
DISTRIBUTED SYSTEMS [COMP9243]

Lecture 5: Synchronisation and Coordination

(Part 2)

➀ Transactions

➁ Elections

➂ Multicast

DISTRIBUTED SYSTEMS [COMP9243] 1

TRANSACTIONS

TRANSACTIONS 2

TRANSACTIONS

Transaction:

➜ Comes from database world

➜ Defines a sequence of operations

➜ Atomic in presence of multiple clients and failures

Mutual Exclusion ++:

➜ Protect shared data against simultaneous access

➜ Allow multiple data items to be modified in single atomic action

Transaction Model:

Operations:

➜ BeginTransaction

➜ EndTransaction

➜ Read

➜ Write

End of Transaction:

➜ Commit

➜ Abort

TRANSACTIONS 3

TRANSACTION EXAMPLES

Inventory:

Computer

New
inventory

Output tape
Input tapes

Previous
inventory

Today's
updates

Banking:

BeginTransaction

b = A.Balance();

A.Withdraw(b);

B.Deposit(b);

EndTransaction

TRANSACTION EXAMPLES 4

ACID PROPERTIES

atomic: all-or-nothing. once committed the full transaction is

performed, if aborted, there is no trace left;

consistent: the transaction does not violate system invariants

(i.e. it does not produce inconsistent results)

isolated: transactions do not interfere with each other

i.e. no intermediate state of a transaction is visible outside

(also called serialisable);

durable: after a commit, results are permanent (even if

server or hardware fails)

ACID PROPERTIES 5

CLASSIFICATION OF TRANSACTIONS

Flat: sequence of operations that satisfies ACID

Nested: hierarchy of transactions

Distributed: (flat) transaction that is executed on distributed

data

Flat Transactions:

V Simple

X Failure → all changes un-

done

BeginTransaction

accountA -= 100;

accountB += 50;

accountC += 25;

accountD += 25;

EndTransaction

CLASSIFICATION OF TRANSACTIONS 6

NESTED TRANSACTION

Example:

Booking a flight

V Sydney → Manila

V Manila → Amsterdam

X Amsterdam → Toronto

What to do?

➜ Abort whole transaction

➜ Commit nonaborted parts of transaction only

➜ Partially commit transaction and try alternative for aborted part

NESTED TRANSACTION 7

T2

T1

T11

T12

T21

T22

T

abort

abort

commit

abort

abort

commit

commit

➜ Subtransactions and parent transactions

➜ Parent transaction may commit even if some subtransactions

aborted

➜ Parent transaction aborts → all subtransactions abort

NESTED TRANSACTION 8

Subtransactions:

➜ Subtransaction can abort any time

➜ Subtransaction cannot commit until parent ready to commit

• Subtransaction either aborts or commits provisionally

• Provisionally committed subtransaction reports provisional

commit list, containing all its provisionally committed

subtransactions, to parent

• On commit, all subtransaction in that list are committed

• On abort, all subtransactions in that list are aborted.

NESTED TRANSACTION 9

TRANSACTION ATOMICITY IMPLEMENTATION

Private Workspace:

➜ Perform all tentative operations on a shadow copy

➜ Atomically swap with main copy on Commit

➜ Discard shadow on Abort.

1 2

1 1 1

2

33

2 2 2

0 1
0

0

0 0

0

Index
Original
index

Private
workspace

Free blocks

(a) (b) (c)

3
2
3

1
0

1
2

0

TRANSACTION ATOMICITY IMPLEMENTATION 10

Writeahead Log:

➜ In-place update with writeahead logging

➜ Roll back on Abort

TRANSACTION ATOMICITY IMPLEMENTATION 11

CONCURRENCY CONTROL (ISOLATION)

Simultaneous Transactions:

➜ Clients accessing bank accounts

➜ Travel agents booking flights

➜ Inventory system updated by cash registers

Problems:

➜ Simultaneous transactions may interfere

• Lost update

• Inconsistent retrieval

➜ Consistency and Isolation require that there is no interference

Why?

Concurrency Control Algorithms:

➜ Guarantee that multiple transactions can be executed

simultaneously while still being isolated.

➜ As though transactions executed one after another

CONCURRENCY CONTROL (ISOLATION) 12

CONFLICTS AND SERIALISABILITY

Read/Write Conflicts Revisited:

conflict: operations (from the same, or different transactions)

that operate on same data

read-write conflict: one of the operations is a write

write-write conflict: more than one operation is a write

Schedule:

➜ Total ordering (interleaving) of operations

➜ Legal schedules provide results as though transactions serialised

(serial equivalence)

CONFLICTS AND SERIALISABILITY 13

Example Schedules:

CONFLICTS AND SERIALISABILITY 14

SERIALISABLE EXECUTION

Serial Equivalence:

➜ conflicting operations performed in same order on all data

items

• operation in T1 before T2, or

• operation in T2 before T1

Are the following serially equivalent?

