Assignment 3

The deadline of assignment 3 is:

Fri 25 May, 5:00 pm

Question 1 (5 marks)

Given a graph database D containing following graphs:

1) Suppose $\text{minFreq} = 3$, draw at least 4 frequent patterns/fragments in the graph database D. A graph/pattern g is frequent if its occurrence frequency is no less than minFreq. (5 marks)

Question 2 (10 marks)

Given the following query q and data graph G.

1) Please draw a Neighborhood Equivalence Class tree (NEC tree) of query q. (5 marks)
The Neighborhood Equivalence Class (NEC) of a query vertex \(u \) is a set of query vertices, which are equivalent to \(u \). The equivalence is defined as follows:

Let \(\cong \) be an equivalence relation over all query vertices in \(q \) such that, \(u_i (\in V(q)) \cong u_j (\in V(q)) \) if for every embedding \(m \) that contains \((u_i, v_x)\) and \((u_j, v_y)\) \((v_x, \in V(g))\), there exists an embedding \(m' \) such that \(m' = m - \{(u_i, v_x), (u_j, v_y)\} \cup \{(u_i, v_y), (u_j, v_x)\} \).

Please read the following paper for more detail:

2) Please decompose the vertex set of query \(q \) according to Core-Forest-Leaf decomposition. That is, decompose the vertex set of \(q \) into three sets including the core-set, the forest-set and the leaf-set. (5 marks)

Given a query \(q \), the Core-Forest-Leaf decomposition consists of core-forest decomposition and forest-leaf decomposition.

Core-Forest Decomposition

Edges of \(q \) can be categorized into two categories regarding a spanning tree \(q_T \) of \(q \): edges in \(q_T \) are called tree edges while edges of \(q \) that are not in \(q_T \) are called non-tree edges regarding \(q_T \).

Our core-forest decomposition is to compute a small dense subgraph containing all non-tree edges regarding any spanning tree, which is defined as follows. Given a query \(q \), the core-forest decomposition of \(q \) is to compute the minimal connected subgraph \(g \) of \(q \) that contains all non-tree edges of \(q \) regarding any spanning tree of \(q \); \(g \) is called the core-structure of \(q \). The subgraph of \(q \) consisting of all other edges not in the core-structure called the forest-structure of \(q \), denoted \(T \). We call the vertex set of the core-structure as the core-set \(V_C \) and the forest-structure of \(q \) doesn’t contain any vertices in \(V_C \).

Forest-Leaf Decomposition

Given the forest-structure \(T \), rooting each tree in forest-structure at its connection vertex with core-structure. The set \(V_I \) is called the leaf set which contains all the degree-one vertices in the trees of forest-structure. The set of vertices not in \(V_C \cup V_I \) is called the forest set \(V_T \).

Let \(V(q) \) denotes the vertex set of \(q \), \(V(q) = V_C \cup V_T \cup V_I \) and \(V_C \cap V_T = V_C \cap V_I = V_T \cap V_I = \emptyset \).

Please read the following paper for more detail:

Considering Figure 4 in the above paper, we can decompose the vertex set of q into:
The core set: u_0, u_1, u_2
The forest set: u_3, u_4, u_5, u_6
The leaf set: u_7, u_8, u_9, u_{10}

Question 3 (5 marks)

Given a social influence graph G_1 as following:

![Social Influence Graph](image)

1) Choose one activated seed s from $v_0 \sim v_9$ which can generate the largest influence spreads (i.e., let $w(s) = 1$, maximize $\sum_{i=0}^{9} w(v_i)$). (5 marks)

Initially, all the vertices are inactivated. We define $w(u)$ as the probability of a vertex u which can be activated. In graph G_1, $p(u, v)$ on a directed link from u to v is the probability that v is activated by u after u is activated (e.g., $p(v_0, v_1) = 0.3$). For example, $w(v_0) = 1$, $w(v_2) = 0.2$, and $w(v_3) = 0.2 \times 0.1 = 0.02$ if we choose v_0 as the activated seed.