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Biological Neurons

The brain is made up of neurons (nerve cells) which have

� a cell body (soma)

� dendrites (inputs)

� an axon (output)

� synapses (connections between cells)

Synapses can be exitatory or inhibitory and may change over time.

When the inputs reach some threshhold an action potential

(electrical pulse) is sent along the axon to the outputs.
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Artificial Neural Networks

(Artificial) Neural Networks are made up of nodes which have

� inputs edges, each with some weight

� outputs edges (with weights)

� an activation level (a function of the inputs)

Weights can be positive or negative and may change over time (learning).

The input function is the weighted sum of the activation levels of inputs.

The activation level is a non-linear transfer function g of this input:

activation j = g(s j) = g(∑
i

w jixi)

Some nodes are inputs (sensing), some are outputs (action)
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Outline

� Neurons – biological and artificial

� Perceptrons

� Linear separability

� Multi-layer neural networks

� Backpropagation

� Variations on Backprop

� Training tips
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Linear Separability

Q: what kind of functions can a perceptron compute?

A: linearly separable functions

Examples include:

AND w1 = w2 = 1.0, w0 =−1.5

OR w1 = w2 = 1.0, w0 =−0.5

NOR w1 = w2 =−1.0, w0 = 0.5

Q: How do we train it to learn a new function?
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Rosenblatt Perceptron

x1

x2

Σ ✲ g ✲

1

✟✟✟✟✟✟✟✯

❍❍❍❍❍❍❍❥

✁
✁
✁
✁✁✕

w1

w2

w0=-th

s
g(s)

s = w1x1 +w2x2−th

= w1x1 +w2x2 +w0

x1, x2 are inputs

w1, w2 are synaptic weights

th is a threshold

w0 is a bias weight

g is transfer function
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Perceptron Learning Rule

Adjust the weights as each input is presented.

recall: s = w1x1 +w2x2 +w0,

η > 0 is called the learning rate

if g(s) = 0 but should be 1,

wk ← wk +ηxk

w0 ← w0 +η

so s ← s+η(1+∑
k

x2
k )

if g(s) = 1 but should be 0,

wk ← wk−ηxk

w0 ← w0−η

so s ← s−η(1+∑
k

x2
k )

otherwise, weights are unchanged.

Theorem: This will learn to classify the data correctly,

as long as they are linearly separable.
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Transfer function

Originally, a (discontinuous) step function was used for the transfer

function:

g(s) =
{ 1, if s≥ 0

0, if s < 0

(Later, other transfer functions were introduced, which are continuous and

smooth)
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Training Step 2

x

2

1

x

(2,1)

w1 ← w1 +η x1 = 0.3

w2 ← w2 +η x2 = 0.0

w0 ← w0 +η = −0.1

0.3 x1 +0.0 x2−0.1 > 0
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Perceptron Learning Example

x1

x2

Σ→ (+/−) ✲

1

✟✟✟✟✟✟✟✯

❍❍❍❍❍❍❍❥

✁
✁
✁
✁✁✕

w1

w2

w0

w1 x1 +w2 x2 +w0 > 0

learning rate η = 0.1

begin with random weights

w1 = 0.2

w2 = 0.0

w0 =−0.1

0.2 x1 +0.0 x2−0.1 > 0
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Training Step 3

x

2

1

x

(1.5,0.5)

(2,2)
3rd point correctly classified,

so no change

4th point:

w1 ← w1−η x1 = 0.1

w2 ← w2−η x2 = −0.2

w0 ← w0−η = −0.2

0.1 x1−0.2 x2−0.2 > 0
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Training Step 1

x

2

1

x

(1,1)

w1 ← w1−η x1 = 0.1

w2 ← w2−η x2 = −0.1

w0 ← w0−η = −0.2

0.1 x1−0.1 x2−0.2 > 0
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Multi-Layer Neural Networks

XOR

NOR

AND NOR

Problem: How do we train it to learn a new function? (credit assignment)
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Training Step 4

x

x

1

2

eventually, all the data will be

correctly classified (provided

it is linearly separable)
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Key Idea

(a)Step function (b)Sign function

+1

a
i

−1

ini

+1

a
i

init

(c)Sigmoid function

+1

a
i

ini

(d) Hyperbolic tangent

Replace the (discontinuous) step function with a differentiable function,

such as the sigmoid:

g(s) =
1

1+ e−s

or hyperbolic tangent

g(s) = tanh(s) =
es− e−s

es + e−s
= 2

( 1

1+ e−2s

)

−1
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Limitations

Problem: many useful functions are not linearly separable (e.g. XOR)

I  1

I  2

I  1

I  2

I  1

I  2

?

