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Relative Error techniques 
Duplicate-insensitive techniques
Miscellaneous
Future Studies

Applications
Q-Q Plot

Φ-quantile:
Given Φ (0, 1], find the 
element with rank ΦN .
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Applications
Equal Width Histograms:

(x1, 1), (x2, 2), (x3, 3), (x4, 4), (x5,5), (x6, 6), (x7, 7), (x8, 8), (x9, 
9), (x10, 10), (x11, 10), (x12, 10), (x13, 11), (x14, 11), (x15, 11), (x16, 
12)
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Support approximate range aggregates.
In stock market, road traffic, network, given a  value, 

find its rank (or quantile).
Portfolio risk management counting 
Counting Inversions in on-line Rank Aggregation
etc.

Rank/Order-based Queries
Given : a set of N data elements (x, v) where v=f(x) and 

the elements are ranked against a monotonic order 
of v.

R k  1 (R 1)
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Rank Query 1 (RQ1):
Given r, find an element value with the rank r.
Φ-quantile (a popular form of RQ1)
Given Φ (0, 1], find the element with rank ΦN .
Rank Query 2 (RQ2):
Given v, find how many elements with values less than v.

Note: RQ1 is equivalent to RQ2.

Example

Data Stream:

12, 10, 11, 10, 1, 10, 11, 9, 6, 7, 8, 11, 4, 5, 2, 3 
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Sorted Sequence:

1,  2,  3,  4,  5,  6,  7, 8, 9, 10, 10, 10, 11, 11, 11, 12

r=4
(0.25-quantile)

r=8
(0.5 -quantile)

r=12
(0.75 -quantile)
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Some Background
O(N1/p) memory space is required in exact 
computation in p scans of data [TCS80]
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In data streams
One pass scan
summary with small memory space

In stream processing, approximation is a 
good alternative to achieve scalability.

Uniform Error Techniques

Uniform Error: Є-approximate
Given r, return any element e with rank r’ within
[  N    N] (0   1)   
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[ r - εN , r + εN] (0 < ε < 1).  Space Lower bound : O(1/ε)

2εN

r

Uniform Error Technique

GK Algorithm
Randomize Algorithm
C unt Min Al ithm
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Count-Min Algorithm
Sliding window techniques

GK Algorithm [sigmod01, PSU]

Deterministic Algorithm:
Keep (vi, rmin(vi), rmax(vi)) for each observation i. 

Theorem 1: If (r (vi 1) - r i (vi) - 1) < 2εN  then ε-
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Theorem 1: If (rmax(vi+1) rmin(vi) 1) < 2εN, then ε
approximate summary.

Tuple: {vi, gi, Δi}; gi = rmin(vi) - rmin(vi-1) , 
Δi = rmax(vi) - rmin(vi)

rmin(vi): minimum possible rank of vi
rmax(vi): maximum possible rank of vi

GK Algorithm [sigmod01, PSU]

sttt ,....,, 21

Goal: always maintain ε-approximate summary
(rmax(vi+1) - rmin(vi) - 1) = (gi + Δi - 1) < 2εN

Insert new observations into summary:
I t t l  b f  th  ith t l   1  Δ   Δ 1
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-Insert tuple before the ith tuple. gnew = 1; Δnew = gi + Δi - 1;

Delete all “superfluous” entries gi := gi + gi-1 -1
General strategy: 

-Delete tuples with small capacity and preserve tuples with 
large capacity.

- Do batch compression.

GK Algorithm [sigmod01, PSU]

sttt ,....,, 21

1−it it

Synopsis structure S :  sequence of tuples where )  ),(  ),(( maxmin iiii vvrvrt =
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Sorted
sequence)( 1min −ivr )(max ivr)( 1max −ivr)(min ivr

Given  r , there’s at least one element such that        
- εn <=  r  <=            + εn

Query alg: first hit.
)(min ivr)(max ivr

1( log )O Nε
ε

Space bound: to achieve ε-approximation.
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Sampling
• Exponential reduction of sampling rate 

regarding an increment of N

Randomize Algorithm
[Sigmod99, IBM]
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regarding an increment of N
• Є-approximate with confidence 1-δ
• Feed GK-like (compress) algorithm the 

samples
• Space bound:  1( log1/ log1/( )O ε ε

ε
δ)

Count-min sketch
[LATIN04, Rutgers Uni]

• Stream with Updates
• Є-approximate (confidence 1-δ)
• Space 
• Basic idea:

Dyadic range
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as c a

|| log1 Uε

δ
||loglog U

Sliding window technique

Sliding window : the most recent N 
elements in data streams.
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Problem:

Input: data stream D & a sliding window (N)

Output: an ε-approximate quantile summary 
for the sliding window (N).

