
vi COMP9444: Neural Networks

Applications, Deep Learning
Networks

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 1

Example Applications

� speech phoneme recognition

� credit card fraud detection

� financial prediction

� image classification

� medical diagnosis

� data mining

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 2

Case Studies

� Twin Spirals

� Face Recognition

� ALVINN

� TD-Gammon

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 3

Twin Spirals

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Can be learned with three layers, but not with two layers.

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 4

Face Recognition

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 5

ALVINN (Pomerleau 1991, 1993)

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 6

ALVINN

Sharp
 Left

Sharp
Right

4 Hidden
 Units

30 Output
 Units

 30x32 Sensor
 Input Retina

Straight
 Ahead

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 7

ALVINN

� Autonomous Land Vehicle In a Neural Network

◮ 30×32 = 960 inputs

◮ 4 hidden units

◮ 30 output units

� later version included a sonar range finder

� centre-of-mass of outputs determines steering direction.

� trained “on the fly” from human driving (behavioural cloning)

� synthetic data generated to cover “emergency” situations

� drove autonomously from coast to coast

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 8

ALVINN Training Details

� transformed inputs and outputs also included in training set

◮ exposes the network to extreme situations without having to drive

off the road.

� trained for two minutes of driving, resulting in 50 real images and

15×50 = 750 transformed images.

� different networks for dirt roads, city roads, freeways

� able to drive from coast to coast at 70km/h.

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 9

Backgammon

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 10

Backgammon Neural Network

Two layer neural network

� 196 input units

� 20 hidden units

� 1 output unit

Board encoding

� 4 units × 2 players × 24 points

� 2 units for the bar

� 2 units for off the board

The input is the encoded board position,

the output is the value of this position (probability of winning).

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 11

Backgammon Play

� how do we play?

◮ at each move, roll the dice, find all possible “next board positions”,

convert them to the appropriate input format, feed them to the

network, and choose the one which produces the largest output.

� how do we train the network?

◮ by supervised learning (from expert preferences)

or by reinforcement learning (from self-play)

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 12

Backpropagation

w← w+η(T −P)
∂P

∂w

P = actual output

T = target output

w = weight

η = learning rate� How do we choose T ?

◮ learn moves from example games?

◮ T = final outcome of game? (Widrow-Hoff)

◮ Temporal Difference Learning (Sutton)

(current estimate) Pk→ . . .→ Pm→ Pm+1 (final result)

Tk = (1−λ)
m

∑
t=k+1

λt−1−kPt +λt−kPm+1

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 13

TD-Gammon

� Why is TD better than Widrow-Hoff?

Because it doesn’t assign credit indiscriminantly

. . .
bad

move
→ good

moves
→ win

� Tesauro trained two networks:

◮ EP-network was trained on Expert Preferences

◮ TD-network was trained by self play

� TD-network outperformed the EP-network.

� with modifications such as 3-step lookahead and additional hand-

crafted input features, TD-Gammon became the best Backgammon

player in the world.

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 14

Why did it work?

� EP-network is not exposed to extreme situations (similar to ALVINN

without transformed images).

� random dice rolls in Backgammon force self-play to explore a much

larger part of the search space than it otherwise would.

� humans are bad at probabilistic reasoning?

� other games have been trained by TD-learning, but generally against

humans rather than self-play (e.g. Knightcap Chess program).

� genetic algorithm can also produce a surprisingly strong player, but a

gradient-based method such as TD-learning is better able to fine-tune

the rarely used weights, and exploit the limited nonlinear capabilites

of the neural network.

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 15

Deep Learning Networks

� Backpropagation using Multi-Layer Perceptrons can be effective

for capturing many patterns and relationships, including non-linear

properties

� Support Vector Machines can provide even better reliability and

generalisation

� There are many limitations of these techniques

◮ Typically they are based on hand-engineered features, which

requires new features to be developed for new tasks

◮ Backpropagation networks require extensive training data, which

can be difficult or costly to produce

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 16

Deep Learning Networks

� ◮ The ability to scale to more complex tasks can be limited (aside

from engineered modularity, such as committee machines)

◮ With increased depth, training times increase. Learning is less

effective as the gradient becomes weaker with depth, as learning

must pass down from the classification layer.

◮ Training can become stuck in local minima and not find better

solutions

� Deep Learning techniques address a number of these issues

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 17

Deep Learning Networks

� Representation learning- discovery of features

� Learning from unlabelled data (followed by supervised learning)

� The ability to train deeper networks, and capture intermediate features

� Potential for more modular learning, with re-used features

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 18

Deep Learning Networks

� Machine Learning theory says we can learn any function with

accuracy as close as we want with a single layer, so why bother?

2-layer MLPs and SVMs are “universal”

� The right representation can be much more efficient for particular

tasks

� There is significant modularity in the brain- deep networks of re-used

features are seen in vision, and are useful for audio and natural

language tasks

� A more promising approach for more general AI

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 19

Deep Learning Networks

� Common techniques:

◮ Unsupervised learning, to pre-train the network

◮ Feature learning takes place one layer at a time. Outputs from

features of one layer are used as inputs for the next.

