
Multithreading
Lin Gao

cs9244 report, 2006

2

Contents

1 Introduction 5

2 Multithreading Technology 7

2.1 Fine-grained multithreading (FGMT) 8
2.2 Coarse-grained multithreading (CGMT) 10
2.3 Simultaneous multithreading (SMT) 11
2.4 Case study of implementing SMT 14

3 Crosscutting Issues 17

3.1 Cache Contention . 17
3.2 SMT and CMP . 18
3.3 Speculative multithreading 19

3

4 CONTENTS

Chapter 1

Introduction

Multithreading is first introduced to exploit thread-level paprallelism within
a processor. As has already been noted, memory delay has become an im-
portant problem for computer performance. A cache miss can result in stalls
range between tens of cycles to hundreds of cycles. Certain architectures in-
crease the delay further due to the overhead of the coherency protocol and
memory consistency model. The long latency introduced by a missed mem-
ory access can be hidden by another independent thread (may or may not
belong to same process). Although the execution of individual threads may
be degraded, the overall throughput has been improved.

The power of multithreading is not limited to speed up programs by
overlapping threads execution. Another important use of multithreading
is to promote utilization of existing hardware resources. The basic idea of
multithreading is to allow multiple threads to share the functional units of a
single processor in an overlapped fashion. Using the same example presented
above, stalls related to a cache miss means not only waste of the cpu cycles
(waiting for the date to be fetched), but also the pipeline bubbles and idle
functional units. Multithreading allows another ready thread to fill in and
avoids these idle resources, so as improves utilization of resources.

There is a clear trend in computer industry that more and more chips
will be multi-core microprocessors. This trend also urges multithreading
technology to get the full benefits of multiprocessors.

With multiprocessors, a system can be built that can actually execute
more than one process at the same time. But problems stated above still
exist, the number of pipeline bubbles is doubled when the number of pro-
cesses that can simultaneously execute doubled, and the number of waste
cpu cycles is doubled as well, if the stalls occur. So while multiprocessors

5

6 CHAPTER 1. INTRODUCTION

can improve performance by throwing transistors at the problem of execu-
tion time, the overall lack of increase in the execution efficiency of the whole
system means that multiprocessor can be quite wasteful.

Multithreading become so important that hardware vendors have al-
ready implemented it in their commercial architectures, Pentium 4 Xeon is
a good example. More details of multithreading will come in Chapter 2, and
Chapter 3 will discuss some issues extended from multithreading.

Chapter 2

Multithreading Technology

Multithreading enables the thread-level parallelism (TLP) by duplicating
the architectural state on each processor, while sharing only one set of pro-
cessor execution resources. When scheduling threads, the operating system
treats those distinct architectural states as separate ”logical” processors.
Logical processors are the hardware support for sharing the functional units
of a single processor among different threads. There are several different
sharing mechanism for different structures. The kind of state a structure
stores decides what sharing mechanism the structure needs. Table 2.1 enu-
merates which resource falls into which category:

Category Resources

Replicated
Program counter(PC)
Architectural registers
Register renaming logic

Partitioned
Re-order buffers
Load/Store buffers
Various queues, like the the scheduling queue, etc

Shared
Caches
Physical registers
Execution units

Table 2.1: Sharing Mechanisms

Replicated resources are the kind of resources that you just cannot get
around replicating if you want to maintain two fully independent contexts
on each logical processor. The most obvious of these is the program counter

7

8 CHAPTER 2. MULTITHREADING TECHNOLOGY

(PC), which is the pointer that helps the processor keep track of its place
in the instruction stream by pointing to the next instruction to be fetched.
We need separate PC for each thread to keep track of its instruction stream.

Partitioned resources are mostly to be found in form of queues that
decouple the major stages of pipeline from one another. There are two dif-
ferent kinds of partitioned resources, statically partitioned resource and
dynamically partitioned resource. We will explain them in detail in sec-
tion 2.4. No matter which category a partitioned resource belongs to, there
are always some constrains for threads to obey, specifically the size of the
resource any thread allowed to use.

Shared resources are at the heart of multithreading and makes the tech-
nique worthwhile. The more resources that can be shared between logical
processors, the more efficient multithreading can be.

