
Web Applications Engineering:
Web Design Patterns and Guideline

Service Oriented Computing Group, CSE, UNSW

Week 6

References used for the Lecture:

http://java.sun.com/blueprints/patterns/index.html

Core J2EE patterns, Deepak Alur, John Crupi and Dan Marlks, Prentice Hall

Patterns of Enterprise Application Architecture, Martin Fowler, Addison-Wesley

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 1 / 65

J2EE Design Patterns

What is a design pattern?

Patterns in software were popularised by the book Design Patterns:
Elements of Reusable Object-Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (aka Gang of Four)

They observed and recognised recurring designs in numerous projects
and documented this collection

Since then many other design patterns are published covering
patterns for various domains and purposes

J2EE patterns:

J2EE patterns represent best practice design based on collective
experience of working with J2EE projects

Patterns aim to provide and document a solution to a known,
recurring problem in building J2EE applications

http://java.sun.com/blueprints/patterns/index.html

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 2 / 65

http://java.sun.com/blueprints/patterns/index.html

J2EE Design Patterns

There are over 20 patterns (and growing).

We look at a few patterns that are highly relevant to COMP9321 ...

Model View Controller: MVC is the J2EE BluePrints recommended
architectural design pattern for interactive applications.

Front Controller (Command): For providing a central dispatch
point to handle all incoming requests.

Service Locator: Typically used in business layer for locating
resources (such as database connection)

Data Access Object: typical pattern for data access layer (linking
the data storage layer with the application)

Business Delegate: in business layer

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 3 / 65

Web Application Architecture

”...architecture is a subjective thing, a shared understanding of a
system’s design by the expert developers on a project. Commonly
this shared understanding is in the form of the major components
of the system and how they interact. It’s also about decisions, in
that it’s the decisions that developers wish they could get right
early on because they’re perceived as hard to change”.

- Martin Fowler, Patterns of Enterprise Application Architecture

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 4 / 65

Web Application Architecture

An application system consists of three “logical” layers.

The presentation layer: what the user sees or interacts with. It consists of
web pages, various visual objects, interactive objects, or reports. Typically,
when people think of a Web application, they think of the presentation layer.

This layer represents a small portion of the effort involved in building
application systems.

Data Access Layer

Business Logic Layer

Presentation Logic Layer

Presentation/GUI

Data Storage

End-User's System
HTML/Forms, etc.

Physically on the client's system (browser)

Server-side programming
producing HTML/XML and other content

Server-side programming
Business objects and rules,

data manipulation/transformation

Server-side programming
Interface with DB, handles data IO

Database/Storage

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 5 / 65

Web Application Architecture

The business logic layer: represents the business rules that are
enforced via programming logic (eg., java classes) regarding how
those rules are applied.

The data access layer: consists of the definitions of database tables
and columns and the computer logic that is needed to navigate the
database. The data access layer enforces rules regarding the storage
and access of information. For example, dates must be valid dates
and numeric fields must never contain alphanumeric characters.

MVC pattern is designed to apply this logical separation of layers into
system implementation.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 6 / 65

Web Application Layers

Different solutions for each layer

Presentation Layer
I JSP, XSLT, CSS, HTML

Business logic
I Java classes

Data Access Layer
I Data Access Objects

Data Store
I RDBMS, OODBMS, XML

Database

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 7 / 65

J2EE design guidelines: Web tier

J2EE Web Tier includes two technologies:

Servlets

JSP pages

Servlets:

Java’s solution to the old CGI technology

They have access to the complete Java programming language

HTML code were placed into the Servlets – difficult to maintain

JSP is designed to solve this problem ...

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 8 / 65

eg., Mixing HTML with Java coding in Servlet

public class BadlyMixedServlet extends HttpServlet {
protected void processRequest(HttpServletRequest request, ... {

boolean databaseOpen = false;
response.setContentType("text/html");
java.io.PrintWriter out = response.getWriter();
out.println out.println("<html><head>");
out.println("<title>Servlet</title></head>");
out.println("<body>");
// go get a database connection ...
if (databaseOpen()) {

out.println("<h1>Well Done!</h1>");
} else {

out.println("Please make sure your
database is running");

out.println("
");
}
out.println("</body></html>");
out.close();

}

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 9 / 65

Servlet design guidelines: When to use Servlets

As a Controller
public class ControllerServlet extends HttpServlet {

// dispatching the request to the handler ...

if(VIEW CAR LIST ACTION.equals(actionName))

destinationPage = "/carList.jsp";

else(ADD CAR.equals(actionName))

destinationPage = "/AddCart.jsp";

else ... // more action checking here ...

