

Outline

- Introduction
- Uniform Error techniques
- Relative Error techniques
- Duplicate-insensitive techniques
- Miscellaneous
- Future Studies

Applications

- Equal Width Histograms:
$(x 1,1),(x 2,2),(x 3,3),(x 4,4),(x 5,5),(x 6,6),(x 7,7),(x 8,8),(x 9)$ 9), (x10, 10), (x11, 10), (x12, 10), (x13, 11), (x14, 11), (x15, 11), (x16, 12)

Support approximate range aggregates.

- In stock market, road traffic, network, given a value, find its rank (or quantile).
- Portfolio risk management counting
- Counting Inversions in on-line Rank Aggregation
- etc.

COMP9314 Xuemin Lin @DBG.unsw

Rank/Order-based Queries

Given : a set of N data elements (x, v) where $v=f(x)$ and the elements are ranked against a monotonic order of v.

- Rank Query 1 (RQ1):

Given r, find an element value with the rank r.

- Φ-quantile (a popular form of RQ1)

Given $\Phi \in(0,1]$, find the element with rank [$\Phi N]$

- Rank Query 2 (RQ2):

Given v, find how many elements with values less than v.
Note: RQ1 is equivalent to $R Q 2$.
COMP9314
Xuemin Lin @DBG.unsw

Example

Data Stream:
$12,10,11,10,1,10,11,9,6,7,8,11,4,5,2,3$

Sorted Sequence:

COMP9314

Some Background

- $O\left(\mathrm{~N}^{1 / \mathrm{p}}\right)$ memory space is required in exact computation in p scans of data [TCS80]
- In data streams
- One pass scan
- summary with small memory space
- In stream processing, approximation is a good alternative to achieve scalability.

COMP9314

Uniform Error Techniques

- Uniform Error: ϵ-approximate

Given r, return any element e with rank r^{\prime} within
$[r-\varepsilon N, r+\varepsilon N](0<\varepsilon<1)$. Space Lower bound: $O(1 / \varepsilon)$

Uniform Error Technique

- GK Algorithm

- Randomize Algorithm
- Count-Min Algorithm
- Sliding window techniques

COMP9314

GK Algorithm [sigmod01, PSU]

Deterministic Algorithm:
Keep $\left(v_{i}, r_{\text {min }}\left(v_{i}\right), r_{\text {max }}\left(v_{i}\right)\right)$ for each observation i.
Theorem 1: If $\left(r_{\max }\left(v_{i+1}\right)-r_{\text {min }}\left(v_{i}\right)-1\right)<2 \varepsilon N$, then ε approximate summary.

Tuple: $\left\{v_{i}, g i, \Delta i\right\} ; g_{i}=r_{\text {min }}(v i)-r_{\text {min }}\left(v_{i-1}\right)$,

$$
\Delta_{i}=r_{\max }\left(v_{i}\right)-r_{\min }\left(v_{i}\right)
$$

$r_{\text {min }}\left(v_{i}\right)$: minimum possible rank of v_{i} $r_{\max }\left(v_{i}\right)$: maximum possible rank of v_{i}

GK Algorithm [sigmod01, PSU]

Goal: always maintain ε-approximate summary

GK Algorithm [sigmod01, PSU]

Synopsis structure S: sequence of tuples $t_{1}, t_{2}, \ldots, t_{s}$ where $t_{i}=\left(r_{\min }\left(v_{i}\right), r_{\max }\left(v_{i}\right), v_{i}\right)$
Insert new observations, into summary:
Insert tuple before the ith tuple. $g_{\text {new }}=1 ; \Delta_{\text {new }}=g_{i}+\Delta_{i}-1$;
Delete all "superfluous" entries g

General strategy:	
-Delete tuples with small capacity and preserve tuples with	
large capacity.	
- Do batch compression.	
COMP9314	Xuemin Lin @DBG.unsw

Space bound: $O\left(\frac{1}{\varepsilon} \log \varepsilon N\right)$ to achieve ε-approximation.
Given r, there's at least one element such that
$r_{\max }\left(v_{i}\right)-\varepsilon n<=r<=r_{\text {min }}\left(v_{i}\right)+\varepsilon n$
Query alg: first hit.
COMP9314 Xuemin Lin @DBG.unsw

Randomize Algorithm

[Sigmod99, IBM]

Sampling

- Exponential reduction of sampling rate regarding an increment of N
- ϵ-approximate with confidence 1- δ
- Feed GK-like (compress) algorithm the samples
- Space bound: $O\left(\frac{1}{\varepsilon} \log 1 / \varepsilon \log 1 /(\AA)\right)$

Sliding window technique

Sliding window : the most recent N elements in data streams.

Problem:

Input: data stream D \& a sliding window (N)
Output: an ε-approximate quantile summary for the sliding window (N).