All multithreading approaches use similar resources partitioning system.
Although there are similarities in the multithreading implementations, there
are still some differences. Two major differences are 1) thread scheduling
policy, and 2) pipeline partitioning. The first difference comes along with
the question: when to switch from one thread to another? The answer
to this question depends on what kind of latencies (specifically length of
latencies) are going to be tolerated. Associated with the second difference
is how exactly threads share the pipeline. Similarly, it related to how much
single thread performance is willing to sacrifice.

Based on above criteria, there are three main approaches to multi-
threading: 1) Fine-grained multithreading (FGMT), 2) Coarse-grained mul-
tithreading (CGMT), and 3) Simultaneous multithreading (SMT). Figure 2.1
shows the differences among three approaches. Different color represents dif-
ferent thread and the white box means idle execution unit. At every cycle,
four execution units can work in parallel. As illustrated in Figure 2.1 (a)
for a single-thread processor, a lot of execution units are wasted because of
lack of ILP. Three multithreading approaches use TLP to improve the re-
sources utilization and hide the latencies caused by any event, the following
section will discuss these three approaches in detail. And the last section
in this chapter will investigate the implementation of SMT in a commercial
processor.

2.1 Fine-grained multithreading (FGMT)

Fine-grained multithreading switches between threads on a fixed fine-grained
schedule, usually processing instructions from a different thread on every

2.1. FINE-GRAINED MULTITHREADING (FGMT) 9

Figure 2.1: Three different approaches use the issue slots of a superscalar
processor

10 CHAPTER 2. MULTITHREADING TECHNOLOGY

cycle, causing the execution of multiple threads to be interleaved. Figure 2.1
(c) illustrates conceptually how FGMT works.

As illustrated above, this cycle-by-cycle interleaving is often done in a
round-robin fashion, skipping any threads that are stalled due to branch mis-
predict or cache miss or any other reason. But the thread scheduling policy
is not limited to the cycle-by-cycle (round-robin) model, other scheduling
policy can also be applied too.

Although FGMT can hide performance loses due to stalls caused by any
reason, there are two main drawbacks for FGMT approach:

• FGMT sacrifices the performance of the individual threads.

• It needs a lot of threads to hide the stalls, which also means a lot of
register files.

There were several systems using FGMT, including Denelcor HEP and
Tera MTA (both built by Burton Smith). Since the drawbacks listed above,
sole FGMT is not popular today.

2.2 Coarse-grained multithreading (CGMT)

Coarse-grained multithreading won’t switch out the executing thread until
it reaches a situation that triggers a switch. This situation occurs when
the instruction execution reaches either a long-latency operation or an ex-
plicit additional switch operation. CGMT was invented as an alternative
to FGMT, so it won’t repeat the primary disadvantage of FGMT : severely
limits on single-thread performance.

CGMT makes the most sense on an in-order processor that would nor-
mally stall the pipeline on a cache miss (using CGMT approach, rather
than stall, the pipeline is filled with ready instructions from an alternative
thread).

Since instructions following the missing instructions may already be in
the pipeline, they need to be drained from the pipeline. And similarly,
instructions from new thread will not reach the execution stage until have
traversed earlier pipeline stages. The cost for draining out and filling in
the pipeline is considered as thread-switch penalty, and it depends on the
length of the pipeline. So normally CGMT need short in-order pipeline for
good performance.

Also because of the thread-switch penalty, CGMT is useful only for re-
ducing the penalty of high cost stalls, where thread-switch penalty is negli-
gible compared to the stall time. It then turns out to be CGMT’s greatest

2.3. SIMULTANEOUS MULTITHREADING (SMT) 11

Figure 2.2: An example pipeline supporting SMT

weakness that it cannot tolerate short stalls. This limits its ability to im-
prove the throughput and CGMT does suffer from the performance degra-
dation when short latency instructions occur frequently.

Figure 2.1 (b) shows how CGMT exploits the resources of a superscalar.
CGMT is commercialized in the Northstar and Pulsar Power PC processors
from IBM.

2.3 Simultaneous multithreading (SMT)

Simultaneous multithreading is a fine-grained multithreading with dynami-
cally varying interleaving of instructions from multiple threads across shared
execution resources. The motivation behind the SMT is that, although
FGMT and CGMT improve resources utilization by overlapping the latency
of an instruction from one thread by the execution of another thread, there
are still lots of white boxes (which are idle issue slots) in Figure 2.1 (b) and
(c).

