event ordering is more important than physical fime:
=» Events (e.qg., state changes) in a single process are ordered

=» Processes need to agree on ordering of causally related events
(e.g., message send and receive)

Local ordering:
=» System consists of N processes p;, i € {1,..., N}
=» Local event ordering —:

If p; observes e before e, we have e —; ¢’

Global ordering:
= Leslie Lamport’'s happened before relation —
=» Smallest relation, such that
1. e —=; € impliese — €
2. For every message m, send(m) — receive(m)
3. Transitivity: e — ¢’ and e’ — ¢’ implies e — €”

LocIcAL CLOCKS

23

The relation — is a partial order:

= If a — b, tThen a causally affects b
=>»> We consider unordered events to be concurrent:

a/Abandb A aimpliesa || b

Example:
Ei11 Ei2 Ei3 E14
| | ' | | | | | | —= Pq
| | | | j | | | | —= P>
Ex1 E2 Eos Eos
Real Time

-> COUSO”Y related: FE;; — E12, Elg, E14, E23, E24, ce
Eo1 — FEaa, FEos, Foa, Fr3, Fra, ...

= Concurrent: E11||Fa1, Fi2||Fe2, E13||F2s, E11||E22. Fis||Eaa.
E14HE23; ce

LocIcAL CLOCKS

Lamport’s logical clocks:

=» Software counter to locally compute the happened-before
relation —

=» Each process p; maintains a logical clock L;
=» Lamport fimestamp:
e L,(e): timestamp of event e at p;
o L(e): fimestamp of event e at process it occurred at

Implementation:
@® Before fimestamping a local event p;, executes L; := L; + 1
@ Whenever a message m is sent from p; to p;:

e p, executes L; := L; +1 and sends L; with m
e p, receives L; with m and executes L; := max(L;, L;) + 1
(receive(m) Is annotated with the new L;)
Properfies:
= a — bimplies L(a) < L(b)
= L(a) < L(b) does not necessarily imply a — b

LocIcAL CLOCKS

25

Example:

E11 Ei12 E13 E14 Ejis Eie Ei17
| | | P1
1 6 V4
4 V4
| | I32
Eos Eos
Real Time

How can we order E{3 and Ey3 ?

LocIcAL CLOCKS

26

Total event ordering:

=» Complete partial to total order by including process identifiers
- Given local time stamps L;(e) and L;(e"), we define global time
stamps (L;(e),i) and (L, (e"), j)
= Lexicographical ordering: (L;(e),1) < (L;(e"), 5) iff
o Li(e) < Lj;(e)or
e Li(e)=L;(eYandi < j

FEi3 = 3, E>y = 4. Did Eq3 happen before E5,7?

LocIcAL CLOCKS

27

VECTOR CLOCKS

Main shorfcoming of Lamport’s clocks:
= L(a) < L(b) doesnotimply a — b
=*» We cannot deduce causal dependencies from time stamps:

E11 E1o
| | Py
1 2
= E2o
I I PZ
1 3
E3z1 Eso E33
| | | P3
1 2 3
Real Time

=> We have Li(F11) < L3(Es3), but E11 /4 Fss
= Why?
e Clocks advance independently or via messages
e [here is NnoO history as to where advances come from

VECTOR CLOCKS

Vector clocks:
=» At each process, maintain a clock for every other process
= l.e., each clock V; is a vector of size N
- V;[j] contains i's knowledge about j's clock
=» Events are timestamped with a vector

Implementation:
@ Initially, V;[j] :=0for4,5 € {1,...,N}
@ Before p; fimestamps an event: V;[i] := Vi[i] + 1
® Whenever a message m is sent from p; o p;:
e p; executes V;[i| := V;[i] + 1 and sends V; with m

e p; receives V; with m and merges the vector clocks V; and
Vi:

Vjlk] == { max(V;[k], V;[k]) +1 ,ifj =k
max(V; k], Vi[k]) ,otherwise

VECTOR CLOCKS 29

Properfies:

