DISTRIBUTED SYSTEMS (COMP9243)

Lecture 5: Synchronisation and Coordination
(Part 2)

@ Transactions
@ Elections
® Multicast

DISTRIBUTED SYSTEMS (COMP2243)



TRANSACTIONS

TRANSACTIONS



TRANSACTIONS

Transaction:

-» Comes from database world
=» Defines a sequence of operations
=» Atomic in presence of multiple clients and failures

Mutual Exclusion ++:

=» Protect shared data against simultaneous access
= Allow multiple data items to be modified in single atomic action

Transaction Model:

Operations: End of Transaction:
=» BeginTransaction = Commit

=» EndTransaction - Abort

=» Read

=» Write

TRANSACTIONS



TRANSACTION EXAMPLES

Inventory:
_Previous
inventory

Input tapes \

Q. —
Today's
updates

Banking:

BeginTransaction

b = A.Balance();
A.Withdraw(b) ;
B.Deposit(b);

EndTransaction

New
inventory

Computer

— Q Output tape

TRANSACTION EXAMPLES



ACID PROPERTIES

atomic: all-or-nothing. once commifted the full fransaction is
performed, if aborted, there is no trace left;

consistent: the transaction does not violate system invariants
(l.e. It does not produce inconsistent results)

iIsolated: transactions do not interfere with each other
l.e. No intermediate state of a transaction is visible outside
(also called serialisable);

durable: affer a commit, results are permanent (even if
server or hardware fails)

ACID PROPERTIES



CLASSIFICATION OF TRANSACTIONS

Flat: sequence of operations that satisfies ACID
Nested: hierarchy of tfransactions

Distributed: (flat) transaction that is executed on distributed
data

Flat Transactions:

v Simple
x Failure — all changes un-
done

BeginTransaction
accountA -= 100;
accountB += 50;
accountC += 25;
accountD += 25;

EndTransaction

CLASSIFICATION OF TRANSACTIONS



NESTED TRANSACTION

Example:

Booking a flight
v Sydney — Manila
v Manila — Amsterdam
x Amsterdam — Toronto

What to do?
=» Abort whole transaction
= Commit nonaborted parts of fransaction only
=» Partially commit fransaction and try alternative for aborted part

NESTED TRANSACTION



T11 abort

_—

Tl commi

T12 commit

Toq abort

T commit

Too abort

=» Subtransactions and parent fransactions

=» Parent transaction may commit even if some subtransactions
aborted

=> Parent transaction aborts — all subtransactions abort

NESTED TRANSACTION



Subtransactions:

=» Subfransaction can abort any time
=» Subtransaction cannot commit until parent ready fo commit

e Subtransaction either aborts or commits provisionally

e Provisionally committed subfransaction reports provisional
commit list, containing all its provisionally committed
subtransactions, to parent

e On commit, all subtransaction in that list are committed
e On abort, all subtransactions in that list are aborted.

NESTED TRANSACTION



TRANSACTION ATOMICITY IMPLEMENTATION

Private Workspace:
=» Perform all tenfative operations on a shadow copy
=» Atomically swap with main copy on Commit
=» Discard shadow on Abort.

Private

o workspace
Original |

Free blocks

@ (b) (©)

TRANSACTION ATOMICITY IMPLEMENTATION

10



Writeahead Log:

=*» In-place update with writeahead logging
=» Roll back on Abort

X =0;

y=0; Log Log Log

BEGIN_TRANSACTION;
X=X+ 1; [x=0/1] [x=0/1] [x=0/1]
y=V+2; [y=0/2] I[y=0/72]
X=y*y; [x = 1/4]

END_TRANSACTION;
(a) (b) (c) (d)

TRANSACTION ATOMICITY IMPLEMENTATION

11



CONCURRENCY CONTROL (ISOLATION)

Simultaneous Transactions:
=» Clients accessing bank accounts
=» Travel agents booking flights
= Inventory system updated by cash registers

Problems:

=» Simultaneous tfransactions may interfere
e LOst update
e INnconsistent retrieval

=» Consistency and Isolation require that there is no interference
Why?

