COMP9444: Neural Networks

2. Perceptrons and Backpropagation

Outline

- Neurons biological and artificial
- Perceptrons
- Linear separability
- 3 6 1 . 1 . 1

COMP9444 © Alan Blair, and Anthony Knittel, 2013 COMP9444 13s2 Perceptrons and Backpropagation 2

Biological Neurons

The brain is made up of neurons (nerve cells) which have

- a cell body (soma)
- dendrites (inputs)
- an axon (output)
- **synapses** (connections between cells)

Synapses can be exitatory or inhibitory and may change over time.

© Alan Blair, and Anthony Knittel, 2013

When the inputs reach some threshold an action potential (electrical pulse) is sent along the axon to the outputs.

tion
Backprop
©Alan Blair, and Anthony Knittel, 2013
Perceptrons and Backpropagation
eural Networks
Networks are made up of nodes which have
each with some weight
(with weights)
level (a function of the inputs)
sitive or negative and may change over time (learning).
is the weighted sum of the activation levels of inputs.
el is a non-linear transfer function g of this input:
activation $_{i} = g(s_{i}) = g(\sum w_{ii}x_{i})$

Some nodes are inputs (sensing), some are outputs (action)

Rosenblatt Perceptron

Linear Separability

Q: what kind of functions can a perceptron compute?

A: linearly separable functions

Examples include:

AND	$w_1 = w_2 = 1.0$	$w_0 = -1.5$
OR	$w_1 = w_2 = 1.0$	$w_0 = -0.5$
NOR	$w_1 = w_2 = -1.0$	$w_0 = 0.5$

Q: How do we train it to learn a new function?

Transfer function

Originally, a (discontinuous) step function was used for the transfer function:

(Later, other transfer functions were introduced, which are continuous and smooth)

COMP9444

COMP9444 13s2

© Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2

if

COMP9444

Wŀ

 W_0

Perceptrons and Backpropagation

Perceptron Learning Rule

Adjust the weights as each input is presented.

recall: $s = w_1 x_1 + w_2 x_2 + w_0$,

 $\eta > 0$ is called the **learning rate**

$$g(s) = 0$$
 but should be 1, if $g(s) =$

if
$$g(s) = 1$$
 but should be 0,

$$w_0 \leftarrow w_0 - \eta$$

so
$$s \leftarrow s + \eta \left(1 + \sum_{k} x_{k}^{2}\right)$$
 so $s \leftarrow s - \eta \left(1 + \sum_{k} x_{k}^{2}\right)$

otherwise, weights are unchanged.

Theorem: This will learn to classify the data correctly, as long as they are linearly separable.

7

Perceptron Learning Example

COMP9444 13s2

Perceptrons and Backpropagation

Training Step 2

Training Step 3

COMP9444

COMP9444

12

13

15

Training Step 4

Multi-Layer Neural Networks

Problem: How do we train it to learn a new function? (credit assignment)

Limitations

Possible solution:

 x_1 XOR x_2 can be written as: $(x_1 \text{ AND } x_2) \text{ NOR } (x_1 \text{ NOR } x_2)$

Recall that AND, OR and NOR can be implemented by perceptrons.

COMP9444 13s2

COMP9444

Perceptrons and Backpropagation

Key Idea

Replace the (discontinuous) step function with a differentiable function, such as the sigmoid:

$$g(s) = \frac{1}{1 + e^{-s}}$$

or hyperbolic tangent

$$g(s) = \tanh(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}} = 2\left(\frac{1}{1 + e^{-2s}}\right) - 1$$

COMP9444

© Alan Blair, and Anthony Knittel, 2013

© Alan Blair, and Anthony Knittel, 2013

Perceptrons and Backpropagation

COMP9444 13s2

18

Chain Rule

If, say

y = y(u)u = u(x)

Then

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial x}$$

This principle can be used to compute the partial derivatives in an efficient and localized manner. Note that the transfer function must be differentiable (usually sigmoid, or tanh).

Note: if
$$z(s) = \frac{1}{1 + e^{-s}}$$
, $z'(s) = z(1 - z)$.
if $z(s) = \tanh(s)$, $z'(s) = 1 - z^2$.

(c) Alan Blair, and Anthony Knittel, 2013

Gradient Descent

We define an **error function** E to be (half) the sum over all input patterns of the square of the difference between actual output and desired output

 $E = \frac{1}{2}\sum (z - t)^2$

If we think of E as height, it defines an error **landscape** on the weight space. The aim is to find a set of weights for which E is very low. This is done by moving in the steepest downhill direction.

$$w \leftarrow w - \eta \ \frac{\partial E}{\partial w}$$

Parameter η is called the learning rate.