COMP9314
Xuemin Lin @DBG.unsw

Count-min sketch
[LATIN04, Rutgers Uni]
Dyadic range

- Stream with Updates
- ϵ-approximate (confidence 1-ס)
- Space $O\left(\frac{1}{\epsilon} \log ^{2}|U| \log \frac{\log |U|}{\delta}\right)$
- Basic idea:

Algorithm [icde04, UNsw]

Algorithm outline:

- Partition sliding window equally into $\lceil 2 / \varepsilon\rceil$ buckets
- Maintain an \sum_{t}^{-}-approx. sketch in the most recent bucket by GK-algorithm
- Compress the sketch when the most recent bucket is full.
- Expire the oldest bucket once a new bucket starts.
- Space required : $O\left(\frac{1}{\varepsilon} \log \varepsilon^{2} N+\frac{1}{\varepsilon^{2}}\right)$

Global ε-approximate sketch
Step 1: Merge the compressed sketches in a sort-merge fashion

Glpbal ε-approximate sketch

- Theorem 2: The merged sketch is $\varepsilon / 2-$ approximate
- For any tuple $\left(v_{j} r_{i}, r_{i}^{+}\right)$in merged sketch, verify:

$$
r_{i}^{+}-r_{i-1}^{-} \leq \varepsilon \sum_{i} N_{i}
$$

$$
r_{i}^{-} \leq r_{v} \leq r_{i}^{+}
$$

COMP9314

Global ε-approximate sketch

Theorem 3: Given an $\varepsilon / 2$-approximate sketch on (1- $\varepsilon / 2$)N data items, then lifting the sketch by $\varepsilon N / 2$ results in an ε-approximate sketch for the set of N data items.

Query the summary for any ϕ-quantile (first-hit):

$$
\left\{\begin{array}{l}
\lfloor\phi N\rfloor-r^{-} \leq \varepsilon N \\
r^{+}-\lfloor\phi N\rfloor \leq \varepsilon N
\end{array}\right.
$$

Global ε-approximate sketch

Step 2: lift the summary by $\varepsilon \mathrm{N} / 2$ Lift operation: add $\varepsilon N / 2$ to each r_{i}^{+}

Variable length sliding window
 n-of-N model :

- Answer all sliding window queries with window length $n(n \leq N)$

Other window semantics

- Landmark windows
landmark at t11

Quantile summary for n-of-N model (ICDEO4, ours)

COMP9314
Xuemin Lin @DBG.unsw

Quantile summary for n-of-N model

- Outline of the Algorithm [icde04, unsw] Maintenance:
- Partition a data stream by $\frac{\varepsilon}{2}-\underset{\varepsilon}{E} H$ (Exponential Histogram)
- For each bucket, maintain an $\frac{\varepsilon}{2}$-approximate sketch to the current data item
- Delete redundant buckets and expired buckets

Query:

- Get one sketch to answer quantile query on most recent n items
Space: $\quad O\left(\max \left\{\frac{1}{\varepsilon^{2}} \log \varepsilon^{2} N, \frac{1}{\varepsilon} \log ^{2} \varepsilon^{2} N\right\}\right)$
COMP9314
Xuemin Lin @DBG.unsw
More result [PODS04, Stanford]
sliding window: $O\left(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon} \log N\right)\left(O\left(\max \left\{\frac{1}{\varepsilon} \log \varepsilon^{2} N, \frac{1}{\varepsilon^{2}}\right\}\right)\right)$
n-of-N: $O\left(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon} \log \varepsilon N \log N\right)$

Relative Error Techniques

- Relative ϵ-approximate

Given r, return any element e with rank r ' such that

COMP9314

Applications

- Skewed data. Like IP network traffic data - Long tails of great interest
- Eg: 0.9, 0.95, 0.99-quantiles of TCP round trip times
- In some applications, "head" or "tail" is the most important part.
- Counting inversions
- etc.

Existing Techniques

- GZ Algorithm [SODA03, Bell Lab]
- Space $O\left(1 / \varepsilon^{3} \log N\right)$, need to know N in advance
- CKMS Algorithm [ICDE05, AT \& T]
- No sub-linear space bound guarantee
- Extend GK-algorithm

COMP9314

MR - Correctness

For the query $r \in\left[2^{i} n_{0}, 2^{i \mid 1} n_{0}\right]$
MR [icde06, UNsw]

- Without priori knowledge of N, with probability at lest $1-\delta$, we can get the relative ε-approximate quantile with space $O\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\delta} \log \varepsilon^{2} N\right)$
- Processing time per element $O\left(\log \left(\frac{\sigma^{2} V}{\operatorname{tog} / / 8}\right) \log \left(\epsilon^{-2} \log \frac{1}{8}\right)\right)$
$\left(s_{i}, S_{i}\right)$?
$n_{0}>=O\left(1 / \varepsilon^{2} \log (1 / \delta)\right)$

COMP9314

MRC [ICDE06, UNSW]

- Feed samples to compress
algorithm (GK)

Space bound

Pipeline
Average case $O\left(\frac{1}{\varepsilon} \log \left(\frac{1}{\varepsilon} \log \frac{1}{\delta}\right) \frac{\log ^{2+\alpha}}{1-1 / 2^{\alpha}}\right)$ for an $\alpha>0$
Worst case $\quad O\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\delta} \log \varepsilon^{2} N\right)$
COMP9314

More results [PODS06, AT \& T]

Deterministic algorithm is proposed
for fixed value domain
Space bound $O\left(\frac{\log (U)}{\varepsilon} \log (\varepsilon N)\right)$

The problem of sliding window is not well solved...