➜ R1(x)W1(x)R2(y)W2(y)R2(x)W1(y)

➜ R1(x)R2(y)W2(y)R2(x)W1(x)W1(y)

➜ R1(x)R2(x)W1(x)W2(y)R2(y)W1(y)

➜ R1(x)W1(x)R2(x)W2(y)R2(y)W1(y)

SERIALISABLE EXECUTION 15

MANAGING CONCURRENCY

Dealing with Concurrency:

➜ Locking

➜ Timestamp Ordering

➜ Optimistic Control

MANAGING CONCURRENCY 16

Transaction Managers:

Transaction
manager

Scheduler

Data
manager

READ/WRITE BEGIN_TRANSACTION
END_TRANSACTION

LOCK/RELEASE
or

Timestamp operations

Execute read/write

Transactions

MANAGING CONCURRENCY 17

LOCKING

Pessimistic approach: prevent illegal schedules

➜ Lock must be obtained from scheduler before a read or write.

➜ Scheduler grants and releases locks

➜ Ensures that only valid schedules result

LOCKING 18

TWO PHASE LOCKING (2PL)

Growing phase Shrinking phase

Lock point

N
um

be
r

of
 lo

ck
s

Time

➀ Lock granted if no conflicting locks on that data item.

Otherwise operation delayed until lock released.

➁ Lock is not released until operation executed by data manager

➂ No more locks granted after a release has taken place

All schedules formed using 2PL are serialisable.

TWO PHASE LOCKING (2PL) 19

PROBLEMS WITH LOCKING

Deadlock:

➜ Detect and break deadlocks (in scheduler)

➜ Timeout on locks

Cascaded Aborts:

➜ Release(Ti, x) → Lock(Tj , x) → Abort(Ti)

➜ Tj will have to be aborted too

➜ Problem: dirty read: seen value from non-committed

transaction

solution: Strict Two-Phase Locking:

➜ Release all locks at Commit/Abort

PROBLEMS WITH LOCKING 20

TIMESTAMP ORDERING

➜ Each transaction has unique timestamp (ts(Ti))

➜ Each operation (TS(W), TS(R)) receives its transaction’s

timestamp

➜ Each data item has two timestamps:

• read timestamp: tsRD(x) - transaction that most recently

read x

• write timestamp: tsWR(x) - committed transaction that most

recently wrote x

➜ Also tentative write timestamps (noncommitted writes) tswr(x)

➜ Timestamp ordering rule:

• write request only valid if TS(W) > tsWR and TS(W) ≥ tsRD

• read request only valid if TS(R) > tsWR

➜ Conflict resolution:

• Operation with lower timestamp executed first

TIMESTAMP ORDERING 21

using state
from T2

wait until
T commits2

ReadWrite

(T)2 (T)2 (T)3

ts(T)3ts WR(x)ts RD(x)

1(T) (T)2 (T)3

ts(T)3ts (x)wrts WR(x)

1(T) (T)4 (T)3

ts(T)3ts (x)wrts WR(x)

(T)4 (T)3

ts(T)3ts WR(x)

(T)2 (T)2 (T)3

ts(T)3ts WR(x)ts RD(x)

(T)2 (T)4 (T)3

ts(T)3ts (x)wrts WR(x)

(T)1 (T)2

ts(T)3ts (x)wrts WR(x)

(T)4 (T)3

ts(T)3ts WR(x)

TIMESTAMP ORDERING 22

OPTIMISTIC CONTROL

Assume that no conflicts will occur.

➜ Detect conflicts at commit time

➜ Three phases:

• Working (using shadow copies)

• Validation

• Update

OPTIMISTIC CONTROL 23

Validation:

➜ Keep track of read set and write set during working phase

➜ During validation make sure conflicting operations with

overlapping transactions are serialisable

• Make sure Tv doesn’t read items written by other Tis Why?

• Make sure Tv doesn’t write items read by other Tis Why?

• Make sure Tv doesn’t write items written by other Tis Why?

➜ Prevent overlapping of validation phases (mutual exclusion)

OPTIMISTIC CONTROL 24

Backward validation:

➜ Check committed overlapping transactions

➜ Only have to check if Tv read something another Ti has written

➜ Abort Tv if conflict

X Have to keep old write sets

Forward validation:

➜ Check not yet committed overlapping transactions

➜ Only have to check if Tv wrote something another Ti has read

➜ Options on conflict: abort Tv, abort Ti, wait

X Read sets of not yet committed transactions may change

during validation!