RequestDispatcher ds =

getServletContext().getRequestDispatcher(destinationPage);

ds.forward(request, response);

}

Use dispatcher forward (do not commit output before forwarding!)

If your Servlet is emitting some HTML, you may want to re-think.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 10 / 65

Servlet design guidelines: When to use Servlets

To generate binary content: e.g., downloading a jar file
public class CodeDownLoad extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res) {

res.setContentType("application/jar");

ServletContext ctx = getServletContext();

InputStream is = ctx.getResourceAsStream("/newPluginJar.jar");

// variables snipped ...

OutputStream os = res.getOutputStream();

while ((read = is.read(bytes)) != -1) {
os.write(bytes, 0, read);

}
os.flush();

os.close();

}

e.g., Generating image:
http://today.java.net/pub/a/today/2004/04/22/images.html

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 11 / 65

http://today.java.net/pub/a/today/2004/04/22/images.html

J2EE design guidelines: Web tier

Java Server Pages (JSP) design guidelines:

JSPs cannot create binary content

Use custom/standard tags to avoid scriptlets (<% ... %>)
I Scriptlet code is not reusable
I Encourages copying and pasting
I Mix programming logic with presentation
I Make JSP pages difficult to read and maintain
I Errors are difficult to interpret

Use Include Directives and Actions appropriately
I Difference between directives and actions ?!?!
I e.g., Directive: <%@include file=”header.jsp” %>
I e.g., Action: <jsp:include page=”/servlets/currentUserInfoServlet”/>
I e.g., Action: <jsp:userBean>, <jsp:setProperty>, <jsp:getProperty>

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 12 / 65

J2EE design guidelines: Web tier

Avoid forwarding requests from JSP - use a Servlet instead

eg., JSP acting as a Controller:

<% String creditCard = request.getParameter("creditCardType");

if (creditCardType.equals("Visa")) { %>

<jsp:forward page="/getVisaDetails.jsp"/>

<% } else if (creditCard.equals("American Express")) { %>

<jsp:forward page="/getAmexDetails.jsp"/>

<% } %>

Bad!! This JSP is ’processing’ business logic/application flow rather than
displaying content.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 13 / 65

A Better Design ...
In CreditCardServlet.java:

public class CreditCardServlet extends HttpServlet {
protected void processRequest(HttpServletRequest request, ...

String creditCard = request.getParameter("creditCardType");

if (creditCardType.equals("Visa"))

nextPage="/getVisaDetails.jsp";

else if (creditCardType.equals("American Express"))

nextPage = "/getAmexDetails.jsp"

ServletContext ctx = getServletContext();

ctx.getRequestDispatcher(nextPage).forward(request,response);

}
In getVisaDetails.jsp
<%@page contentType="text/html"%>

<html><head><title>Processing Visa</title></head>

<body>

Enter your Visa card details ...

<form action="processCreditCardServlet" method="POST">

<input type="text" name="VisaNumber">

<input type="text" name="VisaAcctName">

<input type="text" name="VisaSecurityCode">

<input type="submit">

</form>

</body></html>

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 14 / 65

General Guideline for Servlet/JSP/JavaBeans

1 The action from HTML forms points to a servlet

2 The servlet uses request.getParameter(”...”) to get the details of the
action

3 The servlet invokes appropriate business logic which returns data
(typically JavaBeans or collections of JavaBeans)

4 The servlet then uses request.setAttribute(”data”, data) to store the
data in request scope

5 or use session object if data belongs in a session

6 The servlet uses RequestDispatcher to call a JSP page that is
supposed to handle the display of the data

7 The called JSP has access to the JavaBeans in request scope (or
session)

This is a basic scenario of the MVC (Model-View-Control) pattern in J2EE

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 15 / 65

Structuring Web applications

A Model 1 architecture consists of a Web browser directly accessing
Web-tier JSP pages. The JSP pages access Web-tier JavaBeans that
represent the application model, and the next view to display (JSP
page, servlet, HTML page, and so on) is determined either by
hyperlinks selected in the source document or by request parameters.