= Foralli,j, Vili] > Vj|[i]

= a—biff V(a) < V(b) where
o V=V'iff V[i]=V'[i]fori e {1,...,N}
o V>V'iff V[i] > V'[i]fori e {1,...,N}
e V>V If V>V AV £V’
o VIV'IfVREV' AV 2V

Example:

Ei 1 2Ep Eq3 6

(1,0,0) (2,0,0) (3.4,1)
Ea; 1 S\E22 Bz 4 Epg/0 5
(0.1,0) ;2?/(2,3,1) (2.4,1) ’
1E 322 ..

001) (0,0,2)
Real Time
- For Ll(Elg) and Ls (Egg), 2 = 2 versus (2, 0, O) =~ (0, 0, 2)

Py

VECTOR CLOCKS

GLOBAL STATE

GLOBAL STATE

31

GLOBAL STATE

Determining global properties:

=» Distributed garbage collection:
Do any references exist 1o a given object?
=» Distributed deadlock detection:
Do processes wait in a cycle for each other?
=» Distributed fermination detection:
Did a set of processes cease all activity? (Consider messages in
fransith)
=» Distributed checkpoint:
What is a correct state of the system to save?

GLOBAL STATE

32

CONSISTENT CUTS

Determining global properties:

=*» We need to combine information from multiple nodes

=» Without global time, how do we know whether collected local
information is consistent?

=» Local state sampled at arbitrary points in time surely is not
consistent

=» We need a criterion for what constitutes a globally consistent
collection of local information

CONSISTENT CUTS 33

Local history:
=» N processesp;, i€ {1,...,N}
-» For each p;,

e event: e j local action or communication
e history: hk (e ei,...ef)

e May be finite or infinite

Process state:

= s¥: state of process p; immediately before event e”

= sF records all events included in the history hF~!
- Hence, s? refers to p;’s initial state

CONSISTENT CUTS

34

Global history and state:

=» Using a fotal event ordering, we can merge all local histories
into a global history:

= Similarly, we can combine a set of local states sq, ..., sy info a
global state:

S =(s1,...,8N)

=> Which combination of local state is consistent?

CONSISTENT CUTS

35

Cufts:

=>» Similar to the global history, we can define cuts based on
k-prefixes:

N
C=|Jns
1=1

= nS is history of p; up to and including event ¢
=*» The cut C corresponds to the state

S = (S?H, o s?{{‘“)

=>» The final events in a cut are its frontier:

(e |ie{l,...,N}}

CONSISTENT CUTS

36

P3

P2

P1

CONSISTENT CUTS

37

Consistent cut:
=> We call a cut consistent iff,

for alleventse’ € C,e — ¢ impliese € C

=» A global stafe is consistent If it corresponds fo a consistent cut

=» Nofe: we can characterise the execution of a system as a
seguence of consistent global states

So—>Sl—>SQ—>-“

Linearisation:
=» A global history that is consistent with the happened-before
relation — is also called a linearisation or consistent run
=» A linearisation only passes through consistent globbal states

=» A state S’ is reachable from state S if there is a linearisation that
passes thorough S and then S’

CONSISTENT CUTS

38

CHANDY & LAMPORT’S SNAPSHOTS

=» Determines a consistent global stafte
=» Takes care of messages that are in fransit
=» Useful for evaluating stable global properties

Properties:

=» Reliable communication and failure-free processes
=» Point-to-point message delivery is ordered

=» Process/channel graph must be strongly connected
=» On termination,

e processes hold only their local state components and
e a set of messages that were in transit during the snapshot.