COMP9444 13s2

COMP9444

Perceptrons and Backpropagation

Backpropagation

We want to find the way the error function changes with respect to the weights, which allows us to change weights such that the error is reduced. For output node weights:

$$\frac{\partial E}{\partial v_1} = \frac{\partial E}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial v_1}$$

For hidden node weights:

$$\frac{\partial E}{\partial w_{11}} = \frac{\partial E}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial y_1} \frac{\partial y_1}{\partial u_1} \frac{\partial u_1}{\partial w_{11}}$$

COMP9444

© Alan Blair, and Anthony Knittel, 2013

© Alan Blair, and Anthony Knittel, 2013

Backpropagation

Partial Derivatives

Useful notation

$\frac{\partial E}{\partial z}$	=	z-t	$\delta_{\text{out}} = \frac{\partial E}{\partial s} \delta_1 = \frac{\partial E}{\partial u_1} \delta_2 = \frac{\partial E}{\partial u_2}$ Then
$\frac{dz}{ds}$	=	g'(s) = z(1-z)	$\delta_{\text{out}} = (z-t) z (1-z)$
$\frac{\partial s}{\partial y_1}$	=	v_1	$\frac{\partial E}{\partial v_1} = \delta_{\text{out}} y_1$ $\delta_1 = \delta_{\text{out}} v_1 v_1 (1 - v_1)$
$\frac{dy_1}{du_1}$	=	$y_1(1-y_1)$	$\frac{\partial E}{\partial w_{11}} = \delta_1 x_1$

Partial derivatives can be calculated efficiently by packpropagating deltas through the network.

COMP9444 13s2

COMP9444

22

© Alan Blair, and Anthony Knittel, 2013

Variations on Backprop

- Cross Entropy
 - problem: least squares error function unsuitable for classification, where target = 0 or 1

Perceptrons and Backpropagation

- mathematical theory: maximum likelihood
- solution: replace with cross entropy error function
- Weight Decay
 - ▶ problem: weights "blow up", and inhibit further learning
 - solution: add weight decay term to error function
- Momentum
 - > problem: weights oscillate in a "rain gutter"
 - ▶ solution: weighted average of gradient over time

Backpropagation

- Target values need to be within the range of the activation function, otherwise weights will grow unbounded
 - ► For example when using the logistic (sigmoid) activation function it is better to use 0.05 for a low target and 0.95 for a high target than 0 and 1
- When the output has more than two classes (multinomial encoding), a common method is to create an output node for each class, and set a high target for the correct class and low for all others

COMP9444

© Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2

Perceptrons and Backpropagation

Cross Entropy

For classification tasks, target t is either 0 or 1, so better to use

$$E = -t \log(z) - (1 - t) \log(1 - z)$$

This can be justified mathematically, works well in practice, and also makes the backprop computations simpler

$$\frac{\partial E}{\partial z} = \frac{z-t}{z(1-z)}$$

if $z = \frac{1}{1+e^{-s}},$
 $\frac{\partial E}{\partial s} = \frac{\partial E}{\partial z}\frac{\partial z}{\partial s} = z-t$

© Alan Blair, and Anthony Knittel, 2013

1

Maximum Likelihood

H is a class of hypotheses

P(D|h) = probability of data D being generated under hypothesis $h \in H$.

 $\log P(D|h)$ is called the likelihood.

ML Principle: Choose $h \in H$ which maximizes the likelihood,

i.e. maximizes P(D|h)[or, maximizes $\log P(D|h)$]

Derivation of Least Squares

Suppose data generated by a linear function h, plus Gaussian noise with standard deviation σ .

$$P(D|h) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(d_i - h(x_i))^2}$$

$$\log P(D|h) = \sum_{i=1}^{m} -\frac{1}{2\sigma^2}(d_i - h(x_i))^2 - \log(\sigma) - \frac{1}{2}\log(2\pi)$$

$$h_{ML} = \operatorname{argmax}_{h \in H} \log P(D|h)$$

$$= \operatorname{argmin}_{h \in H} \sum_{i=1}^{m} (d_i - h(x_i))^2$$

(Note: we do not need to know σ)

© Alan Blair, and Anthony Knittel, 2013

Perceptrons and Backpropagation

Weight Decay

Assume that small weights are more likely to occur than large weights, i.e.

$$P(w) = \frac{1}{Z} e^{-\frac{\lambda}{2}\sum_{j} w_{j}^{2}}$$

where *Z* is a normalizing constant. Then the cost function becomes:

$$E = \frac{1}{2}\sum_{i}(z_i - t_i)^2 + \frac{\lambda}{2}\sum_{j}w_j^2$$

This can prevent the weights from "saturating" to very high values.

