COMP9444: Neural Networks

2. Perceptrons and Backpropagation

COMP9444

© Alan Blair, and Anthony Knittel, 2013

Biological Neurons

The brain is made up of neurons (nerve cells) which have

- a cell body (soma)
- dendrites (inputs)
- an axon (output)
- synapses (connections between cells)

Synapses can be exitatory or inhibitory and may change over time.
When the inputs reach some threshhold an action potential (electrical pulse) is sent along the axon to the outputs.
Biogical
(electical pulse) is sen along the axon to the outpur.

Outline

- Neurons - biological and artificial
- Perceptrons
- Linear separability
- Multi-layer neural networks
- Backpropagation
- Variations on Backprop
- Training tips

Artificial Neural Networks

(Artificial) Neural Networks are made up of nodes which have

- inputs edges, each with some weight
outputs edges (with weights)
- an activation level (a function of the inputs)

Weights can be positive or negative and may change over time (learning).
The input function is the weighted sum of the activation levels of inputs.
The activation level is a non-linear transfer function g of this input:

$$
\text { activation }_{j}=g\left(s_{j}\right)=g\left(\sum_{i} w_{j i} x_{i}\right)
$$

Some nodes are inputs (sensing), some are outputs (action)

Rosenblatt Perceptron

Linear Separability

Q: what kind of functions can a perceptron compute?
A: linearly separable functions
Examples include:

AND	$w_{1}=w_{2}=1.0$,	$w_{0}=-1.5$
OR	$w_{1}=w_{2}=1.0$,	$w_{0}=-0.5$
NOR	$w_{1}=w_{2}=-1.0$,	$w_{0}=0.5$

Q : How do we train it to learn a new function?

Transfer function

Originally, a (discontinuous) step function was used for the transfer function:

(Later, other transfer functions were introduced, which are continuous and smooth)

СомР944
©Alan Blair, and Anthony Knittel, 2013

Perceptron Learning Rule

Adjust the weights as each input is presented.
recall: $s=w_{1} x_{1}+w_{2} x_{2}+w_{0}$,
$\eta>0$ is called the learning rate
if $g(s)=0$ but should be 1 ,

$$
\text { if } g(s)=1 \text { but should be } 0 \text {, }
$$

$w_{k} \leftarrow w_{k}+\eta x_{k}$
$w_{k} \leftarrow w_{k}-\eta x_{k}$
$w_{0} \leftarrow w_{0}+\eta$
$w_{0} \leftarrow w_{0}-\eta$
so $\quad s \leftarrow s+\eta\left(1+\sum_{k} x_{k}^{2}\right)$
so $\quad s \leftarrow s-\eta\left(1+\sum_{k} x_{k}^{2}\right)$
otherwise, weights are unchanged.
Theorem: This will learn to classify the data correctly, as long as they are linearly separable.

Perceptron Learning Example

Training Step 1

COMP9444 13s2
Perceptrons and Backpropagation

$$
\mathbf{X}_{2} \left\lvert\, \begin{array}{cccc}
w_{1} & \leftarrow w_{1}+\eta x_{1} & = & 0.3 \\
w_{2} & \leftarrow w_{2}+\eta x_{2} & = & 0.0 \\
w_{0} & \leftarrow w_{0}+\eta & = & -0.1 \\
\bullet(2,1) & \begin{array}{l}
0.3 x_{1}+0.0 x_{2}-0.1>0
\end{array} \\
\mathbf{X}_{1}
\end{array}\right.
$$

Training Step 2

Training Step 3

Training Step 4

Multi-Layer Neural Networks

Problem: How do we train it to learn a new function? (credit assignment)

Limitations

Problem: many useful functions are not linearly separable (e.g. XOR)

Possible solution:
x_{1} XOR x_{2} can be written as: ($x_{1} \operatorname{AND} x_{2}$) NOR ($x_{1} \operatorname{NOR} x_{2}$)
Recall that AND, OR and NOR can be implemented by perceptrons.
COMP9444 © Alan Blair, and Anthony Knitel, 2013

COMP9444 13s2

Perceptrons and Backpropagation

Key Idea

Replace the (discontinuous) step function with a differentiable function, such as the sigmoid:

$$
g(s)=\frac{1}{1+e^{-s}}
$$

or hyperbolic tangent

$$
g(s)=\tanh (s)=\frac{e^{s}-e^{-s}}{e^{s}+e^{-s}}=2\left(\frac{1}{1+e^{-2 s}}\right)-1
$$

Forward Pass

Chain Rule

If, say

$$
\begin{aligned}
& y=y(u) \\
& u=u(x)
\end{aligned}
$$

Then

$$
\frac{\partial y}{\partial x}=\frac{\partial y}{\partial u} \frac{\partial u}{\partial x}
$$

This principle can be used to compute the partial derivatives in an efficient and localized manner. Note that the transfer function must be differentiable (usually sigmoid, or tanh).