SMT share functional units dynamically and flexibly between multi-
ple threads. Figure 2.2 gives an example pipeline supporting SMT. The
pipeline is partitioned into two parts, the front-end (first two stages with
gray shadow) and the back-end (pipeline stages that are thread-blind). Re-
gardless of the difference between varied implementations of SMT, instruc-

12 CHAPTER 2. MULTITHREADING TECHNOLOGY

Figure 2.3: Statically Partitioned Queue

tions from multiple threads have to be joined before the pipeline stage where
resources are shared. In our example, PC in fetch stage and register map in
decode stage are replicated. Architectural registers are renamed to share a
common pool of physical registers, and the same architectural register from
different threads are mapped to different physical registers, so instructions
from multiple threads can be mixed in the data path without confusing
sources and destinations across the threads. This leads to the insight that
multithreading can be built on top of an out-of-order processor.

Pipeline stages from back-end speak a different story. These stages are
thread-blind because they do not require the knowledge of SMT. For ex-
ample, in the execute stage, the execution units don’t know the difference
between one thread from another when they execute instructions. An in-
struction is just an instruction to the execution units, regardless of which
thread/logical processor it belongs to.

As mentioned at the beginning of this chapter, other than replicating
some resources, a group of resources need to be partitioned between threads
and mechanisms of partitioning falls into the following two types.

First, statically partitioned resource is simply decomposed equally into

2.3. SIMULTANEOUS MULTITHREADING (SMT) 13

Figure 2.4: Dynamically Partitioned Queue

as many pieces as the number of logical processors it has. The uop queue in
Pentium 4 Xeon [5] is a statically partitioned queue as showed in Figure 2.3.
The uop queue is split in half, with half of its entries designated for the sole
use of one logical processor and the other half designated for the sole use of
the other.

Secondly, dynamically partitioned resource allows any logical processor
to use any entry of that resource but it places a limit on the number of entries
that any one logical processor can use. The scheduling queue in Xeon is a
dynamically partitioned queue as showed in Figure 2.4. From the point of
view of each logical processor and thread, this kind of dynamic partitioning
has the same effect as fixed partitioning: it confines each logical processor
to half of queue. However, form the point of view of the physical processor,
there is a crucial difference. In this example, although scheduling queue is

14 CHAPTER 2. MULTITHREADING TECHNOLOGY

Figure 2.5: Xeon’s front-end detailed pipeline

itself aware of the differences between instructions from one thread and the
other, the scheduler, as a SMT-unaware shared resource, pull instructions
out of the queue as if the entire queue holding a single instruction stream.

Like FGMT, SMT tolerates all latencies (both long stalls and short
stalls), but it also sacrifices some individual threads’ performance. SMT
is implemented on a commercial processor Pentium 4 Xeon from Intel. We
will further discuss the SMT implementation in next section.

2.4 Case study of implementing SMT

Simultaneous multithreading (SMT), also know as hyper-threading, might
seem like a pretty large departure from the kind of conventional, process-
switching multithreading done on a single-threaded CPU, it actually doesn’t
add too much complexity to the hardware. Intel reports that adding hyper-

2.4. CASE STUDY OF IMPLEMENTING SMT 15

threading to their Xeon processor [5] added only 5% to its die area. This
section investigates the Xeon’s SMT implementation.

Figure 2.5 along with Figure 2.6 give the full information of Xeon’s
detailed pipeline. Intel’s Xeon is capable of executing at most two threads in
parallel on two logical processors. Here are some details of major functions:

• Execution Trace Cache (TC) TC can only be accessed by one thread
per cycle. If both logical processors want access to the TC at the
same time, access is granted to one then the other in alternating clock
cycles. The TC entries are tagged with thread information and are
dynamically allocated as needed. The share nature of the TC allows
one logical processor to monopolize it if only one logical processor is
in running.

• ITLB and Branch Prediction The instruction translation lookaside
buffer (ITLB) receives request from TC to deliver new instructions
when a TC miss occurs, and it translates the next-instruction pointer
(IP) address to a physical address. ITLB is replicated. The branch
prediction structures are either replicated or shared: the return stack
buffer and the branch history buffer is replicated because both struc-
tures are very small, and the large global history array is a shared
structure with entries tagged with a logical processor ID.

