
COMP9444 13s2 Perceptrons and Backpropagation 2

Biological Neurons

The brain is made up of neurons (nerve cells) which have

� a cell body (soma)

� dendrites (inputs)

� an axon (output)

� synapses (connections between cells)

Synapses can be exitatory or inhibitory and may change over time.

When the inputs reach some threshhold an action potential

(electrical pulse) is sent along the axon to the outputs.

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444: Neural Networks

2. Perceptrons and Backpropagation

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 3

Artificial Neural Networks

(Artificial) Neural Networks are made up of nodes which have

� inputs edges, each with some weight

� outputs edges (with weights)

� an activation level (a function of the inputs)

Weights can be positive or negative and may change over time (learning).

The input function is the weighted sum of the activation levels of inputs.

The activation level is a non-linear transfer function g of this input:

activation j = g(s j) = g(∑
i

w jixi)

Some nodes are inputs (sensing), some are outputs (action)

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 1

Outline

� Neurons – biological and artificial

� Perceptrons

� Linear separability

� Multi-layer neural networks

� Backpropagation

� Variations on Backprop

� Training tips

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 6

Linear Separability

Q: what kind of functions can a perceptron compute?

A: linearly separable functions

Examples include:

AND w1 = w2 = 1.0, w0 =−1.5

OR w1 = w2 = 1.0, w0 =−0.5

NOR w1 = w2 =−1.0, w0 = 0.5

Q: How do we train it to learn a new function?

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 4

Rosenblatt Perceptron

x1

x2

Σ ✲ g ✲

1

✟✟✟✟✟✟✟✯

❍❍❍❍❍❍❍❥

✁
✁
✁
✁✁✕

w1

w2

w0=-th

s
g(s)

s = w1x1 +w2x2−th

= w1x1 +w2x2 +w0

x1, x2 are inputs

w1, w2 are synaptic weights

th is a threshold

w0 is a bias weight

g is transfer function

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 7

Perceptron Learning Rule

Adjust the weights as each input is presented.

recall: s = w1x1 +w2x2 +w0,

η > 0 is called the learning rate

if g(s) = 0 but should be 1,

wk ← wk +ηxk

w0 ← w0 +η

so s ← s+η(1+∑
k

x2
k)

if g(s) = 1 but should be 0,

wk ← wk−ηxk

w0 ← w0−η

so s ← s−η(1+∑
k

x2
k)

otherwise, weights are unchanged.

Theorem: This will learn to classify the data correctly,

as long as they are linearly separable.

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 5

Transfer function

Originally, a (discontinuous) step function was used for the transfer

function:

g(s) =
{ 1, if s≥ 0

0, if s < 0

(Later, other transfer functions were introduced, which are continuous and

smooth)

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 10

Training Step 2

x

2

1

x

(2,1)

w1 ← w1 +η x1 = 0.3

w2 ← w2 +η x2 = 0.0

w0 ← w0 +η = −0.1

0.3 x1 +0.0 x2−0.1 > 0

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 8

Perceptron Learning Example

x1

x2

Σ→ (+/−) ✲

1

✟✟✟✟✟✟✟✯

❍❍❍❍❍❍❍❥

✁
✁
✁
✁✁✕

w1

w2

w0

w1 x1 +w2 x2 +w0 > 0

learning rate η = 0.1

begin with random weights

w1 = 0.2

w2 = 0.0

w0 =−0.1

0.2 x1 +0.0 x2−0.1 > 0

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 11

Training Step 3

x

2

1

x

(1.5,0.5)

(2,2)
3rd point correctly classified,

so no change

4th point:

w1 ← w1−η x1 = 0.1

w2 ← w2−η x2 = −0.2

w0 ← w0−η = −0.2

0.1 x1−0.2 x2−0.2 > 0

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 9

Training Step 1

x

2

1

x

(1,1)

w1 ← w1−η x1 = 0.1

w2 ← w2−η x2 = −0.1

w0 ← w0−η = −0.2

0.1 x1−0.1 x2−0.2 > 0

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 14

Multi-Layer Neural Networks

XOR

NOR

AND NOR

Problem: How do we train it to learn a new function? (credit assignment)

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 12

Training Step 4

x

x

1

2

eventually, all the data will be

correctly classified (provided

it is linearly separable)

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 15

Key Idea

(a)Step function (b)Sign function

+1

a
i

−1

ini

+1

a
i

init

(c)Sigmoid function

+1

a
i

ini

(d) Hyperbolic tangent

Replace the (discontinuous) step function with a differentiable function,

such as the sigmoid:

g(s) =
1

1+ e−s

or hyperbolic tangent

g(s) = tanh(s) =
es− e−s

es + e−s
= 2

(1

1+ e−2s

)

−1

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 13

Limitations

Problem: many useful functions are not linearly separable (e.g. XOR)

I 1

I 2

I 1

I 2

I 1

I 2

?