Duplicate-insensitive Technique

Given: a set of data elements $S=\{(x, v)\}$ where x is the element and $v=f(x)$.

- Elements are sorted on a monotonic order of v.
- Duplicates may exist.
- D_{S} : set of distinct elements in S.
- Rank Queries (quantiles) are against D_{S}

Example

Data Stream:
$\left(x_{1}, 1\right),\left(x_{5}, 6\right),\left(x_{1}, 1\right),\left(x_{2}, 1\right),\left(x_{4}, 10\right),\left(x_{2}, 1\right)$,
$\left(x_{3}, 7\right),\left(x_{4}, 10\right)$
Sorted Distinct Sequence:
$\left(x_{1}, 1\right),\left(x_{2}, 1\right),\left(x_{5}, 6\right),\left(x_{3}, 7\right),\left(x_{4}, 10\right)$

COMP9314
Xuemin Lin @DBG.unsw

Applications

- Projections
- IP network monitoring
- Sensor network
- etc

Preliminaries

FM Algorithm [P. Flajolet and G. N. Martin , FOCS83]

Uniform Error technique

[Pods 06, Bell Lab \& Rugters Uni]
Distinct Range Sum: Count-Min + FM
Space $O\left(\frac{1}{\epsilon^{3}} \log \frac{1}{\delta} \log ^{2} m\right)$
[SIGMOD05, UCSB\&Intel] \& [Tech Report06, Boston]
Apply FM; Space: $O\left(\frac{1}{e^{3}} \log \frac{1}{\delta} \log m\right)$

COMP9314
Xuemin Lin @DBG.unsw

[ICDE07, UNSW]

Miscellaneous

- Continuous Queries
- continuous monitor the network [sigmod06, Bell Lab]
- Massive set of rank queries [TKDE06, UNSW]
- space: $O\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\delta} \log N\right)$
- various ways to speed up the algorithm

COMP9314
Xuemin Lin @DBG.unsw

- Quantile computation against high dimensional data
- R tree based algorithm. [EDBTO6, CUHK]
- Adaptive partition algorithm. [ISAAC 04, UCSB]

COMP9314
Xuemin Lin @DBG.unsw

Open Problems

- Uncertainty data

Challenge : the value of the element is not fixed!

- Graphs
- common to model real applications

IP network, communication network, WWW, etc

- summarize distribution of various node degree information
Challenge : the graph structure is continuously "disclosed "!

Reference

[Sigmodol, PSUU] M. Greenwald and S. Khanna. "Sppcceefficient oniline computation of quantile summaries". In SIGMOD 2001.

LLaTI NOA, Rutgers Unij G. Cormode and 5 . Muthukisishnan. An improved data stream summary: The count-min sketch and its

- [DGGMO2] Mayur Datara, Aristides Gionis, Piotr Indyk, Rajeev Motwani Maintaining stream statistic over sliding windows (extended
- [PoDso4, Stanfordd A Arasu and G 5 Manku, "Approximate Frequency Counts over Data Streams", In PODS 2004.
- [SODAO3, Bell Labl A. Gupta and F. Zane. "Counting inversions in ilist". In SODA 2003.
- IICDEO5, ATATI GG Cormode. F. Korn, S. Muthukrishnan, and D. Srivastava. "Effective computation of biased quantiles over

Iicdeo6, UNSW Y. Zhang, X. LIN, J. Xu, F. Kom, W. Wang, "Spacc-e-fificient Relative Error Order Sketch over Data Streams", ICDE 2006
[icde06, UNSW] Y. Zhang, X. LIN, J. Xu, F. . . Kom, w. Wang, "Space-efficient Relative Erro Order Sketch over Data Streams", ICDE 2006

COMP9314 Xuemin Lin @DBG.unsw

Reference

- [Pods $\mathbf{0 5}, \mathrm{Bell}$ Lab \& Rugters Uni] G. Cormode and 5 . Muthukrishnan, "Space efficient mining of multigraph Streams", In poos 2005. - SIIGMODO5, UCSBESI Itet] A. Manjihi, 5 . Nath, and P. B. Gibons. "Tributaries and detas: Efficient and robust aggregation in sensor
- TTech Reporto5, Boston, M. Hadijieffetheriou, J.w. Byers, and G. Kollios "Robust sketcting and aggreagtion of distributed data streams"

ITsigmodo6. Belll Labb 6 . Cormode, R . Keralapura, and J. Ramimiththam. Communication-efficient distributed monitoring of thresholded

[EDBTo6, CUHK] M. Yiu, N. Marmoulis, and Y. Tao. "Efficient quantile retrieval on multi-dimensional data". In EDBT 2006.
[ISAAC O4, UCSBB] J. Hershberger, N. Shivastava, S. Suri, and C. Toth. "Adaptive spatial partitioning for multidimensional data streams"
[P. Flajolet and G. N. Martin,FoCs83] P.Flajolet, G. Nigel Martin "Probabilistic Counting" in Focs 1983

COMP9314