Concurrency Conftrol Algorithms:

=» Guarantee that mulfiple fransactions can be executed
simultaneously while sfill being isolated.

=» As though fransactions executed one affer another

CONCURRENCY CONTROL (ISOLATION) 12



CONFLICTS AND SERIALISABILITY

Read/Write Conflicts Revisited:

conflict: operations (from the same, or different fransactions)
that operate on same data

read-write conflict: one of the operations is a write
write-write conflict: more than one operation is a write

Schedule:

=» Total ordering (interleaving) of operations
=» Legal schedules provide results as though fransactions serialised
(serial equivalence)

CONFLICTS AND SERIALISABILITY 13



Example Schedules:

BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION
x=0; x=0; x=0;
X=X+1; X=X+ 2; X=X+ 3;
END_TRANSACTION END_TRANSACTION END_TRANSACTION

(@) (b) (c)

Time —
Schedule1 | x=0; x=x+1; x=0; X=X+2;, x=0; X=x+3; | Legal
Schedule 2 | x=0; =0; X=X+1, x=Xx+2; x=0; Xx=x+3; | Legal
Schedule3 | x=0; x=0; XxX=Xx+1, x=0; Xx=x+2; x=x+3; | lllegal

CONFLICTS AND SERIALISABILITY



SERIALISABLE EXECUTION

Serial Equivalence:

=» conflicting operations performed in same order on all data
items

e Operationin Ty before T,, or
e Operationin T, before T;

Are the following serially equivalent?
= Ri(z)Wi(z)Ra(y)Wa(y) Rz (z)Wi(y)

2 Ri(z)Ra2(y)Wa(y)Re(z)Wi(z)Wi(y)
=2 Ri(z)R2(z)Wi(x)Wa(y)Ra2(y)Wi(y)
<> Ri(z)Wi(x)Rz2(x)Wa(y)R2(y)Wi(y)

SERIALISABLE EXECUTION

15



MANAGING CONCURRENCY

Dealing with Concurrency:
= Locking
=» Timestamp Ordering
=» Opftimistic Control

MANAGING CONCURRENCY

16



Transaction Managers:

READ/WRITE

Transactions

\y/

Transaction
manager

v A

Scheduler

v A

Data
manager

BEGIN_TRANSACTION
END_TRANSACTION

LOCK/RELEASE
or
Timestamp operations

Execute read/write

MANAGING CONCURRENCY

17



LOCKING

Pessimistic approach:; prevent illegal schedules
=» Lock must be obtained from scheduler before a read or write.
=» Scheduler grants and releases locks
=» Ensures that only valid schedules result

LOCKING

18



TWO PHASE LOCKING (2PL)

Lock point

Growing phase Shrinking phase

> <

>

Number of locks

Time —»

® Lock granted if no conflicting locks on that data item.
Otherwise operation delayed until lock released.

@ Lock is not released until operation executed by data manager
® No more locks granted after a release has taken place

All schedules formed using 2PL are serialisable.

TwO PHASE LOCKING (2PL)

19



PROBLEMS WITH LOCKING

Deadlock:
=» Detect and break deadlocks (in scheduler)
=» Timeout on locks

Cascaded Aborts:
=» Release(T;,x) — Lock(T};,x) — Abort(T;)
= T will have to be aborted too

=» Problem: dirty read; seen value from non-committed
fransaction

solution: Strict Two-Phase Locking:
=» Release all locks at Commit/Abort

PROBLEMS WITH LOCKING

20



TIMESTAMP ORDERING

=» Each fransaction has unique timestamp (¢ts(T;))