(a) (b) (c)and or xor

0 1

0

1

0

1 1

0

0 1 0 1

I  2I  1I  1 I  2I  1 I  2

Possible solution:

x1 XOR x2 can be written as: (x1 AND x2) NOR (x1 NOR x2)

Recall that AND, OR and NOR can be implemented by perceptrons.
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Chain Rule

If, say

y = y(u)

u = u(x)
Then

∂y

∂x
=

∂y

∂u

∂u

∂x

This principle can be used to compute the partial derivatives in an

efficient and localized manner. Note that the transfer function must be

differentiable (usually sigmoid, or tanh).

Note: if z(s) =
1

1+ e−s
, z′(s) = z(1− z).

if z(s) = tanh(s), z′(s) = 1− z2.

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 16

Forward Pass

b2

w22

b1

u1

v1 v2

z

c

u2

11w

s

w
21

w
12

1x 2x

1y 2y

u1 = b1 +w11x1 +w12x2

y1 = g(u1)

s = c+ v1y1 + v2y2

z = g(s)

E =
1

2
∑(z− t)2
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Backpropagation

We want to find the way the error function changes with respect to the

weights, which allows us to change weights such that the error is reduced.

For output node weights:

∂E

∂v1
=

∂E

∂z

∂z

∂s

∂s

∂v1

For hidden node weights:

∂E

∂w11
=

∂E

∂z

∂z

∂s

∂s

∂y1

∂y1

∂u1

∂u1

∂w11
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Gradient Descent

We define an error function E to be (half) the sum over all input patterns

of the square of the difference between actual output and desired output

E =
1

2
∑(z− t)2

If we think of E as height, it defines an error landscape on the weight

space. The aim is to find a set of weights for which E is very low.

This is done by moving in the steepest downhill direction.

w← w−η
∂E

∂w

Parameter η is called the learning rate.
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Variations on Backprop

� Cross Entropy

◮ problem: least squares error function unsuitable for classification,

where target = 0 or 1

◮ mathematical theory: maximum likelihood

◮ solution: replace with cross entropy error function

� Weight Decay

◮ problem: weights “blow up”, and inhibit further learning

◮ solution: add weight decay term to error function

� Momentum

◮ problem: weights oscillate in a “rain gutter”

◮ solution: weighted average of gradient over time
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Backpropagation

Partial Derivatives

∂E

∂z
= z− t

dz

ds
= g′(s) = z(1− z)

∂s

∂y1
= v1

dy1

du1
= y1(1− y1)

Useful notation

δout =
∂E

∂s
δ1 =

∂E

∂u1
δ2 =

∂E

∂u2

Then

δout = (z− t) z (1− z)

∂E

∂v1
= δout y1

δ1 = δout v1 y1 (1− y1)

∂E

∂w11
= δ1 x1

Partial derivatives can be calculated efficiently by packpropagating deltas

through the network.
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Cross Entropy

For classification tasks, target t is either 0 or 1, so better to use

E =− t log(z)− (1− t) log(1− z)

This can be justified mathematically, works well in practice, and also

makes the backprop computations simpler

∂E

∂z
=

z− t

z(1− z)

if z =
1

1+ e−s
,

∂E

∂s
=

∂E

∂z

∂z

∂s
= z− t
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Backpropagation

� Target values need to be within the range of the activation function,

otherwise weights will grow unbounded

◮ For example when using the logistic (sigmoid) activation function

it is better to use 0.05 for a low target and 0.95 for a high target

than 0 and 1

� When the output has more than two classes (multinomial encoding),

a common method is to create an output node for each class, and set a

high target for the correct class and low for all others
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Derivation of Cross Entropy

For classification tasks, d is either 0 or 1.