$$
\begin{aligned}
\text { Note: if } \quad z(s) & =\frac{1}{1+e^{-s}}, & z^{\prime}(s) & =z(1-z) \\
\text { if } z(s) & =\tanh (s), & z^{\prime}(s) & =1-z^{2}
\end{aligned}
$$

Gradient Descent

We define an error function E to be (half) the sum over all input patterns of the square of the difference between actual output and desired output

$$
E=\frac{1}{2} \sum(z-t)^{2}
$$

If we think of E as height, it defines an error landscape on the weight space. The aim is to find a set of weights for which E is very low. This is done by moving in the steepest downhill direction.

$$
w \leftarrow w-\eta \frac{\partial E}{\partial w}
$$

Parameter η is called the learning rate.
СомP9444
©Alan Blair, and Anthony Knittel, 2013

Backpropagation

We want to find the way the error function changes with respect to the weights, which allows us to change weights such that the error is reduced. For output node weights:

$$
\frac{\partial E}{\partial v_{1}}=\frac{\partial E}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial v_{1}}
$$

For hidden node weights:

$$
\frac{\partial E}{\partial w_{11}}=\frac{\partial E}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial y_{1}} \frac{\partial y_{1}}{\partial u_{1}} \frac{\partial u_{1}}{\partial w_{11}}
$$

Backpropagation

Partial Derivatives

$$
\begin{aligned}
\frac{\partial E}{\partial z} & =z-t \\
\frac{d z}{d s} & =g^{\prime}(s)=z(1-z) \\
\frac{\partial s}{\partial y_{1}} & =v_{1} \\
\frac{d y_{1}}{d u_{1}} & =y_{1}\left(1-y_{1}\right)
\end{aligned}
$$

Useful notation

$$
\delta_{\mathrm{out}}=\frac{\partial E}{\partial s} \quad \delta_{1}=\frac{\partial E}{\partial u_{1}} \quad \delta_{2}=\frac{\partial E}{\partial u_{2}}
$$

Then

$$
\begin{aligned}
\delta_{\text {out }} & =(z-t) z(1-z) \\
\frac{\partial E}{\partial v_{1}} & =\delta_{\text {out }} y_{1} \\
\delta_{1} & =\delta_{\text {out }} v_{1} y_{1}\left(1-y_{1}\right) \\
\frac{\partial E}{\partial w_{11}} & =\delta_{1} x_{1}
\end{aligned}
$$

Partial derivatives can be calculated efficiently by packpropagating deltas through the network.
сомP944
©Alan Blair, and Anthony Knittel, 2013

Variations on Backprop

- Cross Entropy
- problem: least squares error function unsuitable for classification, where target $=0$ or 1
- mathematical theory: maximum likelihood
- solution: replace with cross entropy error function
- Weight Decay
- problem: weights "blow up", and inhibit further learning
- solution: add weight decay term to error function
- Momentum
- problem: weights oscillate in a "rain gutter"
- solution: weighted average of gradient over time

Backpropagation

- Target values need to be within the range of the activation function, otherwise weights will grow unbounded
- For example when using the logistic (sigmoid) activation function it is better to use 0.05 for a low target and 0.95 for a high target than 0 and 1
- When the output has more than two classes (multinomial encoding), a common method is to create an output node for each class, and set a high target for the correct class and low for all others

Cross Entropy

For classification tasks, target t is either 0 or 1 , so better to use

$$
E=-t \log (z)-(1-t) \log (1-z)
$$

This can be justified mathematically, works well in practice, and also makes the backprop computations simpler

$$
\begin{aligned}
\frac{\partial E}{\partial z} & =\frac{z-t}{z(1-z)} \\
\text { if } \quad z & =\frac{1}{1+e^{-s}}, \\
\frac{\partial E}{\partial s} & =\frac{\partial E}{\partial z} \frac{\partial z}{\partial s}=z-t
\end{aligned}
$$

Maximum Likelihood

H is a class of hypotheses
$P(D \mid h)=$ probability of data D being generated under hypothesis $h \in H$ $\log P(D \mid h)$ is called the likelihood.

ML Principle: Choose $h \in H$ which maximizes the likelihood i.e. maximizes $P(D \mid h) \quad$ [or, maximizes $\log P(D \mid h)]$

Derivation of Cross Entropy

For classification tasks, d is either 0 or 1 .
Assume D generated by hypothesis h as follows:

$$
\begin{aligned}
P\left(1 \mid h\left(x_{i}\right)\right) & =h\left(x_{i}\right) \\
P\left(0 \mid h\left(x_{i}\right)\right) & =\left(1-h\left(x_{i}\right)\right) \\
\text { i.e. } \quad P\left(d_{i} \mid h\left(x_{i}\right)\right) & =h\left(x_{i}\right)^{d_{i}}\left(1-h\left(x_{i}\right)\right)^{1-d_{i}}
\end{aligned}
$$

then

$$
\begin{aligned}
\log P(D \mid h) & =\sum_{i=1}^{m} d_{i} \log h\left(x_{i}\right)+\left(1-d_{i}\right) \log \left(1-h\left(x_{i}\right)\right) \\
h_{M L} & =\operatorname{argmax}_{h \in H} \sum_{i=1}^{m} d_{i} \log h\left(x_{i}\right)+\left(1-d_{i}\right) \log \left(1-h\left(x_{i}\right)\right)
\end{aligned}
$$

(Can be generalized to multiple classes.)