A Model 2 architecture introduces a controller servlet between the
browser and the JSP pages or servlet content being delivered. The
controller centralizes the logic for dispatching requests to the next
view based on the request URL, input parameters, and application
state. The controller also handles view selection, which decouples
JSP pages and servlets from one another.

Model 1 and Model 2 simply refer to the absence or presence
(respectively) of a controller servlet that dispatches requests from the
client tier and selects views.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 16 / 65

Web Application Structure Model 1 Example

Model 1 Architecture:

No distinct separation of presentation/business layers:

The application consists of a series of JSP pages

The user is expected to proceed from the first page to the next

There may be JavaBeans performing business operations

But each JSP page contains logic for processing its own output and
maintaining application flow

Browser
JSP

JavaBean Datarequest

response

Server

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 17 / 65

Model 1 Architecture Example

Scenario: Processing login (three JSP pages, one JavaBean)

Login.jsp
<HTML><BODY>

<%

if (request.getParameter("error")!=null) {
%>

Login failed. Please try again

<HR>

<%

}
%>

<FORM METHOD="POST" ACTION="ProcessLogin.jsp">

User Name: <INPUT TYPE=TEXT NAME="un">

Password: <INPUT TYPE=PASSWORD NAME="pw">

<INPUT TYPE=SUBMIT VALUE="Login">

</FORM>

</BODY></HTML>

Login.jsp calls ProcessLogin.jsp
This example is from: Java for the Web with Servlets, JSP, and EJB: A Developer’s Guide to J2EE Solutions, by Budi
Kurniawan, Chap 17.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 18 / 65

Model 1 Architecture Example
ProcessLogin.jsp (calls either Login.jsp or Welcome.jsp)
<jsp:useBean id="loginBean" scope="page" class="model1.LoginBean" />

<%

if (loginBean.login(request.getParameter("un"), request.getParameter("pw")))

request.getRequestDispatcher("Welcome.jsp").forward(request, response);

else

response.sendRedirect("Login.jsp?error=yes");

%>

Login Process Scenario:

Browser Login.jsp

Process.jsp

Login.jsp

sendRedirect(URL)

Login.jsp?error="true"

Browser Login.jsp
Process.jsp

Login.jsp RequestDispatcher.forward(URL)

Welcome.jsp

Welcome.jsp

On Error

On Success

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 19 / 65

Model 1 Architecture Example

Welcome.jsp
<HTML>

<HEAD><TITLE>Welcome</TITLE></HEAD>

<BODY>

Welcome. You have successfully logged in.

</BODY></HTML>

LoginBean.java
package model1;

// note - this bean could use a database to check the login details

public class LoginBean {
public boolean login(String userName, String password) {
if (userName==null || password==null) ||

!(userName.equals("koala") && password.equals("kitada")))

return false;

else

return true;

}
}

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 20 / 65

About Model 1 Architecture

The model is easy to development.

suitable for small projects (quick)

It is hard to achieve division of labor between the page designer and
the web developer because normally the web developer needs to be
involved in the development of the page and the business objects.

Model 1 architecture is hard to maintain and it is not flexible. This is
especially true for large projects.

Java Sun Blueprint doc: The Model 1 architecture can provide a more
lightweight design for small, static applications. Model 1 architecture is suitable
for applications that have very simple page flow, have little need for centralized
security control or logging, and change little over time. Model 1 applications can
often be refactored to Model 2 when application requirements change.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 21 / 65

Model 2 Architecture = MVC pattern
A Web application architecture pattern needs to:

Problem:

separate what the data that the clients sees with how it is presented

support multiple client types (same data but presented differently).

avoid placing business logic and application flow on client code

Solution:

Separate data from view and use a controller to handle application
flow between components

View is used to present the data it is given

Model represents data and some business logic

Controller is used to handle client requests and invoke the appropriate
business logic

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 22 / 65

MVC Components and Roles

http://java.sun.com/blueprints/patterns/MVC-detailed.html

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 23 / 65

Model 2 Architecture = MVC pattern
At the center is the controller servlet (dispatcher), which is the single
entry point of the application.

presentation parts (JSP pages) are isolated from each other.

