What is an Intelligent Agent?

- **Agent** — an entity that **perceives** its environment through sensors and **acts** on its environment through effectors.
- Example — human agent
 - sensors — eyes, ears, touch, etc.
 - effectors — hands, legs, etc.
- Example — robotic agent
 - sensors — ultrasonic, infrared range finder, video input, etc.
 - effectors — motors, manipulators, etc.

Rational Agents

- We would like to design and build **rational agents**
- Rational agent — an agent that does the **right thing**
- But what is **right**?
- Initial idea: “right thing” to do is that which makes the agent most “successful”
Rational Agents

- Rationality depends on:
 - The performance measure that defines degrees of success
 - Everything agent has perceived so far (percept sequence)
 - What agent knows about its environment
 - Actions agent can perform
- Ideal Rational Agent:
 For each possible percept sequence, an ideal rational agent should do whatever is expected to maximise its performance measure, on the basis of the evidence provided by the percept sequence and whatever built-in knowledge the agent has.

Mappings

- Therefore, agent’s behaviour depends only on percept sequence
- Mapping – describes agent via a table: entries correspond to action(s) taken in response to each percept sequence
- In principle (but not always in practice) it is easy to determine
- Ideal mapping – which action(s) agent ought to take in response to given percept sequence
- A mapping can be specified by a table or a program

Autonomy

- An agent is autonomous to the degree that its behaviour is determined by its experience/perception
- Need to provide agent with initial knowledge plus ability to learn

Agent Programs and Architectures

- Agent program — function implementing mapping from percept sequence to actions
- Architecture — computing device on which agent program will run
 Agent = Architecture + Program
 e.g. can have robotic agents, software agents (softbots, infobots), etc.

Agents

<table>
<thead>
<tr>
<th>Agent Type</th>
<th>Percepts</th>
<th>Actions</th>
<th>Goals</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical diagnosis system</td>
<td>Symptoms, findings, patient responses</td>
<td>Questions, tests, treatments</td>
<td>Healthy patient, minimise costs</td>
<td>Patient, hospital</td>
</tr>
<tr>
<td>Satellite image system</td>
<td>Pixels of varying intensity, colour</td>
<td>Print categorisation of scene</td>
<td>Correct categorisation</td>
<td>Images from orbiting satellite</td>
</tr>
<tr>
<td>Automated taxi driver</td>
<td>Cameras, speedometer, GPS, sonar, microphone</td>
<td>Steer, accelerate, brake, talk to passenger</td>
<td>Safe, fast, legal, comfortable trip, maximise profits</td>
<td>Roads, other traffic, pedestrians, customers</td>
</tr>
<tr>
<td>Robocup robot</td>
<td>Camera images, laser range finder readings, sonar readings</td>
<td>Move motors, “kick” ball</td>
<td>Score goals</td>
<td>Playing field with ball and other robots</td>
</tr>
</tbody>
</table>

Based on Russell and Norvig (2010) Figure 2.5.
A Taxonomy of Agent Programs

Reflex (reactive) agent — applies condition-action rules to each percept

Goal-based (teleological) agent — state description often not sufficient for agent to decide what to do so it needs to consider its goals (may involve searching and planning)

Agent with internal state — keeps track of world

Utility-based agent — considers preference for certain world states over others
Environments

Accessible vs. Inaccessible
agent’s sensors give access to complete state of environment (no internal state required)

Deterministic vs. Non-deterministic
next state of environment determined only by current state and agent’s choice of action

Episodic vs. Non-episodic
agent’s experience divided into “episodes”; agent doesn’t need to think ahead in episodic environment

Static vs. Dynamic
environment changes while agent deliberates

Discrete vs. Continuous
limited number of distinct, clearly defined percepts and actions

Agents

- Why are all these considerations important?
- Assumptions made about environment dictate nature of agent
- Need only design agent complex enough to deal with its environment
- Determine how agent will interact (couple) with environment
- Specific architectures constrain agent’s computational power and limits behaviour: aim to be more efficient than general architectures

BDI Agents

- Beliefs: Explicit representation of the world
- Desires: Preferred states of the environment
- Goals: Desires the agent has chosen to pursue (must be consistent)
- Intentions: Actions the agent has chosen and committed to
 - Pose problems for deliberation (how to fulfil them)
 - Constrain further choices (must be compatible)
 - Control conduct (lead to future action)

BDI Agent Interpreter
PRS (Procedural Reasoning System)

Abstract PRS Interpreter:
initialize-state();
do
 options := option-generator(event-queue, B, G, I);
 selected-options := deliberate(options, B, G, I);
 update-intentions(selected-options, I);
 execute(I);
 get-new-external-events();
 drop-successful-attitudes(B, G, I);
 drop-impossible-attitudes(B, G, I)
until quit

Conclusion

■ The term “agents” has become very widespread in recent literature yet the meaning of the term is very unclear (arguably because it is used in vague terms and it means different things to different people!)
■ We have tried to give a definition which is broad yet encompasses much of the work we are trying to do
■ Keep in mind that we are primarily concerned with techniques that can be used to build components of an agent not the entire agent itself
■ Is the technique’s use limited to only certain of the environments that we have discussed? Is it widely applicable?

useful in dynamic environments where
 ▶ reasonable plans can be formed in advance
 ▶ agent needs continuity of commitment
 ▶ agent needs to respond rapidly to situation
 ▶ agent’s computational resources are limited