(a) (b) (c)and or xor

0 1

0

1

0

1 1

0

0 1 0 1

I 2I 1I 1 I 2I 1 I 2

Possible solution:

x1 XOR x2 can be written as: (x1 AND x2) NOR (x1 NOR x2)

Recall that AND, OR and NOR can be implemented by perceptrons.

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 18

Chain Rule

If, say

y = y(u)

u = u(x)
Then

∂y

∂x
=

∂y

∂u

∂u

∂x

This principle can be used to compute the partial derivatives in an

efficient and localized manner. Note that the transfer function must be

differentiable (usually sigmoid, or tanh).

Note: if z(s) =
1

1+ e−s
, z′(s) = z(1− z).

if z(s) = tanh(s), z′(s) = 1− z2.

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 16

Forward Pass

b2

w22

b1

u1

v1 v2

z

c

u2

11w

s

w
21

w
12

1x 2x

1y 2y

u1 = b1 +w11x1 +w12x2

y1 = g(u1)

s = c+ v1y1 + v2y2

z = g(s)

E =
1

2
∑(z− t)2

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 19

Backpropagation

We want to find the way the error function changes with respect to the

weights, which allows us to change weights such that the error is reduced.

For output node weights:

∂E

∂v1
=

∂E

∂z

∂z

∂s

∂s

∂v1

For hidden node weights:

∂E

∂w11
=

∂E

∂z

∂z

∂s

∂s

∂y1

∂y1

∂u1

∂u1

∂w11

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 17

Gradient Descent

We define an error function E to be (half) the sum over all input patterns

of the square of the difference between actual output and desired output

E =
1

2
∑(z− t)2

If we think of E as height, it defines an error landscape on the weight

space. The aim is to find a set of weights for which E is very low.

This is done by moving in the steepest downhill direction.

w← w−η
∂E

∂w

Parameter η is called the learning rate.

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 22

Variations on Backprop

� Cross Entropy

◮ problem: least squares error function unsuitable for classification,

where target = 0 or 1

◮ mathematical theory: maximum likelihood

◮ solution: replace with cross entropy error function

� Weight Decay

◮ problem: weights “blow up”, and inhibit further learning

◮ solution: add weight decay term to error function

� Momentum

◮ problem: weights oscillate in a “rain gutter”

◮ solution: weighted average of gradient over time

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 20

Backpropagation

Partial Derivatives

∂E

∂z
= z− t

dz

ds
= g′(s) = z(1− z)

∂s

∂y1
= v1

dy1

du1
= y1(1− y1)

Useful notation

δout =
∂E

∂s
δ1 =

∂E

∂u1
δ2 =

∂E

∂u2

Then

δout = (z− t) z (1− z)

∂E

∂v1
= δout y1

δ1 = δout v1 y1 (1− y1)

∂E

∂w11
= δ1 x1

Partial derivatives can be calculated efficiently by packpropagating deltas

through the network.

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 23

Cross Entropy

For classification tasks, target t is either 0 or 1, so better to use

E =− t log(z)− (1− t) log(1− z)

This can be justified mathematically, works well in practice, and also

makes the backprop computations simpler

∂E

∂z
=

z− t

z(1− z)

if z =
1

1+ e−s
,

∂E

∂s
=

∂E

∂z

∂z

∂s
= z− t

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 21

Backpropagation

� Target values need to be within the range of the activation function,

otherwise weights will grow unbounded

◮ For example when using the logistic (sigmoid) activation function

it is better to use 0.05 for a low target and 0.95 for a high target

than 0 and 1

� When the output has more than two classes (multinomial encoding),

a common method is to create an output node for each class, and set a

high target for the correct class and low for all others

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 26

Derivation of Cross Entropy

For classification tasks, d is either 0 or 1.

Assume D generated by hypothesis h as follows:

P(1|h(xi)) = h(xi)

P(0|h(xi)) = (1−h(xi))

i.e. P(di|h(xi)) = h(xi)
di(1−h(xi))

1−di

then

logP(D|h) =
m

∑
i=1

di logh(xi)+(1−di) log(1−h(xi))

hML = argmaxh∈H

m

∑
i=1

di logh(xi)+(1−di) log(1−h(xi))

(Can be generalized to multiple classes.)

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 24

Maximum Likelihood

H is a class of hypotheses

P(D|h) = probability of data D being generated under hypothesis h ∈ H.

logP(D|h) is called the likelihood.