Browser

JSP
(View)

JavaBean
(Model)

Data

request

response

Server

Servlet
(Controller)

Container

request

1

2

3

5

4

MVC separates content generation and content presentation.

Model 2 is more flexible and easier to maintain, and to extend,
because views do not reference each other directly.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 24 / 65

Model 2 Architecture = MVC pattern
This servlet is the entry point to the scenario application.

LoginServlet.java

public class LoginServlet extends HttpServlet {
public void doPost(HttpServletRequest request, HttpServletRespo... {

String un = request.getParameter("un");

String pw = request.getParameter("pw");

if (un==null) {
request.setAttribute("error", "no"); //fist time login

RequestDispatcher rd = request.getRequestDispatcher("/Login.jsp");

rd.forward(request, response);

}
else {

if (pw!=null && un.equals("aibo") && pw.equals("kitada")) {
RequestDispatcher rd = request.getRequestDispatcher("/Welcome.jsp");

rd.forward(request, response);

}
else { // login failed

request.setAttribute("error", "yes");

RequestDispatcher rd = request.getRequestDispatcher("/Login.jsp");

rd.forward(request, response);

}
}

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 25 / 65

Model 2: Model View Controller (MVC)

Login.jsp
<HTML><BODY>

<% String err = (String)request.getAttribute("error");

if (err.equals("yes")) { %>

Login failed. Please try again

<HR>

<%

}
%>

<FORM METHOD="POST">

User Name: <INPUT TYPE=TEXT NAME="un">

Password: <INPUT TYPE=PASSWORD NAME="pw">

<INPUT TYPE=SUBMIT VALUE="Login">

</FORM></BODY></HTML>

Login.jsp does not call anything (i.e., ProcessLogin.jsp is redundant now)

all JSP isolated (co-ordinated through the controller)

all JSP are only concerned with displaying info.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 26 / 65

Case for a centralised controller

Even with MVC pattern, maintaining a Web application can be difficult

Maintaining links between different pages (views)

Duplication of functionality (e.g. validation,authentication) at
different places

Maintaining access to Data Sources

Updating layouts

Solution: Have a central (single) controller

Centralize functions such as authentication, validation, etc.

Maintain central database of page templates

View selection is in one place

Updating links requires updating in just one place

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 27 / 65

Case for multiple controllers

However, using a centralised controller has its disadvantages

Centralised controllers can become heavy, with too much logic in a
single class file

Multiple developers working on the Controller simultaneously

Testing becomes difficult

Certain sections of the web application may require different
implementations of the same features (e.g. admin login vs normal
user login)

Some frameworks solve this by having a controller per logic unit (or
feature group). For example, there may be a controller devoted to the
admin functionality and covers all the views for an admin user.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 28 / 65

FrontController pattern

Front
Controller

View2

Helper2 Helper3Helper1

View1

View3

Requests

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 29 / 65

FrontController implementation: Command Design Pattern

ON OFF

FAN

LIGHT

STEREO

Home Appliance Remote Contol ...

startRotate()
stopRotate()

FAN

turnOn()
turnOff()

LIGHT

setRadio()
setVolume()
on()
off()

STEREO

slot for future device

the remote should know how to interpret button presses and make
requests

but should not know how to operate FAN or STEREO or any future
new devices ...

want to avoid ’if slot1==FAN, then FAN.startRotate() else if
’slot1==LIGHT then light.on()’, etc.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 30 / 65

Command Design Pattern

Problem:

Want to issue requests without knowing who or what will service it

Want to service a request without knowing who/what requested it

Avoid too many if statements → code bloat

Solution:

Need to decouple the sender and receiver
I A sender is an object that invokes an operation, and
I a receiver is an object that receives the request (ie., running a

command) to execute a certain operation.
I With decoupling, the sender has no knowledge of the Receiver’s

interface.