CHANDY & LAMPORT’S SNAPSHOTS 39

Oufline of the algorithm:
@ One process initiates the algorithm by

e recording its local state and
e sending a marker message * over each outgoing channel

@ On receipt of a marker message over incoming channel ¢,

e if local state not yet saved, save local state and send marker
messages, or
e if local state already saved, channel snapshot for cis
complete
® Local contribution complete after markers received on all
incoming channels

Result for each process:
=*> One local state snapshot

=» For each incoming channel, a set of messages received after
performing the local snapshot and before the marker came
down that channel

CHANDY & LAMPORT’S SNAPSHOTS

40

P1

P2

P3

CHANDY & LAMPORT’S SNAPSHOTS

41

SPANNER AND TRUETIME

Globally Distributed Database

= Want external consistency (linearisability)
=» Want lock-free read transactions (for scalability)

WWGED? (what would Google do?)

SPANNER AND TRUETIME

42

USE A GLOBAL CLoOcCK!

USE A GLOBAL CLOCK!

43

EXTERNAL CONSISTENCY WITH A GLOBAL CLOCK
Data:

=» versioned using fimestamp

Read:

=*» Read operations performed on a snapshof
=» Snapshot: latest version of data items <= given timestamp

Write:

=» Each write operation (fransaction actually) has unique
fimestamp

e [imestamps must not overlap!

=» Write operations are protected by locks
-» Means they don’t overlap

=» So get global time during the transaction
= Means timestamps won’t overlap

EXTERNAL CONSISTENCY WITH A GLOBAL CLOCK

44

BUT CLOCKS ARE NOT PERFECTLY SYNCHRONISED.

So fransaction A could get the same fimestamp as
fransaction B

BUT CLOCKS ARE NOT PERFECTLY SYNCHRONISED.

45

TRUE TIME

Add uncerfainty tfo fimestamps:

=> TT.now(): current local clock value
= TT.now(Q.earliestO, TT.now(.latest: maximum skew of clock

Add delay to transaction:
=¥ so timestamps can’t possibly overlap

=» s = TT.now(); wait until TT.now() .earliest > s.latest

TRUE TIME

46

TRUETIME ARCHITECTURE

GPS GPS GPS
timemaster timemaster timemaster
GPS Atomic-clock GPS
timemaster timemaster | . timemaster

Client
Datacenter 1 Datacenter 2 Datacenter n

Compute reference [earliest, latest] = now * €

(from http://research.google.com/archive/spanner-o0sdi2012.pptx)

TRUETIME ARCHITECTURE

SYNCHRONISATION

+6ms

reference ©
uncertainty

Osec 30sec 60sec

(from http://research.google.com/archive/spanner-o0sdi2012.pptx)

90sec

200 ps/sec

time

SYNCHRONISATION

48

CONCURRENCY

CONCURRENCY

49

CONCURRENCY

Concurrency in a Non-Distributed System:

Typical OS and mulfithreaded programming problems
=» Prevent race condifions
=» Crifical sections
=> Mutual exclusion
e Locks

e Semaphores
e Monitors

= Must apply mechanisms correctly

e Deadlock
e Starvation

CONCURRENCY

50

Concurrency in a Distributed System:

Distributed System intfroduces more challenges

=» No directly shared resources (e.g., memory)
No global state

->

=» No global clock

=» No cenftralised algorithms
->

More concurrency

CONCURRENCY

51

DISTRIBUTED MUTUAL EXCLUSION

=» Concurrent access to distributed resources
=» Must prevent race conditions during critical regions

Requirements:
@ Safety: AT most one process may execute the critical section at
a time

@ Liveness: Requests to enter and exit the critical section
eventually succeed

® Ordering: Requests are processed in happened-before
ordering (also Fairness)

DISTRIBUTED MUTUAL EXCLUSION 52

RECALL: EVALUATING DISTRIBUTED ALGORITHMS

General Properties:
=» Performance
e NuMbper of messages exchanged
e response/wait fime
e delay
o throughput: 1/(delay + executiontime)
e complexity: O()
= Efficiency
e resource usage: memory, CPU, etc.
=» Scalability
=>» Reliability

e NumMber of points of failure (low is good)