• Instruction Decode Both logical processors share the decoder logic. If
both threads are decoding instructions simultaneously, decoder logic
alternates between threads in a coarse granularity. The switch policy
is chosen in the interest of die size and to reduce complexity.

• Uop Queue Decoded instructions that written to TC and forwarded to
uop queue, are called micro-operations or uops. This queue is statically
partitioned in half as mention in Section 2.3. And this queue decouples
the front-end from its out-of-order execution engine.

• Allocator The allocator logic assigns resources between uops, includ-
ing the 126 re-order buffer (ROB) entries, 128 integer and 128 floating-
point physical registers, 48 load and 24 store buffer entries. Some of
the buffers are partitioned (ROB and load/store buffer).

• Register Rename The register rename logic renames the architectural
IA-32 registers onto the machine’s physical registers. This allows the
8 GPRs to dynamically share the 128 physical registers. It uses a
register alias table (RAT) to track the mapping. RAT is replicated for
each logical processor.

16 CHAPTER 2. MULTITHREADING TECHNOLOGY

Figure 2.6: Xeon’s out-of-order execution engine detailed pipeline

• Instruction Scheduling Five uop schedulers are used to schedule differ-
ent types of uops for the various execution units. Each scheduler has
its own scheduling queue of eight to twelve entries. The scheduler is
SMT-unaware, while the scheduling queue is dynamically partitioned
to avoid deadlock and ensure fairness as we’ve explained in Section 2.3.

• Retirement The retirement logic commits the architecture state in
program order. If two uops from two logical processors respectively
are ready to retired, the retirement logic retires the uops in program
order for each logical processor by alternating between the two logical
processores.

Xeon together with its hyperthreading technology allows software to run
unmodified on two logical processors. While hyperthreading will not provide
the level of performance scaling achieved by adding a second processor,
benchmark tests show some server applications can experience a 30 percent
gain in performance.

Chapter 3

Crosscutting Issues

3.1 Cache Contention

For a simultaneously multithreaded processor, the cache coherency problems
associated with SMP all but disappear. Both logical processors on an SMT
system share the same caches as well as the data in those caches. So if a
thread from logical processor 0 wants to read some data that’s cached by
logical processor 1, it can grab that data directly from the cache without
having to snoop another cache located some distance away in order to ensure
that it has the most current copy.

However, since both logical processors share the same cache, the prospect
of cache conflicts increase. This potential increase in cache conflicts has the
potential to degrade performance seriously.

The fact that Xeon’s two logical processors share a single cache does
not implicates the cache size is effectively halved for each logical processor.
Actually, each of the Xeon’s caches–the trace cache, L1, L2, and L3–is SMT-
unaware, and each treats all loads and stores the same regardless of which
logical processor issued the request. So none of the caches know the differ-
ence between one logical processor and another, or between code from one
thread or another. This means that one executing thread can monopolize
virtually the entire cache if it wants to, and the cache, unlike the processor’s
scheduling queue, has no way of forcing that thread to cooperate intelligently
with the other executing thread. The processor itself will continue trying
to run both threads, by issuing fetched operations from each one. This
means that, in a worst-case scenario where the two running threads have
two completely different memory reference patterns (i.e. they’re accessing
two completely different areas of memory and sharing no data at all) the

17

18 CHAPTER 3. CROSSCUTTING ISSUES

cache will begin thrashing as data for each thread is alternately swapped in
and out and bus and cache bandwidth are maxed out.

This kind of cache contention is observed that for some benchmarks SMT
performs significantly worse than either SMP or non-SMT implementations
within the same processor family, especially in the memory-intensive portion
of the benchmark suite.

In summary, resource contention is definitely one of the major pitfalls of
SMT, and it’s the reason why only certain types of applications and certain
mixes of applications truly benefit from the technique. With the wrong mix
of code, hyper-threading decreases performance, just like it can increase
performance with the right mix of code.

3.2 SMT and CMP

Chip Multiprocessors (CMPs) integrates multiple processor cores on a single
chip, which eases the physical challenges of packing and interconnecting
multiple processors. This kind of tight integration reduces off-chip signaling
and results in reduced latencies for processor-to-processor communication
and synchronization.