Create a generic Command Object
I The key to the pattern. It declares an interface for executing operations

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 31 / 65

Command Design Pattern
www.javaworld.com/javaworld/javatips/jw-javatip68.html

Two “Receiver” classes (different behaviour)

class Fan {
public void startRotate()

public void stopRotate()

}
class Light {

public void turnOn()

public void turnOff()

}

Say, we want an “Invoker” class Switch that will work with both.

class Switch {
void flipUp()

void flipDown()

}

The idea is calling Switch().flipUp() will call either
Fan().startRotate() or Light().TurnOn(). That is, Switch should
be independent of the specific Receiver class’ interface.
H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 32 / 65

www.javaworld.com/javaworld/javatips/jw-javatip68.html

Command Design Pattern

We start with designing the Command interface.

public interface Command {
public abstract void execute ();

}

Then, we implement the Commands. Each concrete Command class
specifies a ”receiver-action” pair by storing the Receiver as an instance
variable.

class LightOnCommand implements Command {
private Light myLight; // here, the receiver class

public LightOnCommand (Light L) { myLight = L; }
public void execute() { myLight.turnOn(); } // here, its action

}

class FanOnCommand implements Command {
private Fan myFan; // here, the receiver class

public FanOnCommand (Fan F) { myFan = F; }
public void execute() { myFan.startRotate(); } // here, its action

}
// Snip LightOffCommand and FanOffCommand classes

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 33 / 65

Command Design Pattern

The Invoker: Now the Switch looks like this.

class Switch {

private Command UpCommand,

private Command DownCommand;

public Switch(Command Up, Command Down) {
// concrete Command gets registered when invoker is created

UpCommand = Up;

DownCommand = Down;

}
void flipUp() {

// invoker calls concrete Command,

// which executes the Command on the receiver

UpCommand.execute () ;

}

void flipDown() {
DownCommand.execute ();

}
}

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 34 / 65

Command Design Pattern

A Client Program:
Light testLight = new Light();

LightOnCommand testLOC = new LightOnCommand(testLight);

LightOffCommand testLFC = new LightOffCommand(testLight);

Switch lightSwitch = new Switch(testLOC, testLFC);

Fan testFan = new Fan();

FanOnCommand testFOC = new FanOnCommand(testFan);

FanOffCommand testFFC = new FanOffCommand(testFan);

Switch fanSwitch = new Switch(testFOC, testFFC);

// using the switches

fanSwitch.flipUp();

fanSwitch.flipDown();

lightSwitch.flipUp();

lightSwitch.flipDown();

the Command pattern completely decouples the object that invokes the operation
(Switch) from the ones having the knowledge to perform it (Light and Fan).

This gives us a lot of flexibility: the object issuing a request must know only how
to issue it; it doesn’t need to know how the request will be carried out.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 35 / 65

Command Design Pattern

The key to this pattern is a Command interface, which declares an
interface for executing operations.

Each concrete Command class specifies a ”receiver-action” pair by
storing the Receiver as an instance variable.

The Receiver has the knowledge required to carry out the request

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 36 / 65

Identifying the Command Pattern in the phonebook lab

The Receiver: whoever knows how to carry out the command (eg.,
ContactDelegate)

class ContactDelegate {
public UserBean login()

public List getRecords()

public void addRecord()

public void deleteRecord()

}

Command Interface: the command interface has one method
execute()

Concrete commands: AddCommand, DeleteCommand,
ListCommand and LoginCommand.

class AddCommand {
private static ContactDelegate cd; // here, the receiver

public String execute() // here, the action: calls cd.addRecord()

}

The Invoker is the ControllerServlet class.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 37 / 65

Implementing the Command Pattern

The invoker in the phonebook lab
public class ControllerServlet extends HttpServlet {

public void init(ServletConfig config) throws ServletException {
commands = new HashMap();

commands.put("add", new AddCommand());

}

protected void processRequest(HttpServletRequest request, ...) {
Command cmd = resolveCommand(request);

String next = cmd.execute(request, response);

RequestDispatcher ds = getServletContext().getRequestDispatcher(next);

ds.forward(request, response);

}

private Command resolveCommand(HttpServletRequest request) {
Command cmd = (Command) commands.get(request.getParameter("operation"));

return cmd;

}

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 38 / 65

Service Locator Pattern

Problem:

When J2EE clients interact with the server side components (EJB) or
DataSources, clients must locate the service component (referred to as a
lookup operation in JNDI)

locating a JNDI-managed service object is common to all clients that need
to access that service object.

It is easy to see that many types of clients repeatedly use the JNDI service,
and the JNDI code appears multiple times across these clients. This results
in an unnecessary duplication of code in the clients that need to look up
services.