RECALL: EVALUATING DISTRIBUTED ALGORITHMS

53

METHOD 1: CENTRAL SERVER

Simplest approach:
=» Requests to enter and exit a critical section are sent fo a lock

server
=» Permission to entfer is granted by receiving a token
=» When critical section left, foken is returned o the server

@%T)@ @ &) @ @ ()

Request Release
& |

K
7 No reply OK

§O | [© a8 |

Coordinator

(@) (b) (€)

METHOD 1: CENTRAL SERVER 54

Properfies:

=» Number of message exchanged?
Delay before entering critical section?
Reliability?
Easy fo implement
Does not scale well

2K 2R R Y 2

Central server may fail

METHOD 1: CENTRAL SERVER

55

METHOD 2: TOKEN RING

Implementation:
=» All processes are organised in a logical ring structure
=» A token message is forwarded along the ring

=» Before entering the critical section, a process has to wait unfil
the token comes by

=> Must retain the token until the critical section is left

(a) (b)

METHOD 2: TOKEN RING 56

Properfies:

J

Number of message exchanged?

Delay before entering critical section?

Reliability?

Ring imposes an average delay of N/2 hops (limifs scalability)
Token messages consume bandwidfh

Failing nodes or channels can break the ring (foken might be
lost)

2K 2R R A 2

METHOD 2: TOKEN RING

S7

METHOD 3: USING MULTICASTS AND LOGICAL CLOCKS

Algorithm by Ricart & Agrawala:;
=» Processes p; maintain a Lamport clock and can communicate
pairwise
=» Processes are in one of three states:

1. Released: Outside of critical section
2. Wanted: Waiting to enter critical section
3. Held: Inside critical section

METHOD 3: USING MULTICASTS AND LOGICAL CLOCKS

58

Process behaviour:
@ If a process wanfts to enter, it

e mulficasts a message (L;, p;) and
e Waifs until it has received a reply from every process

@ If aprocess is in Released, it immediately replies to any request
to enter the crifical section

® If aprocessisin Held, it delays replying until it is finished with the
critical section

@ If aprocess is in Wanfed, it replies fo a request immediately only
if the requesting timestamp is smaller than the one in its own
request

METHOD 3: USING MULTICASTS AND LOGICAL CLOCKS 59

Enters
critical
region

8
8 :‘\12 OK oK OK
(D52 ONROr
critical
e 12 e’ OK region
12
) (b)

(€)

(a

Properfies:
=*» Number of message exchanged?
=» Delay before entering critical section?
=» Reliability?
=» Mulficast leads to increasing overhead
(try using only subsets of peer processes)
=» Susceptible to faults

METHOD 3: USING MULTICASTS AND LOGICAL CLOCKS

60

MUTUAL EXCLUSION: A COMPARISON

Messages Exchanged:
=» Messages per entry/exit of critical section
e Centralised: 3
e RING: 1 — o0
e Mulficast: 2(n — 1)
Delay:
=» Delay before entfering critical section

e Cenfralised: 2
e RNG:0—>n—1
e Multicast: 2(n — 1)

Reliability:
=» Problems that may occur

e Cenftralised: coordinator crashes
e RINg: lost token, process crashes
e Multicast; any process crashes

MUTUAL EXCLUSION: A COMPARISON

61

HOMEWORK

= How would you use vector clocks to implement causal
consistency?

=» Could you use logical clocks to implement sequential
consistency?

Hacker’s edition:
=» Modify the Ricart Agrawala mufual exclusion algorithm to only
require sending o a subset of the processes.

=» Can you modify the centralised mutual exclusion algorithm to
tolerate coordinator crashes?

HOMEWORK 62

READING LIST
Optional

Time, Clocks, and the the Ordering of Events in a Distribted
system Classic on Lamport clocks.

Distributed Snapshots: Determining Global States of
Distributed Systems Chandy and Lamport algorithm.

READING LIST

63