OPTIMISTIC CONTROL 25

DISTRIBUTED TRANSACTIONS

➜ In distributed system, a single transaction will, in general, involve

several servers:

• transaction may require several services,

• transaction involves files stored on different servers

➜ All servers must agree to Commit or Abort, and do this

atomically.

Transaction Management:

➜ Centralised

➜ Distributed

DISTRIBUTED TRANSACTIONS 26

Distributed Flat Transaction:

T

Client

Server W Server X Server Y Server Z

DISTRIBUTED TRANSACTIONS 27

Distributed Nested Transaction:

T1

Server X

T2

Server Y

T11

Server M

T12

Server N

T21

Server O

T22

Server P

T

Client

DISTRIBUTED TRANSACTIONS 28

DISTRIBUTED CONCURRENCY CONTROL

Transaction
manager

Scheduler Scheduler Scheduler

Data
manager

Data
manager

Data
manager

Machine A Machine B Machine C

DISTRIBUTED CONCURRENCY CONTROL 29

DISTRIBUTED LOCKING

Centralised 2PL:

➜ Single server handles all locks

➜ Scheduler only grants locks, transaction manager contacts

data manager for operation.

Primary 2PL:

➜ Each data item is assigned a primary copy

➜ Scheduler on that server responsible for locks

Distributed 2PL:

➜ Data can be replicated

➜ Scheduler on each machine responsible for locking own data

➜ Read lock: contact any replica

➜ Write lock: contact all replicas

DISTRIBUTED LOCKING 30

Distributed Timestamps:

Assigning unique timestamps:

➜ Timestamp assigned by first scheduler accessed

➜ Clocks have to be roughly synchronized

Distributed Optimistic Control:

➜ Validation operations distributed over servers

➜ Commitment deadlock (because of mutual exclusion of

validation)

➜ Parallel validation protocol

➜ Make sure that transaction serialised correctly

DISTRIBUTED LOCKING 31

ATOMICITY AND DISTRIBUTED TRANSACTIONS

Distributed Transaction Organisation:

➜ Each distributed transaction has a coordinator,

the server handling the initial BeginTransaction call

➜ Coordinator maintains a list of workers, i.e. other servers involved

in the transaction

➜ Each worker needs to know coordinator

➜ Coordinator is responsible for ensuring that whole transaction is

atomically committed or aborted

➼ Require a distributed commit protocol.

ATOMICITY AND DISTRIBUTED TRANSACTIONS 32

DISTRIBUTED ATOMIC COMMIT

➜ Transaction may only be able to commit when all workers are

ready to commit (e.g. validation in optimistic concurrency)

➜ Hence distributed commit requires at least two phases:

1. Voting phase: all workers vote on commit,

coordinator then decides whether to commit or abort.

2. Completion phase: all workers commit or abort according to

decision.

Basic protocol is called two-phase commit (2PC)

DISTRIBUTED ATOMIC COMMIT 33

Two-phase commit: Coordinator:

2 n−1

aborted committed

1
CanCommit{1−n}

CommitReq yes(1)

DoCommit{1−n}

abort(1)

DoAbort{1−n}

DoAbort{1−n}
DoAbort{1−n}

...

yes(n)

abort(n)
abort(2)

...

yes(2) yes(n−1)

1. sends CanCommit, receives yes, abort;

2. sends DoCommit, DoAbort

DISTRIBUTED ATOMIC COMMIT 34

Two-phase commit: Worker:

aborted

CanCommit

yes

DoCommit

CanCommit

DoAbort

NewServer

abort

abort

uncertainrunning committed

1. receives CanCommit, sends yes, abort;

2. receives DoCommit, DoAbort

What are the assumptions?

DISTRIBUTED ATOMIC COMMIT 35

Limitations:

➜ Once node voted “yes”, cannot change its mind, even if

crashes.

• Atomic state update to ensure “yes” vote is stable.

➜ If coordinator crashes, all workers may be blocked.

• Can use different protocols (e.g. three-phase commit),

• in some circumstances workers can obtain result from other

workers.

DISTRIBUTED ATOMIC COMMIT 36

Two-phase commit of nested transactions:

➜ Two-phase commit is required, as a worker might crash after

provisional commit

➜ On CanCommit request, worker:

• votes “no”: if it has no recollection of subtransactions of

committing transaction

(i.e. must have crashed recently),

• otherwise

– aborts subtransactions of aborted transactions,

– saves provisionally committed transactions in stable store,

– votes “yes”.