Both CMP and SMT [2, 7] are techniques for improving throughput of
general-purposed processors by using multithreading. SMT is a technique
that permits multiple independent threads to share a group of execution
resources. It improves the utilization of processor’s execution resources and
provides latency tolerance. CMPs use relatively simple single-thread proces-
sor cores to exploit thread-level parallelism with one application by executing
multiple threads in parallel across multiple processor cores.

From an architectural point of view, SMT is more flexible. However the
inherent complexity of SMT architecture leads to the the following prob-
lems: 1) increasing the die area, 2) requiring longer cycle time. Since SMT
architecture is composed of many closely interconnected components, in-
cluding various buffers, queues and register files. I/O wires are required to
interconnect these units and delay associated with these wires may delay
the CPU’s critical path.

On the other hand, CMP architecture uses relative simple single-thread
processor (comparing to the complex hardware design of SMT), so it allows a
fairly short cycle time. Also CMP is much less sensitive to poor data layout
and poor communication management since the inter-core communication
latencies are lower. From a software perspective, CMP is an ideal platform
to run multiprogrammed workloads or multithreaded applications. However,

3.3. SPECULATIVE MULTITHREADING 19

CMP architecture may lead to resource waste if an application cannot be
effectively decomposed into threads or there is not enough TLP.

Since both SMT and CMP have their advantages and drawbacks, a lot
researches have been done to improve both architectures, including a com-
bined CMP/SMP architecture and also speculative multithreading. We will
discuss speculative multithreading in the following section.

3.3 Speculative multithreading

Since a large number of applications show little thread-level parallelism, both
hardware and software face the challenge to discover adequate TLP in this
class of applications to get the benefits from multithreading architectures.
Speculative multithreading (SpMT) [1, 4, 3, 6] is an attempt to explore TLP
for sequential applications, especially for nonnumeric applications. SpMT
releases threads execution from strict semantic order presented in the appli-
cation, so thread running on one processor may be control or data dependent
on another thread that is still in running on another processor.

The speculative parallel execution of threads in SpMT may lead to de-
pendence violation, also recognized as mis-speculation. Hardware tracks
logical order among threads to detect any dependence violation. When mis-
speculation found, related threads need to rollback and be re-executed.

There are many challenges for the SpMT model, including:

• The proper mechanism to detect mis-speculation

• The proper mechanism to rollback (partially or fully?)

• How to efficiently identify threads

• How to calculate the benefits according to thread start-up overhead
and cost of mis-speculation

Research shows that the potential performance gain for SpMT model is
significant. Now it is the challenge for both hardware and software develop-
ers to turn the potential gain into a really improvement.

20 CHAPTER 3. CROSSCUTTING ISSUES

Bibliography

[1] Z. H. Du, C. Ch. Lim, X. F. Li, C. Yang, Q. Zhao, and T. F. Ngai. A
cost-driven compilation framework for speculative parallelization of se-
quential programs. In Proceedings of Conference on Programming Lan-
guage Design and Implementation, 2004.

[2] R. A. Dua and B. Lokhande. A comparative study of smt and cmp
multiprocessors. Project Report, ee8365.

[3] V. Krishnan and J. Torrellas. Hardware and software support for speucu-
lative execution of sequential binaries on a chip-multiprocessor. In Pro-
ceedings of the 12th International Conference on Supercomputing, pages
85–92. ACM Press, 1998.

[4] P. Marcuello and A. Gonzalez. A quantitive assessment of thread-level
speculation techniques. In Proceedings of the 15th Int. Parallel and Dis-
tributed Processing Symposium, 2000.

[5] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller, and M. Up-
ton. Hyper-threading technology architecture and microarchitecture. In
Intel Technology Journal, 2002.

[6] T. Ohsawa, M. Takagi, S. Kawahara, and S. Matsushita. Pinot: Specu-
lative multi-threading processor architecture exploiting parallelism over
a wide range of granularities. In Proceedings of the 38th International
Symposium on Microarchitecture (MICRO’05), 2005.

[7] R. Sasanka, S. V. Adve, Y. Chen, and E. Debes. Comparing the energy
efficiency of cmp and smt architectures for multimedia workloads. In
UIUC CS Technical Report UIUCDCS-R-2003-2325, 2003.

21