Problem: need to determine λ from experience, or empirically.

In practise, adjust weights using: $w \leftarrow w(1 - \varepsilon)$

COMP9444

25

27

COMP9444 COMP9444 © Alan Blair, and Anthony Knittel, 2013 COMP9444 13s2 Perceptrons and Backpropagation 26 COMP9444 13s2 **Derivation of Cross Entropy**

For classification tasks, d is either 0 or 1. Assume *D* generated by hypothesis *h* as follows:

$$P(1|h(x_i)) = h(x_i)$$

$$P(0|h(x_i)) = (1-h(x_i))$$
i.e.
$$P(d_i|h(x_i)) = h(x_i)^{d_i}(1-h(x_i))^{1-d_i}$$

then

1

$$\log P(D|h) = \sum_{i=1}^{m} d_i \log h(x_i) + (1 - d_i) \log(1 - h(x_i))$$

$$h_{ML} = \operatorname{argmax}_{h \in H} \sum_{i=1}^{m} d_i \log h(x_i) + (1 - d_i) \log(1 - h(x_i))$$

(Can be generalized to multiple classes.)

Momentum

If landscape is shaped like a "rain gutter", weights will tend to oscillate without much improvement.

Solution: add a momentum factor

$$\delta w \leftarrow \alpha \, \delta w + (1 - \alpha) \frac{\partial E}{\partial w}$$
$$w \leftarrow w - \eta \, \delta w$$

Hopefully, this will dampen sideways oscillations but amplify downhill motion by $\frac{1}{1-\alpha}$.

COMP9444	©Alan Blair, and Anthony Knittel, 2013	
COMP9444 13s2	Perceptrons and Backpropagation	30

Training and Testing

- Gradient descent will adjust weights so that the network reproduces outputs according to examples it is trained on
- The training set is only a sample, we evaluate usefulness using a separate testing set
- Overfitting is when the network classifies training set examples better than the test set. We can check if learning is producing overfitting by using a validation set

Conjugate Gradients

Compute matrix of second derivatives $\frac{\partial^2 E}{\partial w_i \partial w_j}$ (called the Hessian). Approximate the landscape with a quadratic function (paraboloid). Jump to the minimum of this quadratic function.

Natural Gradients (Amari, 1995)

Use methods from information geometry to find a "natural" re-scaling of the partial derivatives.

COMP9444

© Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2

Perceptrons and Backpropagation

Training Tips

- re-scale inputs and outputs to be in the range 0 to 1 or -1 to 1
- initialize weights to very small random values
- on-line or batch learning
- three different ways to prevent overfitting:
 - limit the number of hidden nodes or connections
 - ▶ limit the training time, using a validation set
 - ▶ weight decay
- adjust learning rate and momentum to suit the particular task

33

35

Supervised Learning – Issues

- framework (decision tree, neural network, SVM, etc.)
- representation (of inputs and outputs)
- pre-processing / post-processing
- training method (perceptron learning, backpropagation, etc.)
- generalization (avoid over-fitting)
- evaluation (separate training, validation, test sets)

COMP9444	©Alan Blair, and Anthony Knittel, 2013		COMP9444	©Alan Blair, and Anthony Knittel, 2013
COMP9444 13s2	Perceptrons and Backpropagation	34	COMP9444 13s2	Perceptrons and Backpropagation

Curve Fitting

© Alan Blair, and Anthony Knittel, 2013

straight line?

Curve Fitting

parabola?

COMP9444

Curve Fitting

4th order polynomial?

	COMP9444	©Alan Blair, and Anthony Knittel, 2013	
COMP9	9444 13s2	Perceptrons and Backpropagation	38

Ockham's Razor

"The most likely hypothesis is the simplest one consistent with the data."

Since there can be **noise** in the measurements, in practice need to make a tradeoff between simplicity of the hypothesis and how well it fits the data.

Something else?

Outliers

©Alan Blair, and Anthony Knittel, 2013

How to Prevent Over-Fitting

- limit the number of hidden nodes or connections
- limit the training time
- keep weights small, using Weight Decay

The appropriate number of hidden nodes or training cycles may be estimated using a Validation Set.

Overfitting in Neural Networks

COMP9444	©Alan Blair, and Anthony Knittel, 2013		COMP9444
COMP9444 13s2	Perceptrons and Backpropagation	42	

Overfitting in Neural Networks

© Alan Blair, and Anthony Knittel, 2013

© Alan Blair, and Anthony Knittel, 2013