Solution:

Use a Service Locator object to abstract all JNDI usage to hide the
complexities of initial context creation and lookup operations

Multiple clients can reuse the Service Locator object to reduce code
complexity, provide a single point of control

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 39 / 65

Service Locator Pattern

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 40 / 65

Service Locator Pattern

To build a service locator pattern, we need:

Service Locator: The Service Locator abstracts the API lookup services,
vendor dependencies, lookup complexities, and business object creation, and
provides a simple interface to clients.

InitialContext: The InitialContext object is the start point in the lookup
and creation process.

ServiceFactory: The ServiceFactory object represents an object that
provides life cycle management for the BusinessService objects. eg., The
ServiceFactory object for enterprise beans is an EJBHome object.

BusinessService: is a role that is fulfilled by the service the client is seeking
to access. The BusinessService object is created or looked up or removed by
the ServiceFactory. The BusinessService object in the context of an EJB
application is an enterprise bean. The BusinessService object in the context
of JDBC is a DataSource

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 41 / 65

Identifying Service Locator Pattern in the phonebook lab

com.enterprise.common.AbstractJndiLocator: the Service Locator.
Defines connection details to JNDI, creation of initialContext and lookup()
operation

public abstract class AbstractJndiLocator {

// connection details to JNDI

private String initialContextFactory = "org.jnp.interfaces.NamingContextFactory";

private String urlPkgPrefix= "org.jboss.naming:org.jnp.interfaces";

private String url = "jnp://localhost:1099";

// get initialContext

public AbstractJndiLocator() {
ctx = new InitialContext(initialContextFactory, urlPgkprefix, url);

// Lookup operation

public Object lookup(String name) throws NamingException {
Object o = ctx.lookup(name);

return o;

}

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 42 / 65

Identifying Service Locator Pattern in the phonebook lab

The service locator is abstract. DBConnectionFactory inherits from it.

com.enterprise.common.DBConnectionFactory: It does resource specific
lookup. This lookup is for retuning a JDBC DataSource

public class DBConnectionFactory extends AbstractJndiLocator {

private DataSource ds;

public Connection createConnection() {
return getDataSource().getConnection();

}

public DataSource getDataSource() {
//JNDI name for the data source

ds = (DataSource) lookup("java:/DefaultDS");

return ds;

}
}

(you could add, for example, EJBHomeFactory.java that extends
AbstractJndiLocator but gives you EJB home objects this time ...)

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 43 / 65

Identifying Service Locator Pattern in the phonebook lab

The client code (DAO implementation class) calls createConnection() on
DBConnectionFactory to get a data source.

public class ContactDAOImpl implements ContactDAO {

private DBConnectionFactory services;

public ContactDAOImpl() {
services = new DBConnectionFactory();

}

public void insert(ContactBean bean) {
// get connection by calling createConnection() on DBConnectionFactory

// Then do your normal JDBC actions

}
}

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 44 / 65

Dependency Injection

In any non-trivial Web application, there may exist many dependencies
such as:

Database Connection information

Location of resources

Connection information for external services

Multiple implementations for the same interface

Multiple modes of instantiation of service objects

Often, these are explicit and expressed through abstract classes and
inheritance.
However, in many cases, configuration dependencies are implicit and
scattered throughout the code. This makes it very hard to test, maintain
and upgrade the web application.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 45 / 65

SAX Books Parser Example

As an example, let’s take the SAX Books Parser Example provided in
Week 4.

The SAXServlet obtains a list of BookBeans from the BookParser and
forwards it on to a JSP file. Let’s say that we want to test the
BookParser alone, outside of the Servlet Container.

This is currently not possible since SAXServlet.init() locates the XML
file and provides an InputStream object to the parser.

What if we want to replace the XML file with a SQL database ?....

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 46 / 65

What is “dependency injection” ?

Dependency injection is a software design pattern that provides the ability
to pass by reference (or “inject”) service objects into a client (a class or a
delegate) at deployment time. This is a top-down approach, in contrast to
a bottom-up one wherein the clients discover or create service objects on
their own. The benefits of dependency injection are:

Loose coupling of different parts of a web application - avoid
monolithic architecture.

Provide modularity wherein one service or a component can be
replaced with another implementation at deployment time.

Provide strong typing for different services and reduce the amount of
string-based lookups by replacing them with declarative Java
annotations.

Provide a central location for modifying configuration data.