ML Principle: Choose h ∈ H which maximizes the likelihood,

i.e. maximizes P(D|h) [or, maximizes logP(D|h)]

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 27

Weight Decay

Assume that small weights are more likely to occur than large weights, i.e.

P(w) =
1

Z
e
− λ

2 ∑ j w2
j

where Z is a normalizing constant. Then the cost function becomes:

E =
1

2
∑

i

(zi− ti)
2 +

λ

2
∑

j

w2
j

This can prevent the weights from “saturating” to very high values.

Problem: need to determine λ from experience, or empirically.

In practise, adjust weights using: w← w(1− ε)

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 25

Derivation of Least Squares

Suppose data generated by a linear function h, plus Gaussian noise with

standard deviation σ.

P(D|h) =
m

∏
i=1

1√
2πσ2

e
− 1

2σ2 (di−h(xi))
2

logP(D|h) =
m

∑
i=1

− 1

2σ2
(di−h(xi))

2− log(σ)− 1

2
log(2π)

hML = argmaxh∈H logP(D|h)

= argminh∈H

m

∑
i=1

(di−h(xi))
2

(Note: we do not need to know σ)

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 30

Training and Testing

� Gradient descent will adjust weights so that the network reproduces

outputs according to examples it is trained on

� The training set is only a sample, we evaluate usefulness using a

separate testing set

� Overfitting is when the network classifies training set examples better

than the test set. We can check if learning is producing overfitting by

using a validation set

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 28

Momentum

If landscape is shaped like a “rain gutter”, weights will tend to oscillate

without much improvement.

Solution: add a momentum factor

δw ← αδw+(1−α)
∂E

∂w

w ← w−ηδw

Hopefully, this will dampen sideways oscillations but amplify downhill

motion by 1
1−α .

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 31

Training Tips

� re-scale inputs and outputs to be in the range 0 to 1 or −1 to 1

� initialize weights to very small random values

� on-line or batch learning

� three different ways to prevent overfitting:

◮ limit the number of hidden nodes or connections

◮ limit the training time, using a validation set

◮ weight decay

� adjust learning rate and momentum to suit the particular task

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 29

Conjugate Gradients

Compute matrix of second derivatives ∂2E
∂wi∂w j

(called the Hessian).

Approximate the landscape with a quadratic function (paraboloid).

Jump to the minimum of this quadratic function.

Natural Gradients (Amari, 1995)

Use methods from information geometry to find a “natural” re-scaling of

the partial derivatives.

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 34

Curve Fitting

Which curve gives the “best fit” to these data?

x

f(x)

straight line?

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 32

Supervised Learning – Issues

� framework (decision tree, neural network, SVM, etc.)

� representation (of inputs and outputs)

� pre-processing / post-processing

� training method (perceptron learning, backpropagation, etc.)

� generalization (avoid over-fitting)

� evaluation (separate training, validation, test sets)

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 35

Curve Fitting

Which curve gives the “best fit” to these data?

x

f(x)

parabola?

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 33

Curve Fitting

Which curve gives the “best fit” to these data?

x

f(x)

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 38

Ockham’s Razor

“The most likely hypothesis is the simplest one consistent with the data.”

x

x

x x

x

x

o

o
o

o o

o

o

x

o

x

x

o
x

x x

x

o

x

o

o

o

o

o

x

x

x x

x

x

o

o
o

o o

o

o

x

o

x

x

o
x

x x

x

o

x

o

o

o

o

o

x

x

x x

x

x

o

o
o

o o

o

o

x

o

x

x

o
x

x x

x

o

x

o

o

o

o

o

inadequate good compromise over-fitting

Since there can be noise in the measurements, in practice need to make a

tradeoff between simplicity of the hypothesis and how well it fits the data.

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 36

Curve Fitting

Which curve gives the “best fit” to these data?

x

f(x)

4th order polynomial?

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 39

Outliers

Predicted Buchanan Votes by County

[faculty.washington.edu/mtbrett]

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 37

Curve Fitting

Which curve gives the “best fit” to these data?

x

f(x)

Something else?

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 42

Overfitting in Neural Networks

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1000 2000 3000 4000 5000 6000

E
rr

or

Number of weight updates

Error versus weight updates (example 2)

Training set error
Validation set error

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 40

How to Prevent Over-Fitting

� limit the number of hidden nodes or connections

� limit the training time

� keep weights small, using Weight Decay

The appropriate number of hidden nodes or training cycles may be

estimated using a Validation Set.

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

COMP9444 13s2 Perceptrons and Backpropagation 41

Overfitting in Neural Networks

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 5000 10000 15000 20000

E
rr

or

Number of weight updates

Error versus weight updates (example 1)

Training set error
Validation set error

COMP9444 c©Alan Blair, and Anthony Knittel, 2013

