Assignment 2

Question 2 (4 marks)

1) (2 marks)

Step 1 Reduce Right Side:

\[F' = \{ AB \rightarrow C, AB \rightarrow D, E \rightarrow D, \ ABC \rightarrow D, \ ABC \rightarrow E, E \rightarrow A, E \rightarrow B, D \rightarrow A, D \rightarrow G, ACD \rightarrow B, ACD \rightarrow E \} \]

Step 2 Reduce Left Side:

For \(ABC \rightarrow D \), \(AB \rightarrow D \) is inferred by \(F' \). Hence, \(ABC \rightarrow D \) is replaced by \(AB \rightarrow D \).

Similarly, we can replace \(ABC \rightarrow E \) with \(AB \rightarrow E \), \(ACD \rightarrow B \) with \(CD \rightarrow B \), \(ACD \rightarrow E \) with \(CD \rightarrow E \).

Step 3 Reduce Redundancy:

\(\{ E \}^+_{F' \setminus \{ E \rightarrow D \}} = \{ A, B, C, D, E, G \} \), so \(E \rightarrow D \) is redundant. Thus, we remove it from \(F' \).

Similarly, we can remove \(AB \rightarrow E \) and \(CD \rightarrow B \).

Thus, \(F_m = \{ AB \rightarrow C, D \rightarrow A, D \rightarrow G, E \rightarrow B, AB \rightarrow D, E \rightarrow A, CD \rightarrow E \} \)

This is a sample solution.

2) (2 marks)

For \(F_m = \{ AB \rightarrow C, D \rightarrow A, D \rightarrow G, E \rightarrow B, AB \rightarrow D, E \rightarrow A, CD \rightarrow E \} \):

- From \(AB \rightarrow C, AB \rightarrow D \), derive \(R_1 \{ A, B, C, D \} \)
- From \(D \rightarrow A, D \rightarrow G \), derive \(R_2 \{ A, D, G \} \)
- From \(E \rightarrow B, E \rightarrow A \), derive \(R_3 \{ A, B, E \} \)
- From \(CD \rightarrow E \), derive \(R_4 \{ C, D, E \} \)

None of the relation schemas contains a key of \(R \), add one relation schema \(R_5 \{ E, H \} \)
Question 3 (8 marks)

1) (2 mark)
T1, T2: redo
T3: undo

2) (2 mark)
T2: redo
T3: undo

3) (2 marks)
Yes. There is no cycle in its schedule graph:

4) (2 marks)
There is no way to construct a schedule whose wait-for graph contains cycles.
We have T1 and T3 read and write on X, we have potential to make T1 wait-for T3 or T3 wait-for T1.
We have T2 and T3 read and write on Y, we have potential to make T2 wait-for T3 or T3 wait-for T2.
If we make T1 wait-for T3, we cannot make T3 wait-for T1 directly or through T2.
If we make T3 wait-for T1, we cannot make T1 wait-for T3 directly or through T2.

If we make T2 wait-for T3, we cannot make T3 wait-for T2 directly or through T1.

If we make T3 wait-for T2, we cannot make T2 wait-for T3 directly or through T1.