Derivation of Least Squares

Suppose data generated by a linear function h, plus Gaussian noise with standard deviation σ.

$$
\begin{aligned}
P(D \mid h) & =\prod_{i=1}^{m} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(d_{i}-h\left(x_{i}\right)\right)^{2}} \\
\log P(D \mid h) & =\sum_{i=1}^{m}-\frac{1}{2 \sigma^{2}}\left(d_{i}-h\left(x_{i}\right)\right)^{2}-\log (\sigma)-\frac{1}{2} \log (2 \pi) \\
h_{M L} & =\operatorname{argmax}_{h \in H} \log P(D \mid h) \\
& =\operatorname{argmin}_{h \in H} \sum_{i=1}^{m}\left(d_{i}-h\left(x_{i}\right)\right)^{2}
\end{aligned}
$$

(Note: we do not need to know σ)

COMP9444 ©Alan Blair, and Anthony Knitel, 2013

Weight Decay

Assume that small weights are more likely to occur than large weights, i.e.

$$
P(w)=\frac{1}{Z} e^{-\frac{\lambda}{2} \sum_{j} w_{j}^{2}}
$$

where Z is a normalizing constant. Then the cost function becomes:

$$
E=\frac{1}{2} \sum_{i}\left(z_{i}-t_{i}\right)^{2}+\frac{\lambda}{2} \sum_{j} w_{j}^{2}
$$

This can prevent the weights from "saturating" to very high values.
Problem: need to determine λ from experience, or empirically.
In practise, adjust weights using: $w \leftarrow w(1-\varepsilon)$

Momentum

If landscape is shaped like a "rain gutter", weights will tend to oscillate without much improvement.

Solution: add a momentum factor

$$
\begin{aligned}
\delta w & \leftarrow \alpha \delta w+(1-\alpha) \frac{\partial E}{\partial w} \\
w & \leftarrow w-\eta \delta w
\end{aligned}
$$

Hopefully, this will dampen sideways oscillations but amplify downhill motion by $\frac{1}{1-\alpha}$.

Training and Testing

\square Gradient descent will adjust weights so that the network reproduces outputs according to examples it is trained on

- The training set is only a sample, we evaluate usefulness using a separate testing set

Overfitting is when the network classifies training set examples better than the test set. We can check if learning is producing overfitting by using a validation set

Conjugate Gradients

Compute matrix of second derivatives $\frac{\partial^{2} E}{\partial w_{i} \partial w_{j}}$ (called the Hessian)
Approximate the landscape with a quadratic function (paraboloid).
Jump to the minimum of this quadratic function.

Natural Gradients (Amari, 1995)

Use methods from information geometry to find a "natural" re-scaling of the partial derivatives.

$$
\text { Comp9444 © Alan Blair, and Anthony Knitel, } 2013
$$

Training Tips

- re-scale inputs and outputs to be in the range 0 to 1 or -1 to 1
- initialize weights to very small random values
on-line or batch learning
- three different ways to prevent overfitting:
- limit the number of hidden nodes or connections
- limit the training time, using a validation set
\Rightarrow weight decay
- adjust learning rate and momentum to suit the particular task

Supervised Learning - Issues

framework (decision tree, neural network, SVM, etc.)

- representation (of inputs and outputs)
- pre-processing / post-processing
- training method (perceptron learning, backpropagation, etc.)
generalization (avoid over-fitting)
\square evaluation (separate training, validation, test sets)

COMP9444

Curve Fitting

Which curve gives the "best fit" to these data?

Curve Fitting

Which curve gives the "best fit" to these data?

straight line?

Curve Fitting

Which curve gives the "best fit" to these data?

parabola?

Curve Fitting

Which curve gives the "best fit" to these data?

4th order polynomial?

comp9444

©Alan Blair, and Anthony Knittel, 2013

Curve Fitting

Which curve gives the "best fit" to these data?

Something else?
Comp9444 ©Alan Blair, and Anthony Knittel, 201

Ockham's Razor

"The most likely hypothesis is the simplest one consistent with the data."

inadequate
good compromise
over-fitting
Since there can be noise in the measurements, in practice need to make a tradeoff between simplicity of the hypothesis and how well it fits the data.

Predicted Buchanan Votes by County

Outliers

How to Prevent Over-Fitting

- limit the number of hidden nodes or connections
- limit the training time
- keep weights small, using Weight Decay

The appropriate number of hidden nodes or training cycles may be estimated using a Validation Set.

COMP9444

Overfitting in Neural Networks

COMP9444
© Alan Blair, and Anthony Knittel, 2013

Overfitting in Neural Networks