Example
Data Stream:Data Stream:

12, 10, 11, 10, 1, 10,12, 10, 11, 10, 1, 10, 77, 9, 6, 11, 8, 11, 4, 5, 2, 9, 6, 11, 8, 11, 4, 5, 2

A sliding window Current itemMedian

COMP9314 Xuemin Lin @DBG.unsw 16

(N=9)

After After ““33”” arrived:arrived:
12, 10, 11, 10, 1, 10, 7,12, 10, 11, 10, 1, 10, 7, 9, 9, 66, 11, 8, 11, 4, 5, 2, , 11, 8, 11, 4, 5, 2, 3

Expired elements

(in ordered set)

Current itemMedian
(in ordered set)

Algorithm outline:
Partition sliding window equally into             buckets
Maintain an    -approx. sketch in the most recent bucket 
by GK-algorithm
Compress the sketch when the most recent bucket is full. 

Algorithm [icde04, UNSW]

4
ε

ε⎡2/ ⎤
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Compress the sketch when the most recent bucket is full. 
Expire the oldest bucket once a new bucket starts.
Space required : 2

2

1 1( l o g )O Nε
ε ε

+

Global ε-approximate sketch
Step 1: Merge the compressed sketches in a 
sort-merge fashion

N1 N2
…
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Iteratively:

Merged ε/2-approximate sketch

, , 1 , , 1

, , 1

merged k merged k i j i j

merged k merged k ii

r r r r

r r Nε

− − − −
− −

+ −
−

⎧ = + −⎪
⎨

= +⎪⎩ ∑
Where ri,j is from the j th tuple in the i th local sketch
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Theorem 2: The merged sketch is ε/2-
approximate

Global ε-approximate sketch
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For any tuple(vi,ri
-,ri

+) in merged sketch, verify:

1i i ii

i v i

r r N

r r r

ε+ −
−

− +

− ≤

≤ ≤

∑

Step 2: lift the summary by εN/2
Lift operation: add εN/2 to each       

query window
ir
+

Global ε-approximate sketch
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summary

Merge

Lift Global ε-approximate sketch after lift

Merged ε/2-approximate sketch

Theorem 3: Given an ε/2-approximate sketch 
on (1- ε/2)N data items, then lifting the 
sketch by εN/2 results in an ε-approximate

Global ε-approximate sketch
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sketch by εN/2 results in an ε-approximate 
sketch for the set of N data items.

Query the summary for any   -quantile (first-hit):
N r N

r N N

φ ε

φ ε

−

+

⎧ ⎣ ⎦ − ≤⎪
⎨

− ⎣ ⎦ ≤⎪⎩

φ

Space Complexity for sliding 
window
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compressed ε/2-sketches 
each using 2/ ε space

Expired bucket
(deleted)

Last bucket

2
2

1 1( log )O Nε
ε ε

+The total space needed is

Variable length sliding window
n-of-N model :

Answer all sliding window queries with window 
length n (n≤N)

n 10

COMP9314 Xuemin Lin @DBG.unsw 23

Current item

12,12, 10, 11, 10, 1, 10, 7, 9, 6, 11, 8, 11, 4, 5, 2, 10, 11, 10, 1, 10, 7, 9, 6, 11, 8, 11, 4, 5, 2, 3

n=10

n=8

N=15

Other window semantics
The sliding window based on a most recent 

time period
Challenge: Actual number of data elements 

i  th ti ll  b d d
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is theoretically unbounded
12, 10, 11, 10, 1, 10, 11, 12, 10, 11, 10, 1, 10, 11, □□, 6, 7 , 6, 7 

12, 10, 11, 10, 1, 10,12, 10, 11, 10, 1, 10, 11 ,11 ,□□,  6 , 7,  ,  6 , 7,  □□, 11, , 11, □□, 5,  2, , 5,  2, 3

t=10



5

Other window semantics
Landmark windows

12, 10, 11, 10, 1, 10, 12, 10, 11, 10, 1, 10, 1111, , □□, 6, 7, , 6, 7, □□, 11, , 11, □□, 5, 2, , 5, 2, 3

landmark at t11
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, , , , , ,, , , , , , ,, , , ,, , , , ,, , , , ,, , ,

Current time
landmark at t7

The Exponential Histogram (EH)
by M.Datar et.al [DGIM02]

In a λ-EH,

1

m

i j
j i

n nλ
= +

≤ ∑
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buckets for N data elements

… …
2p 1

1( log )O Nλ
λ

11222
… …

1/λ 1/λ

Quantile summary for n-of-N model
(ICDE04, ours)

)( 1
εO
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Quantile summary for n-of-N query
Query the summary.

b1 b2 b3 …

sketch1

Query window
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sketch2
sketch3

Easy to extend to time window and landmark windows

Quantile summary for n-of-N model

Outline of the Algorithm [icde04, unsw]  
Maintenance:

Partition a data stream by    -EH ( Exponential Histogram)
2
ε

ε
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For each bucket, maintain an    -approximate sketch to the 
current data item
Delete redundant buckets and expired buckets

Query:
Get one sketch to answer quantile query on most recent n 
items

Space:  

2
2
ε

2 2 2
2

1 1(max{ log , log })O N Nε ε
ε ε

More result [PODS04, Stanford]

sliding window: 1 1( log log )O N
ε ε

2
2

1 1( (max{ log , }) )O Nε
ε ε

1 1
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n-of-N:
1 1( log log log )O N Nε
ε ε
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Relative Error Techniques

Relative Є-approximate
Given r, return any element e with rank r’  such that

| '|
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| '|r r
r ε− ≤ Space Lower bound : O( log(εn)/ε )

r

2εr

Applications

• Skewed data.  Like IP network traffic data
- Long tails of great interest
– Eg: 0.9, 0.95, 0.99-quantiles of TCP round trip times
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• In some applications, “head” or “tail” is the 
most important part. 