=» Each operation (T'S(W), T'S(R)) receives its fransaction’s
fimestamp

=» Each data item has two timestamps:
e read timestamp: tsrp(x) - transaction that most recently
read X

e write timestamp: tswr(x) - committed fransaction that most
recently wrote x

=» Also tentative write timestamps (noncommitted writes) ts.,,-(x)
= Timestamp ordering rule:
e write request only valid if T'S(W) > tswr aNd TS(W) > tsrp
e read request only valid if TS(R) > tswr
=> Conflict resolution:

e Operation with lower timestamp executed first

TIMESTAMP ORDERING

21



Write Read

s RD(X) s WR(X) tS(‘Tg) [ RD(X) s WR(X) tS(‘TQ
| | _ | | _
(T2) (T2) (T3) (T2) (T2) (T3)
tSWr(X)  tsyr (X) ts(T ) tSWwr(X)  tsyr (X) ts(Ta sing state
| | . | | from T,
(T1) (T2) (T3) (T2) (Ty4) (T3)
tSWr(X)  tSyr (X) ts(T ) tSWwr(X)  tsyr (X) ts(T5) wait until
‘ ‘ ‘ ‘ ‘ T,commits
(M) (Ta) (T3) (M) (Tp) -
s WR(X) s (T 3) s WR (X) tS(T 9
| _ | _
(T4) yd (T3) \ (Ta) yd (T3) \

TIMESTAMP ORDERING



OPTIMISTIC CONTROL

Assume that no conflicts will occur.

=>» Detect conflicts at commit time
=» Three phases:

e Working (using shadow copies)
e Validafion
e Update

OPTIMISTIC CONTROL

23



Validation:

=» Keep track of read set and write set during working phase
=» During validafion make sure conflicting operatfions with
overlapping tfransactions are serialisable

e Make sure T, doesn’t read items written by other T;s \Why?
e Make sure T, doesn’t write items read by other T35 \Why?
e Make sure T, doesn’t write items written by other T35 \Why?

=» Prevent overlapping of validation phases (mutual exclusion)

OPTIMISTIC CONTROL

24



Backward validation:

=» Check committed overlapping transactions
=> Only have to check if T, read something another T; has written
=> Abort T, if conflict

x Have to keep old write sets

Forward validation:
=» Check not yet committed overlapping transactions
=» Only have to check if T, wrote something another T; has read
=» Options on conflict: abort T,,, abort T;, wait

x Read sets of not yet committed transactions may change
during validation!

OPTIMISTIC CONTROL

25



DISTRIBUTED TRANSACTIONS

=» In distributed system, a single transaction will, in general, involve
several servers:

e fransaction may require several services,
e fransaction involves files stored on different servers

=>» All servers must agree to Commit or Abort, and do this
atomically.

Transaction Management:

= Centralised
=» Distributed

DISTRIBUTED TRANSACTIONS

26



Distributed Flat Transaction:

Client

T

Server W

Server X

N

Server Y

Server Z

DISTRIBUTED TRANSACTIONS

27



Distributed Nested Transaction:
Client

.

Server X

T1

Server M

T11

S\

T

Server Y

T2

AR

Server N

T12

Server O

T21

Server P

122

DISTRIBUTED TRANSACTIONS

28



DISTRIBUTED CONCURRENCY CONTROL

\ i/

Transaction
manager

\
Scheduler Scheduler Scheduler
Data Data Data
manager manager manager
Machine A Machine B Machine C

DISTRIBUTED CONCURRENCY CONTROL



DISTRIBUTED LOCKING

Centralised 2PL:

=» Single server handles all locks

=» Scheduler only grants locks, transaction manager contacts
data manager for operation.

Primary 2PL:

=» Each data item is assigned a primary copy
=» Scheduler on that server responsible for locks

Distributed 2PL:
=» Data can be replicated
=» Scheduler on each machine responsible for locking own data
=» Read lock: contact any replica
=» Write lock: contact all replicas

DISTRIBUTED LOCKING

30



Distributed Timestamps:

Assigning unigue fimestamps:

= Timestamp assigned by first scheduler accessed
=» Clocks have to be roughly synchronized

Distributed Optimistic Control.