Enable unit testing of different components and easy mocking of
different services.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 47 / 65

More patterns

Core J2EE Patterns Catalog

http://java.sun.com/blueprints/corej2eepatterns/index.html

The above web site describes every pattern (problem/solution/sample
codes) and their relationships.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 48 / 65

http://java.sun.com/blueprints/corej2eepatterns/index.html

Assignment 2 Architecture

presentation, business, data access layer

at least include the MVC pattern and DAO, plus others

Client

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 49 / 65

A few more things to consider

Controlling Client Access (Guarding a View)

Scenario: You may want to restrict or control client access, e.g.,

Only logged in users should access page X and Y

page X should be accessed only after page B and C

page X and Y should only be accessed by users with role Z

Basically, you want to prohibit users from directly accessing certain pages
via a browser invocation.

A few strategies available ...

Embedding a “guard” directly within a view

Using a controller as a delegation point for this type of access control

Using standard security constraints (e.g., J2EE security)

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 50 / 65

Guarding a View

Embedding a “guard” within View:

All-or-Nothing Guard: When you want to prevent a particular user
from accessing a particular view in its entirety; e.g., if the client must
still be logged into the site to view page X

// Inside page X

<% taglib uri="/tld/ViewGuard.tld" prefix:guard" %>

<guard:check login/>

<HTML>

...

</HTML>

Portions of View Not Displayed Based on User Role:

// display suppliers here ... then:

<c:if test="${UserRole eq ’manager’}">
Update Supplier

</c:if>

The code for access check is distributed (maintenance?)

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 51 / 65

Guarding a View

Using the controller:

public class ControllerServlet extends HttpServlet {

// dispatching the request to the handler ...

if(VIEW CAR LIST ACTION.equals(actionName))

destinationPage = "/carList.jsp";

else(ADD CAR.equals(actionName) and checkUserRole().equals="manager")

destinationPage = "/AddCart.jsp";

else ... // more action and role checking here ...

RequestDispatcher ds =

getServletContext().getRequestDispatcher(destinationPage);

ds.forward(request, response);

}

(suitable for All-or-Nothing access)

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 52 / 65

Guarding a View

Using the container’s security constraints: J2EE supports ’declarative
security/role-based security’ model. You can configure the container to
allow/prevent access to certain resources

<security-constraint>
<web-resource-collection>

<url-pattern>/restricted/*</url-pattern>
<url-pattern>/manager/addCars.jsp</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>manager</role-name>
</auth-constraint>

</security-constraint>
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>Delicious Baking Company</realm-name>

</login-config>

JBoss doc: 8.1.5. Web Content Security Constraints

http://docs.jboss.com/jbossas/jboss4guide/r5/html/ch8.chapter.html

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 53 / 65

http://docs.jboss.com/jbossas/jboss4guide/r5/html/ch8.chapter.html

Container Security Constraints

e.g., Authentication support in JBoss ...

CREATE TABLE Users(username VARCHAR(64) PRIMARY KEY, passwd VARCHAR(64))

CREATE TABLE UserRoles(username VARCHAR(64), userRoles VARCHAR(32))

INSERT INTO Users VALUES (’koala’,’j2ee’)

INSERT INTO UserRoles VALUES (’koala’,’manager’)

Then in a configuration:

<authentication>
<login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule">

<module-option name="dsJndiName">java:/DefaultDS</module-option>
<module-option name="principalsQuery">

select passwd from Users where username=?
</module-option>
<module-option name="rolesQuery">

select userRoles,’Roles’ from UserRoles where username=?
</module-option>

</login-module>
</authentication>

The security framework is based on the Java Authentication and Authorization
Service (JAAS API). To work with these configurations, you need to use JAAS
API.
H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 54 / 65

Guarding a View

A simple way to use the container to hide certain resources from client’s
direct access is to use WEB-INF directory.

things under the WEB-INF directory cannot be accessed via browsers
(container prohibits it)

http://localhost:8080/myapp/WEB-INF/restricted/welcome.jsp

vs.

http://localhost:8080/myapp/welcome.jsp

You can move certain resources into a subdirectory of WEB-INF

Access to such resources can only be gained via internal requests
(e.g., a controller servlet)
e.g., in a servlet:

// if access should be given:

destinationPage = "/WEB-INF/restricted/welcome.jsp"

dispatch.forward (...)