Assume D generated by hypothesis h as follows:

P(1|h(xi)) = h(xi)

P(0|h(xi)) = (1−h(xi))

i.e. P(di|h(xi)) = h(xi)
di(1−h(xi))

1−di

then

logP(D|h) =
m

∑
i=1

di logh(xi)+(1−di) log(1−h(xi))

hML = argmaxh∈H

m

∑
i=1

di logh(xi)+(1−di) log(1−h(xi))

(Can be generalized to multiple classes.)
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Maximum Likelihood

H is a class of hypotheses

P(D|h) = probability of data D being generated under hypothesis h ∈ H.

logP(D|h) is called the likelihood.

ML Principle: Choose h ∈ H which maximizes the likelihood,

i.e. maximizes P(D|h) [or, maximizes logP(D|h)]
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Weight Decay

Assume that small weights are more likely to occur than large weights, i.e.

P(w) =
1

Z
e
− λ

2 ∑ j w2
j

where Z is a normalizing constant. Then the cost function becomes:

E =
1

2
∑

i

(zi− ti)
2 +

λ

2
∑

j

w2
j

This can prevent the weights from “saturating” to very high values.

Problem: need to determine λ from experience, or empirically.

In practise, adjust weights using: w← w(1− ε)
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Derivation of Least Squares

Suppose data generated by a linear function h, plus Gaussian noise with

standard deviation σ.

P(D|h) =
m

∏
i=1

1√
2πσ2

e
− 1

2σ2 (di−h(xi))
2

logP(D|h) =
m

∑
i=1

− 1

2σ2
(di−h(xi))

2− log(σ)− 1

2
log(2π)

hML = argmaxh∈H logP(D|h)

= argminh∈H

m

∑
i=1

(di−h(xi))
2

(Note: we do not need to know σ)
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Training and Testing

� Gradient descent will adjust weights so that the network reproduces

outputs according to examples it is trained on

� The training set is only a sample, we evaluate usefulness using a

separate testing set

� Overfitting is when the network classifies training set examples better

than the test set. We can check if learning is producing overfitting by

using a validation set
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Momentum

If landscape is shaped like a “rain gutter”, weights will tend to oscillate

without much improvement.

Solution: add a momentum factor

δw ← αδw+(1−α)
∂E

∂w

w ← w−ηδw

Hopefully, this will dampen sideways oscillations but amplify downhill

motion by 1
1−α .
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Training Tips

� re-scale inputs and outputs to be in the range 0 to 1 or −1 to 1

� initialize weights to very small random values

� on-line or batch learning

� three different ways to prevent overfitting:

◮ limit the number of hidden nodes or connections

◮ limit the training time, using a validation set

◮ weight decay

� adjust learning rate and momentum to suit the particular task
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Conjugate Gradients

Compute matrix of second derivatives ∂2E
∂wi∂w j

(called the Hessian).

Approximate the landscape with a quadratic function (paraboloid).

Jump to the minimum of this quadratic function.

Natural Gradients (Amari, 1995)

Use methods from information geometry to find a “natural” re-scaling of

the partial derivatives.
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Curve Fitting

Which curve gives the “best fit” to these data?

x

f(x)

straight line?
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Supervised Learning – Issues

� framework (decision tree, neural network, SVM, etc.)

� representation (of inputs and outputs)

� pre-processing / post-processing

� training method (perceptron learning, backpropagation, etc.)

� generalization (avoid over-fitting)

� evaluation (separate training, validation, test sets)
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Curve Fitting

Which curve gives the “best fit” to these data?

x

f(x)

parabola?
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Curve Fitting

Which curve gives the “best fit” to these data?

x

f(x)
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Ockham’s Razor

“The most likely hypothesis is the simplest one consistent with the data.”
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inadequate good compromise over-fitting

Since there can be noise in the measurements, in practice need to make a

tradeoff between simplicity of the hypothesis and how well it fits the data.
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Curve Fitting

Which curve gives the “best fit” to these data?

x

f(x)

4th order polynomial?
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Outliers

Predicted Buchanan Votes by County

[faculty.washington.edu/mtbrett]
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Curve Fitting

Which curve gives the “best fit” to these data?

x

f(x)

Something else?
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Overfitting in Neural Networks
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How to Prevent Over-Fitting

� limit the number of hidden nodes or connections

� limit the training time

� keep weights small, using Weight Decay

The appropriate number of hidden nodes or training cycles may be

estimated using a Validation Set.
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Overfitting in Neural Networks
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