=» Validation operations distributed over servers

= Commitment deadlock (because of mutual exclusion of
validation)

=» Parallel validation protocol
-* Make sure that transaction serialised correctly

DISTRIBUTED LOCKING

31



ATOMICITY AND DISTRIBUTED TRANSACTIONS

Distributed Transaction Organisafion:
=» Each distributed transaction has a coordinator,
the server handling the initial BeginTransaction call
=» Coordinator maintains a list of workers, i.e. other servers involved
in the transaction
=» Each worker needs to know coordinator
=» Coordinator is responsible for ensuring that whole fransaction is

atomically committed or aborted
» Require a distributed commit profocol.

ATOMICITY AND DISTRIBUTED TRANSACTIONS 32



DISTRIBUTED ATOMIC COMMIT

=* Transaction may only be able fo commit when all workers are
ready to commit (e.g. validation in optimistic concurrency)

=» Hence distributed commit requires at least two phases:
1. Voting phase: all workers vote on commit,
coordinator then decides whether to commit or abort.

2. Completion phase: all workers commit or abort according to
decision.

Basic protocol is called two-phase commit (2PC)

DISTRIBUTED ATOMIC COMMIT

33



Two-phase commit: Coordinator:

CommltReq yes(1) yes(2) yes(n-1)

CanCommlt{l n}

abort(1)

DoAbort{1-n} yes(n)

DoCommit{1—-n
abort(2) {

DoAbort{1-n}
DoAbort{1-n}

aborted

1. sends CanCommit, receives yes, abort;

2. sends DoCommit, DoAbort

DISTRIBUTED ATOMIC COMMIT

34



Two-phase commit: Worker:

NewSewer CanComnm DoCommit

N

DoAbort

abort

CanCommit

aborted

1. receives CanCommit, S€NdSs yes, abort;
2. receives DoCommit, DoAbort

What are the assumptions?

DISTRIBUTED ATOMIC COMMIT

35



Limitations:

=» Once node voted “yes”, cannot change its mind, even if
crashes.

e Atomic state update o ensure “yes” vote is stable.
= If coordinator crashes, all workers may e blocked,

e Can use different protocols (e.g. three-phase commit),

e iN some circumstances workers can obtain result from other
workers.

DISTRIBUTED ATOMIC COMMIT

36



Two-phase commit of nested transactions:
=» Two-phase commit is required, as a worker might crash after
provisional commit
=» On CanCommit request, worker:

e Vvotes "no”: if it has no recollection of subtransactions of
committing transaction

(i.e. must have crashed recently),
e Ofherwise

- aborts subtransactions of aborted transactions,

- saves provisionally committed fransactions in stable store,
- votes “yes”,

Two Approaches:

=» Hierarchic 2PC
=» Flat 2PC

DISTRIBUTED ATOMIC COMMIT 37



ELECTIONS

ELECTIONS

38



Coordinator:

=» Some algorithms rely on a distinguished coordinator process
-» Coordinator needs to be determined
=» May also need to change coordinator at runfime

Election:

=» Goal: when algorithm finished all processes agree who new
coordinator is.

ELECTIONS

39



WHAT IFITOLD YOU?

\

\

_ YOUR VOTE MATTERS!

EEEEEEEEE



Determining a coordinator:
=» Assume all nodes have unigue id

=» possible assumption: processes know all other process’s ids but
don’t know if they are up or down

=» Election: agree on which non-crashed process has largest id
number

Requirements:

@ Safety: A process either doesn’t know the coordinator or it
knows the id of the process with largest id number

@ Liveness: Eventuadlly, a process crashes or knows the coordinator

ELECTIONS 41



BULLY ALGORITHM

Three types of messages:

e [lection: announce election

e Answer: response to election

e Coordinator: announce elected coordinator
A process begins an election when it notices through a timeout
that the coordinator has failed or receives an Elecfion message
When starting an election, send Election to all higher-numbered
processes

If nOo Answer is received, the election starting process is the
coordinator and sends a Coordinafor message to all other
processes

If an Answer arrives, it waits a predetermined period of fime for
a Coordinator message

If a process knows it is the highest numbered one, it can
immediately answer with Coordinator

BULLY ALGORITHM

42



Previous coordinator
has crashed

(@) (b)

§ O
O B @
® g O

(d) (e)

What are the assumptions?