Two Approaches:

➜ Hierarchic 2PC

➜ Flat 2PC

DISTRIBUTED ATOMIC COMMIT 37

ELECTIONS

ELECTIONS 38

Coordinator:

➜ Some algorithms rely on a distinguished coordinator process

➜ Coordinator needs to be determined

➜ May also need to change coordinator at runtime

Election:

➜ Goal: when algorithm finished all processes agree who new

coordinator is.

ELECTIONS 39

ELECTIONS 40

Determining a coordinator:

➜ Assume all nodes have unique id

➜ possible assumption: processes know all other process’s ids but

don’t know if they are up or down

➜ Election: agree on which non-crashed process has largest id

number

Requirements:

➀ Safety: A process either doesn’t know the coordinator or it

knows the id of the process with largest id number

➁ Liveness: Eventually, a process crashes or knows the coordinator

ELECTIONS 41

BULLY ALGORITHM

➜ Three types of messages:

• Election: announce election

• Answer: response to election

• Coordinator: announce elected coordinator

➜ A process begins an election when it notices through a timeout

that the coordinator has failed or receives an Election message

➜ When starting an election, send Election to all higher-numbered

processes

➜ If no Answer is received, the election starting process is the

coordinator and sends a Coordinator message to all other

processes

➜ If an Answer arrives, it waits a predetermined period of time for

a Coordinator message

➜ If a process knows it is the highest numbered one, it can

immediately answer with Coordinator

BULLY ALGORITHM 42

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

Election

E
le

ct
io

nElection

Election

OK

OK

Previous coordinator
has crashed

Elec
tio

n

Election

1

2

4

0

5

6

3

7

OK
Coordinator

(a) (b) (c)

(d) (e)

What are the assumptions?

BULLY ALGORITHM 43

RING ALGORITHM

➜ Two types of messages:

• Election: forward election data

• Coordinator: announce elected coordinator

➜ Processes ordered in ring

➜ A process begins an election when it notices through a timeout

that the coordinator has failed.

➜ Sends message to first neighbour that is up

➜ Every node adds own id to Election message and forwards

along the ring

➜ Election finished when originator receives Election message

again

➜ Forwards message on as Coordinator message

RING ALGORITHM 44

1

0

5

4

7

6

3

2

[2]

[2,3]

[5,6]

[5,6,0]

[5]

Election message

No response

Previous coordinator
has crashed

What are the assumptions?

RING ALGORITHM 45

MULTICAST

MULTICAST 46

machine
A

machine
E

machine
D

machine
C

machine
B

➜ Sender performs a single send()

➜ Group of receivers

➜ Membership of group is transparent

MULTICAST 47

EXAMPLES

Fault Tolerance:

➜ Replicated (redundant) servers

➜ Strong consistency: multicast operations

Service Discovery:

➜ Multicast request for service

➜ Reply from service provider

Performance:

➜ Replicated servers or data

➜ Weaker consistency: multicast operations or data

Event or Notification propagation:

➜ Group members are those interested in particular events

➜ Example: sensor data, stock updates, network status

EXAMPLES 48

PROPERTIES

Group membership:

➜ Static: membership does not change

➜ Dynamic: membership changes

Open vs Closed group:

➜ Closed group: only members can send

➜ Open group: anyone can send

Reliability:

➜ Communication failure vs process failure

➜ Guarantee of delivery:

➜ all members (or none) – Atomic

➜ all non-failed members

Ordering:

➜ Guarantee of ordered delivery

➜ FIFO, Causal, Total Order

PROPERTIES 49

EXAMPLES REVISITED

Fault Tolerance:

➜ Reliability: Atomic

➜ Ordering: Total

➜ Membership: Static

➜ Group: Closed

Service Discovery:

➜ Reliability: No guarantee

➜ Ordering: None

➜ Membership: Static

➜ Group: Open

Performance:

➜ Reliability: Non-failed

➜ Ordering: FIFO, Causal

➜ Membership: Dynamic

➜ Group: Closed

Event or Notification propagation:

➜ Reliability: Non-failed

➜ Ordering: Causal

➜ Membership: Dynamic

➜ Group: Open

EXAMPLES REVISITED 50

OTHER ISSUES

Performance:

➜ Bandwidth

➜ Delay

Efficiency:

➜ Avoid sending a message over a link multiple times (stress)

➜ Distribution tree

➜ Hardware support (e.g., Ethernet broadcast)

Network-level vs Application-level:

➜ Network routers understand multicast

➜ Applications (or middleware) send unicasts to group members

➜ Overlay distribution tree

OTHER ISSUES 51

NETWORK-LEVEL MULTICAST

"You put packets in at one end, and the network

conspires to deliver them to anyone who asks." Dave

Clark

Ethernet Broadcast:

➜ all hosts on local network

➜ MAC address: FF:FF:FF:FF:FF:FF

IP Multicast:

➜ multicast group: class D Internet address:

➜ first 4 bits: 1110 (224.0.0.0 to 239.255.255.255)

➜ permanent groups: 224.0.0.1 - 224.0.0.255

➜ multicast routers

➜ join group: Internet Group Management Protocol (IGMP)

➜ set distribution trees: Protocol Independent Multicast (PIM)

NETWORK-LEVEL MULTICAST 52

APPLICATION-LEVEL MULTICAST SYSTEM MODEL

deliver(m)

<....>
S

send(m)

Application

Multicast Middleware

Network

OS

<...>
S

m = receive(g)

mdeliver(m)

msend(g,m)

Assumptions:

➜ reliable one-to-one channels

➜ no failures

➜ single closed group

APPLICATION-LEVEL MULTICAST SYSTEM MODEL 53

BASIC MULTICAST

11 2

1
2

A

B

A BB A 2

➜ no reliability guarantees

➜ no ordering guarantees

BASIC MULTICAST 54

B-send(g,m) {

foreach p in g {

send(p, m);

}

}

deliver(m) {

B-deliver(m);

}

BASIC MULTICAST 55

FIFO MULTICAST

21 2

1
2

A

B

A BA B 1

➜ order maintained per sender

FIFO MULTICAST 56

FO-init() {

S = 0; // local sequence #

for (i = 1 to N) V[i] = 0; // vector of last seen seq #s

}

FO-send(g, m) {

S++;

B-send(g, <m,S>); // multicast to everyone

}

FIFO MULTICAST 57

B-deliver(<m,S>) {

if (S == V[sender(m)] + 1) {

// expecting this msg, so deliver

FO-deliver(m);

V[sender(m)] = S;

} else if (S > V[sender(m)] + 1) {

// not expecting this msg, so put in queue for later

enqueue(<m,S>);

}

// check if msgs in queue have become deliverable

foreach <m,S> in queue {

if (S == V[sender(m)] + 1) {

FO-deliver(m);

dequeue(<m,S>);

V[sender(m)] = S;

} } }

FIFO MULTICAST 58

CAUSAL MULTICAST

B1 2 2

1
2

1

A

B

A B A

➜ order maintained between causally related sends

➜ 1 and A, 2 and B are concurrent

➜ 1 happens before B

CAUSAL MULTICAST 59

CO-init() {

// vector of what we’ve delivered already

for (i = 1 to N) V[i] = 0;

}

CO-send(g, m) {

V[i]++;

B-send(g, <m,V>);

}

B-deliver(<m,Vj>) { // j = sender(m)

enqueue(<m,Vj>);

// make sure we’ve delivered everything the message

// could depend on

wait until Vj[j] == V[j] + 1 and Vj[k] <= V[k] (k!= j)

CO-deliver(m);

dequeue(<m,Vj>); V[j]++;

}

CAUSAL MULTICAST 60

TOTALLY ORDERED MULTICAST

???

1 2

1
2

A

B

A BB 2 1 A

TOTALLY ORDERED MULTICAST 61

Sequencer Based:

2

Sequencer

P1

P2

P0

1 − message
2 − sequence number

1

1

1

2

2

TOTALLY ORDERED MULTICAST 62

Agreement-based:

P1

2
3

1

1
2

3

123

3 − agreed sequence
2 − proposed sequence
1 − message

P2

P3

P4

TOTALLY ORDERED MULTICAST 63

Other possibilities:

➜ Moving sequencer

➜ Logical clock based

• each receiver determines order independently

• delivery based on sender timestamp ordering

• how do you know you have most recent timestamp?

➜ Token based

➜ Physical clock ordering

Hybrid Ordering:

➜ FIFO + Total

➜ Causal + Total

Dealing with Failure:

➜ Communication

➜ Process

TOTALLY ORDERED MULTICAST 64

HOMEWORK

➜ We only discussed distributed transactions, but not replicated

transactions. What changes if we introduce replication? Do the

techniques we’ve discussed still work?

➜ How well does 2PC deal with failure? Can you improve it to deal

with more types of failure?

Hacker’s edition:

➜ Do the Multicast (Erlang) exercise

HOMEWORK 65

READING LIST

Optional

Total Order Broadcast and Multicast Algorithms: Taxonomy

and Survey everything you always wanted to know...

Elections in a distributed computing system Bully algortihm

READING LIST 66