◮ After pre-training, supervised learning is performed on the

network using backpropagation

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 20

Layer-wise Pre-Training

a

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 21

Deep Learning Networks

� Main approaches:

◮ Autoencoder networks (unsupervised pre-training)

◮ Restricted Boltzmann Machine networks (unsupervised pre-

training)

◮ Convolutional Neural Networks (sparse, deep topology)

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 22

Autoencoder networks

b

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 23

Autoencoder networks

� Data is provided as input, and the output of the network tries to

reconstruct the input

� Learning is performed using backpropagation or related methods

� The target output of the network is set to the input

� The aim of training is to minimise the error of reconstruction

� A reduced set of hidden units is used, creating an information

bottleneck

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 24

Autoencoder networks

� When used for pre-training, the same weights are used between the

input and hidden layer, as between the hidden and output layer

Winput =W T
out put

� Reconstruction error is calculated using squared error:

E =
1

2
‖z−x‖2

� Training is performed one layer at a time, to build a network of

pre-trained features, before using supervised learning.

� The top layer of the network contains output nodes representing

classifications

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 25

Restricted Boltzmann Machine Networks

d

� RBMs are another technique for pre-training, to capture features of

the input. They are recurrent networks, with a number of stable states

� Given an input, the network can be sampled. Activations are passed

from the input to the hidden layer, then from hidden to the input layer,

repeating until stability is reached.

� The visible layer provides a reconstruction of the input. Training the

network allows capturing features of the input.

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 26

Restricted Boltzmann Machine Networks

� Stable states of the network have low energy values

� Gibbs sampling is used to find a low energy state

� The energy values of configurations are defined by the weights

� Probabilistic: weights → energy values → probabilities

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 27

Restricted Boltzmann Machine Networks

P(y)

input sum

1

0

� Units are binary stochastic neurons. Either on or off, firing is given

by a probability value according to the sum of inputs

� The activation function describes the probability of firing P(y j) as a

function of the input ∑i xiwi j

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 28

Alternating Gibbs Sampling

c

� The input is presented at the visible units

� Hidden units are updated based on probabilistic activations. Visible

units are updated subsequently. This repeats until stability is reached.

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 29

Learning in RBMs

� The reconstruction reached when the network stabilises is a

representation with lower energy than the input.

� We want the network to prefer the input over this “fantasy”.

� Energy value of a given configuration: E(v,h) =−∑i, j vih jwi j

� Cost function is given by the difference between the free energy of

the configuration with the observed input, and the free energy of the

stable state

� Adjust weights according to:

∂ logP(v)

∂wi j

=< vih j >
0 −< vih j >

∞

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 30

Learning in RBMs

� It takes a lot of time to perform this kind of sampling

� Contrastive Divergence is an approximate method that works well

� Instead of iterating over many steps, perform just one pass. Update

visible to hidden, then hidden to visible, then visible to hidden again.

� Adjust weights according to:

∆wi j = η(< vih j >
0 −< vih j >

1)

� This does not follow the gradient of the error function directly

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 31

Learning in RBMs

c

∆wi j = η(< vih j >
0 −< vih j >

1)

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 32

Learning in RBMs

� Subsequent layers can be learnt in turn, each layer improves the

ability of the system to reconstruct the input

� This approach can be used to pre-train a network, before performing

supervised learning

� A classification layer can be added to the top layer, representing

classes for supervised learning. A fine-tuning stage adjusts

weights using an error function defined at the output nodes, by

backpropagation.

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 33

Learning in RBMs

c

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 34

Softmax output

� A common method is to use a Softmax activation function on the

output nodes.

zi =
esi

∑ j es j

� Activations are non-local, and represent a probability distribution.

The sum of output activations will be 1.

� To perform learning, the following relations are used:

E = −∑ j t j logz j

∂E

∂si

= zi− ti

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 35

Softmax output

s
1

s
2

s
3

z
3

z
2

z
1

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 36

Pre-trained Deep Networks

Putting it all together:

� This approach can be used to pre-train a network, before performing

supervised learning

� A classification layer can be added to the top layer, representing

classes for supervised learning. A fine-tuning stage adjusts

weights using an error function defined at the output nodes, by

backpropagation.

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 37

Deep Learning Networks

f

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 38

Convolutional Neural Networks

e

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 39

Convolutional Neural Networks

� CNNs are a form of deep neural network with a specific topology,

based on structure seen in the visual system

� Each unit has a limited receptive field

� Units are convolutional, the same set of weights are used to find a

response in multiple positions

� Convolutional and sub-sampling layers perform specific functions,

acting in a manner similar to simple and complex cells in the visual

system

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 40

Summary

� Deep Learning approaches introduce a number of new techniques that

allow an increase in depth and modularity of neural networks

� Unsupervised learning allows capturing structure from observations,

without relying on feedback from classifications

� Unsupervised pre-training improves the reliability and accuracy of

supervised learning

� These techniques offer many new opportunities for machine learning

and more general artificial intelligence

COMP9444 c©Anthony Knittel and Alan Blair, 2013

COMP9444 13s2 Applications, Deep Learning Networks 41

Summary

COMP9444 c©Anthony Knittel and Alan Blair, 2013

afigure by Yoshua Bengio, Montreal. “Learning Deep Architectures for AI”
bfigure by Andrew Ng, Stanford. “Sparse Autoencoder”
cfigure by Geoff Hinton, Toronto. “The next generation of neural networks”
dfigure by LISA lab, Toronto. “Deep Learning tutorials: Restricted Boltzmann Ma-

chines”. http://deeplearning.net/tutorial/rbm.html
efigure by LISA lab, Toronto. “Deep Learning tutorials: Convolutional Neural Networks”.

http://deeplearning.net/tutorial/lenet.html
ffigure from Zeiler & Fergus 2013