BULLY ALGORITHM



RING ALGORITHM

= Two types of messages:

e [Flection: forward election data
e Coordinator: announce elected coordinator

=» Processes ordered in ring

J

A process begins an election when it notices through a timeout
that the coordinator has failed.

2

Sends message to first neighbour that is up

J

Every node adds own id o Electfion message and forwards
along the ring

=» Election finished when originator receives Election message
again
=» Forwards message on as Coordinator message

RING ALGORITHM

44



Previous coordinator
has crashed

No response

560L,(1)

6

[5.6]

[5]

What are the assumptions?

Election message

Vg
[2]

[2,3]

RING ALGORITHM

45



MULTICAST

MULTICAST

46



=» Sender performs a single send ()
=» Group of receivers
= Membership of group is fransparent

machine
B

machine
A

machine
C

machine
D

machine
E

MULTICAST

47



EXAMPLES

Fault Tolerance:

=* Replicated (redundant) servers
=» Strong consistency: multicast operations

Service Discovery:

=» Mulficast request for service
=*» Reply from service provider

Performance:

-» Replicated servers or data
=*» Weaker consistency: multicast operations or data

Event or Nofificatfion propagation:

=» Group members are those interested in particular events
=» Example: sensor data, stock updates, network status

EXAMPLES

48



PROPERTIES

Group membership:
=» Static: membership does not change
=» Dynamic: membership changes

Open vs Closed group:
=» Closed group: only members can send
=» Open group: anyone can send

Reliability:
= Communication failure vs process failure

=» Guarantee of delivery:
=>» adll members (or none) — Atomic

=> all non-failed members

Ordering:
=» Guarantee of ordered delivery
=» FIFO, Causal, Total Order

PROPERTIES

49



EXAMPLES REVISITED

Fault Tolerance:

=* Reliability: Afomic = Membership: Static

=» Ordering: Total =» Group: Closed
Service Discovery:

= Reliability: No guarantee => Membership: Static

=» Ordering: None => Group: Open
Performnance:

=» Reliability: Non-failed = Membership: Dynamic
=» Ordering: FIFO, Causal =» Group: Closed

Event or Nofification propagation:

=» Reliability: Non-failed
=» Ordering: Causal

Membership: Dynamic
Group: Open

I d

EXAMPLES REVISITED 50



OTHER ISSUES

Performance:

=» Bandwidth
=> Delay

Efficiency:
=» Avoid sending a message over a link multiple times (stress)
=» Distribufion tree
-» Hardware support (e.g., Ethernet broadcast)

Network-level vs Application-level:
=» Network routers understand multicast
=» Applications (or middleware) send unicasts to group members
=» Overlay distribution tree

OTHER ISSUES

51



NETWORK-LEVEL MULTICAST

"You put packets in at one end, and the network

conspires to deliver them to anyone who asks." Dave
Clark

Ethernet Broadcast:

=» all hosts on local network
- MAC address: FF:FF:FF:FF:FF:FF

IP Multicast:

=» multicast group: class D Internet address:

=>» first 4 bits: 1110 (224.0.0.0 to 239.255.255.255)
=> permanent groups: 224.0.0.1 - 224.0.0.255
=» mulficast routers

=» join group: Internet Group Management Protocol (IGMP)
=» seft distribution trees: Protocol Independent Multicast (PIM)