• Counting inversions

• etc.

GZ Algorithm [SODA03, Bell Lab]
Space O(1/ε3 logN ) need to know N in advance

Existing Techniques
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Space O(1/ε3 logN ), need to know  N  in advance

CKMS Algorithm [ICDE05, AT & T]
No sub-linear space bound guarantee
Extend GK-algorithm 

MR [icde06, UNSW]

COMP9314 Xuemin Lin @DBG.unsw 34

samples over other elements, keep at most       smallest samples
samples over first           elements, will not change later

Sampling rate : 2i

become active when N =

MR - Correctness

For the query

• | r r(e) |<= ε | r - r(e) |<= ε r
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>= O( 1/ε2 log( 1/   ))

How many samples is required for each sample set
( s i, Si ) ?

• | r - r(e) |<= ε | r - r(e) |<= ε r

Without priori knowledge of N , with probability at 
lest            , we can get the relative  ε- approximate 
quantile with space

MR [icde06, UNSW]

)loglog( 211
2 NO εδε
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Processing time per element

Query time 

δε
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MRC [ICDE06, UNSW]
Feed samples to compress 
algorithm ( GK )

Sampling (e1) Compress (e2)Stream
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Pipeline
Space bound

Average case

Worst case

0  an for  ))loglog(1( 
2/11

log11
2

>
−

+

α
ε α

α ε
δε

NO

)loglog( 211
2 NO εδε

More results [PODS06, AT & T]

Deterministic algorithm is proposed
for fixed value domain
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Space bound

The problem of sliding window is not well solved…

))log(( ||log NO U εε

Duplicate-insensitive Technique
Given : a set of data elements  S={(x, v)}

where x is the element and v=f(x).
Elements are sorted on a monotonic order 
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of v. 
Duplicates may exist.
DS: set of distinct elements in S. 
Rank Queries (quantiles) are against DS

Example

Data Stream:
( x1, 1 ) , ( x5,6 ) , ( x1,1 ) , ( x2,1 ) , ( x4,10 ) , ( x2,1 ) , 
( x3,7 ) , ( x4,10 )
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Sorted Distinct Sequence:

r=3
(0.5-quantile)

( x1, 1 ) , ( x2,1 ) , ( x5,6 ) , ( x3,7 ) , ( x4,10 )

Applications

• Projections

• IP network monitoring
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• Sensor network 

• etc

Preliminaries

12
1))(( +== iixhP

∑m
i mB /)min(1

FM Algorithm [P. Flajolet and G. N. Martin , FOCS83]

B1 11 0…01

min( B1 )=2
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∑= =i i mBA 1
/)min(21

ϕ

.)()()( QfmPfmQPfm ∨=U

Important properties :

01 0…11

10 0…01

B2

Bm

min( B2 )=3

min( Bm )=1
) 1log1loglog (

δε
++nO

) )1log(1 ( 2 δε
O

775351.0≈ϕ

With confidence 1-δ,  
count (1-Є) < A < count (1+Є).
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[Pods 06, Bell Lab & Rugters Uni]

Distinct Range Sum: Count-Min + FM

Uniform Error technique
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D n  ang  um  un M n  FM
Space

[SIGMOD05, UCSB&Intel] & [Tech Report06, Boston]

Apply FM; Space: 

(X6,2)
(X4,3)

(X5,8)(X1,8)
(X1,8)

Relative Error technique
[ICDE 07, UNSW]

Basic Idea: for each v, build FM Sketch for 
elements with values <= v.
Need a compression:
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(X8,2)(X7,11)(X3,5)B1 11 0…01

01 0…11

10 0…01

B2

Bm

28 0…05B1

For v=6 , min(B1) = 1
v=10, min(B1) = 2

Є-Approximate  with confidence  1 - δ,

[ICDE07, UNSW]
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space:

various ways to speed up the algorithm

)loglog( 11
2 NO δε

Miscellaneous

• Continuous Queries
- continuous monitor the network [sigmod06, Bell Lab] 
- Massive set of rank queries [TKDE06, UNSW]
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• Quantile computation against high dimensional 
data
- R tree based algorithm. [EDBT06, CUHK]
- Adaptive partition algorithm. [ISAAC 04, UCSB]

Open Problems

• Uncertainty data 
Challenge : the value of the element is not fixed!
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• Graphs
- common to model real applications

IP network, communication network, WWW, etc
- summarize distribution of various node degree 

information
Challenge : the graph structure is continuously

“disclosed “!
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