Additionally, the controller can delegate the access checks to a helper
class who will determine whether the resource should be served

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 55 / 65

A few more things to consider

Duplicate Form Submissions

Users working with a browser can:

use the Back button and inadvertently resubmit the same form they
had previously submitted.

click the stop button before receiving a confirmation page and
subsequently resubmit the form

In most cases, we want to trap and disallow these duplicate
submissions

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 56 / 65

A few more things to consider

Duplicate Form Submissions

JavaScript (i.e., client side solution):

<SCRIPT LANGUAGE="JavaScript" TYPE="text/JavaScript">

function buttonControl(submitted)

{
if(submitted=="1")

theForm.Submit.disabled=true

}
</SCRIPT>

<FORM action="" method="post" name="theForm">

How did you find our site?

<input type="text" maxlength="30" size="20">

<input type="submit" name="Submit" onClick="buttonControl(1)">

</FORM>

Reasonable ... but cannot rely on it, why?

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 57 / 65

A few more things to consider

Duplicate Form Submissions - POST REDIRECT GET

Database

Web App

Submit

Output

Form

POST

HTTP 200

Browser

Page Refresh

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 58 / 65

A few more things to consider

Duplicate Form Submissions - POST REDIRECT GET

Database

Web App

Submit

New
Request

Form

GET

HTTP 301

Browser

POST

Output

Page Refresh

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 59 / 65

A few more things to consider

Duplicate Form Submissions

Synchronizer Token:

a synchronizer token is set in a user’s session

the token is included with each form returned to the client (hidden
field)

When that form is submitted, the value of the token from the client is
compared with that of in the user session.

If it does not match, an error is returned to the user

If it matches, the form submission is allowed

At this point, the token value in the session is reset (i.e., new value)
for the next use

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 60 / 65

A few more things to consider

Synchronizer Token:

Controller
Client

JSP1
2

1
2

duplicate

Controller
Client

JSP1
2

1

2

duplicate

TOKEN
TOKEN

disallowed

Incoming
Request

Compare
Values

Process
Request

Generate
Token

Store
Token

Prepare
ResponseOutgoing

Response

<Synchronizer Token Lifecycle>

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 61 / 65

A few more things to consider

Synchronizer Token:

You could also use this strategy to control direct browser access to certain
pages. For example, assume a user bookmarks page A of an application
where page A should only be accessed from page B and C.

You synchronise the access flow using tokens.

When the user selects page A via the bookmark, the page is accessed out
of order and the synchronizer token will be in an unsynchronized state or
not exist at all.

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 62 / 65

A few more things to consider

Background Tasks:

Scenario: Background tasks can be required in many situations, e.g.

You want to run a task periodically for collecting data or for
maintenance. E.g. Generate a report every Saturday night

You want to execute a function that could take a long time but do
not want to make the user wait - performance.

Basic requirement - fire off a task from a servlet, let the servlet continue
and the task should come back to you with results.

However, there are issues:

How do you manage the task’s progress ?

How do you receive results ?

Where do you fire off the tasks ?

Up until the recent past, this would’ve required dealing with threads...

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 63 / 65

A few more things to consider

Background Tasks:

A new concurrency library (java.util.concurrent) was introduced in
Java 1.5. This provided some new (and much-needed) concurrent
programming abstractions such as:

Callable<V> - A task that returns a result

ExecutorService - An object that can accept Callable and
Runnable tasks and manage their execution

Future<V> - Represents the results of a Callable that are available
when the task completes execution

ScheduledExecutorService - An ExecutorService that can run
tasks after a delay or periodically

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 64 / 65

A few more things to consider

Background Tasks:

For example: A class to report number of users in a database every minute.

public class UpdateUsers implements Runnable{
/* Methods for accessing database to

get number of users */

}

ScheduledExecutorService s =

Executors.newSingleThreadScheduledExecutor();

s.scheduleAtFixedRate(new UpdateUsers(), 0, 1, TimeUnit.MINUTE);

Where do you put the scheduler ? In the ServletContextListener, if it is
applicable throughout the web application
Take a look at java.util.concurrent for more examples..

H. Paik, S. Venugopal (CSE, UNSW) COMP9321, 14s2 Week 6 65 / 65