NETWORK-LEVEL MULTICAST 52



APPLICATION-LEVEL MULTICAST SYSTEM MODEL

msend(g,m) : m = receive(Q) o
: Application
i ______ S S
I mdeliver(m)
< | = Multicast Middleware
|
____________ Ee e h_____
send(m) deliver(m)
: (O)
l A
: Network
|

Assumptions:
=>» reliable one-to-one channels
=» no failures
=» single closed group

APPLICATION-LEVEL MULTICAST SYSTEM MODEL

53



BASIC MULTICAST

T

1 B 2 A A2B1

=» no reliability guarantees

=» NO ordering guarantees

BASIC MULTICAST

54



B-send(g,m) {
foreach p in g {
send(p, m);

+

deliver(m) {
B-deliver(m) ;

BASIC MULTICAST

955



FIFO MULTICAST

\

=~

=
=

1 A2 B Al

=» order maintained per sender

2 B

FIFO MULTICAST

56



FO-init () {
S = 0; // local sequence #
for (i = 1 to N) V[i] = 0; // vector of last seen seq #s

FO-send(g, m) {
S++;

b

B-send(g, <m,S>); // multicast to everyone

+

FIFO MULTICAST



B-deliver(<m,S>) {
if (S == V[sender(m)] + 1) {
// expecting this msg, so deliver
FO-deliver (m) ;
Visender(m)] = S;
} else if (S > V[sender(m)] + 1) {
// not expecting this msg, so put in queue for later
enqueue (<m,S>) ;
by
// check if msgs in queue have become deliverable
foreach <m,S> in queue {
if (S == V[sender(m)] + 1) {
FO-deliver(m) ;
dequeue (<m,S>) ;
Visender(m)] = S;
Fr}

FIFO MULTICAST

58



=» order maintained between causdally related sends

CAUSAL MULTICAST

~

S

=

1 A2 B Al

= 1 and A, 2 and B are concurrent

=* 1 happens before B

B 2

CAUSAL MULTICAST

59



CO-init () {
// vector of what we’ve delivered already
for (i = 1 to N) V[i] = 0;

}
CO-send(g, m) {
VIi]++;
B-send(g, <m,V>);
+

B-deliver(<m,Vj>) { // j = sender(m)
enqueue (<m,Vj>) ;
// make sure we’ve delivered everything the message
// could depend on
wait until Vj[j] == V[j] + 1 and Vj[k] <= V[k] (k!= j)
CO-deliver (m) ;
dequeue (<m,Vj>); V[jl++;

CAUSAL MULTICAST

60



TOTALLY

e

ORDERED MULTICAST

=

/1

1 A B 2 1 AB 2

27?7

TOTALLY ORDERED MULTICAST

61



Sequencer Based:

Sequencer

1 — message
2 — sequence number

TOTALLY ORDERED MULTICAST

62



Agreement-based:

P2
1
1
@
P1 3 P3
3 1
P4

1 - message
2 — proposed sequence
3 — agreed sequence

TOTALLY ORDERED MULTICAST

63



Other possibilities:
=* Moving sequencer
=» Logical clock based

e eqach receiver determines order independently
e delivery based on sender tfimestamp ordering
e how do you know you have most recent timestamp?

-» Token based
=» Physical clock ordering

Hybrid Ordering:
= FIFO + Total
= Causal + Total

Dealing with Failure:

=> Communication
=> Process

TOTALLY ORDERED MULTICAST

64



HOMEWORK

=*» We only discussed distributed fransactions, but not replicated
tfransactions. What changes if we introduce replication? Do the
techniques we‘ve discussed still work?

=» How well does 2PC deal with failure? Can you improve it to deal
with more types of failure?

Hacker’s edition:
=» Do the Multicast (Erlang) exercise

HOMEWORK

65



READING LIST
Optional

Total Order Broadcast and Multicast Algorithms: Taxonomy
and Survey everything you always wanted to know...

Elections in a distributed computing system Bully algortihm

READING LIST

66



