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How good a classifier does a learner pro-
duce?

� We can estimate the true error by using randomly drawn test data

from the domain that was not shown to the classifier during training.

� Test error is the percentage of incorrectly classified data among the

test data.

� Validation error is the percentage of incorrectly classified data among

the validation data.

COMP9444 c©2011

COMP9444: Neural Networks

Vapnik Chervonenkis Dimension,

PAC Learning

and
Structural Risk Minimization

COMP9444 c©2011

COMP9444 11s2 VC-dimension and PAC-learning 3

Calibrating MLPs for the learning task at
hand

� Split the original training data set into two subsets:

◮ Training data set

◮ Validation data set

� Use the training data set for resampling to estimate which network

configuration (e.g. how many hidden units to use) seems best.

� Once a network configuration is selected, train the network on the

training set and estimate its true error using the validation set not

shown to the network at any time before.

COMP9444 c©2011

COMP9444 11s2 VC-dimension and PAC-learning 1

How good a classifier does a learner pro-
duce?

� Training error is the precentage of incorrectly classified data among

the training data.

� True error is the probability of misclassifying a randomly drawn

data point from the domain (according to the underlying probability

distribution).

� How does the training error relate to the true error?
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Bootstrapping

� Assume the available training data represents the actual distribution

of data in the underlying domain. i.e. for k data points, assume each

data point occurs with probability 1/k.

� Draw a set of t training data points by randomly selecting a data point

from the original collectionwith probability 1/k for each data point (if

there are multiple occurrences of the same data point, the probability

of that data point occurring is deemed to be proportionally higher.)

� Often t is chosen to be equal to k. This will usually result in having

only about 63% of the original sample, while the remaining 37%

(1/e) are made up of duplicates
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Resampling methods

� Resampling tries to use the same data multiple times to reduce

estimation errors on the true error of a classifier being learned using a

particular learning method.

� Frequently used resampling methods are

◮ n-fold cross validation (with n being 5 or 10)

◮ and bootstrapping.
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Bootstrapping

� Train learner on the randomly drawn training sample.

� Test the learned classifier on the items from the original data set

which were not in the training set.

� Repeat the random selection, training and testing for a number of

times and average the test error over all runs (typical number of runs

is 30 to 50.)
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Cross Validation

� Split available training data into n subsets s1, ...,sn.

� For each i set apart subset si for testing. Train the learner on all

remaining n−1 subsets and test the result on si.

� Average the test errors over all n learning runs.
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PAC Learning

� Want to ensure the probability of poor learning is low

P[|Eout −Ein|> ε]< 1−δ

� If |Eout −Ein| is low, our learner is “approximately correct”. This

function provides a bounds on the probability that this is the case.

� Hoeffding inequality: probability that the sum of random variables

deviates from expected values

P[|ν−µ|> ε]≤ 2e−2ε2N

� For a given hypothesis h, we can say

P[|Eout(h)−Ein(h)|> ε]≤ 2e−2ε2N
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Factors Determining the Difficulty of Learn-
ing

� The representation of domain objects, i.e. which attributes and how

many.

� The number of training data points.

� The learner, i.e. the class of functions it can potentially learn.
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PAC Learning

� For a chosen hypothesis g, drawn from the set of hypotheses H:

P[|Eout(g)−Ein(g)|> ε]≤ 2Me−2ε2N

� M represents the number of hypotheses, ∞ for a perceptron

� This is not very useful. Alternative, we can see how the value grows

with the number of samples.

mH(N) = max
x1...xN

|H(x1 . . .xN)|

� The growth function represents the most dichotomies that H

implements over all possible samples of size N

mH(N)≤ 2N
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PAC Learning

� We know a number of heuristics to ensure learning on the training

set will carry to new data, such as using a minimally complex model,

training on a representative dataset, with sufficient samples

� How can we address this issue in a principled way?

� Probably Approximately Correct learning, and Structured Risk

Minimisation
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The Vapnik-Chervonenkis dimension

In the following, we consider a boolean classification function f on the

input space X to be equivalent to the subset of X such that ∀x∈X f (x) = 1.

The VC-dimension is a useful combinatorial parameter on sets of subsets

in the input space, e.g. on function classes H on the input space X .

Definition We say a set S ⊆ X is shattered by H, if for all subsets s ⊆ S

there is at least one function h ∈ H such that s = h∩S.

Definition The Vapnik-Chervonenkis dimension of H, dVC(H) is the

cardinality of the largest set S ⊆ X shattered by H.
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Vapnik-Chervonenkis dimension

� H shatters N points, if there exists an arrangement of N points such

that for all arrangements of labels on the points, there is a hypothesis

h that captures the labels

� Vapnik-Chervonenkis dimension dVC(H) is the largest N that H can

shatter (and where mH(N) = 2N).

� If N ≤ dVC, H may be able to shatter the data. If N > dVC H cannot

shatter the data.

� Bounds: it can be proved that mH(N)≤ NdVC + k

P[|Eout −Ein|> ε]≤ 4mH(2N)e
−ε2N

8
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The Vapnik-Chervonenkis dimension

1

2

3

4

The VC-dimension of the set of linear decision functions in the

2-dimensional Euclidean space is 3.
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Vapnik-Chervonenkis dimension

� Definition

� Various function sets - relevant to learning systems - and their

VC-dimension

� Bounds from probably approximately correct learning

(PAC-learning).

� General bounds on the Risk.
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VC-dimension and PAC-Learning

Theorem Lower Bound (Ehrenfeucht et al., 1992)

Let L be a learning algorithm that uses H consistently. For any 0 < ε < 1
8
,

0 < δ < 1
100

given less than

N =
dVC(H)−1

32ε

random examples, there is some probability distribution for which L will

not produce a function h ∈ H with error(h)≤ ε with probability 1−δ.
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The Vapnik-Chervonenkis dimension

The VC-dimension of the set of linear decision functions in the n-

dimensional Euclidean space is equal to n+1.
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VC-dimension bounds

ε δ dVC lower bound upper bound

5% 5% 10 6 9192

10% 5% 10 3 4040

5% 5% 4 2 3860

10% 5% 4 1 1707

10% 10% 4 1 1677
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VC-dimension and PAC-Learning

Theorem Upper Bound (Blumer et al., 1989)

Let L be a learning algorithm that uses H consistently, i.e. that finds an

h ∈ H that is consistent with all the data. For any 0 < ε,δ < 1 given

N =
(4log( 2

δ
)+8dVC(H) log( 13

ε
))

ε

random examples, L will with probability of at least 1−δ

either produce a function h ∈ H with error ≤ ε

or indicate correctly, that the target function is not in H.
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The Vapnik-Chervonenkis dimension

X

Y

Let C be the set of all circles in the plane.

VC-dim = . . .
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The Vapnik-Chervonenkis dimension

X

Y

Let C be the set of all squares in the plane (parallel to axis).

VC-dim = . . .
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The Vapnik-Chervonenkis dimension

X

Y

Let C be the set of all triangles in the plane, allowing rotation.

VC-dim = . . .
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The Vapnik-Chervonenkis dimension

X

Y

Let C be the set of all rectangles in the plane (parallel to axis).

VC-dim = . . .
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VC-Dimensions of Neural Networks

As a good heuristic (Bartlett):

VC-dimension ≈ number of parameters

� For linear threshold functions on ℜn, dVC = n+1.

(number of parameters is n+1.)

� For linear threshold networks, and fixed depth networks with

piecewise polynomial squashing functions

c1|~W | ≤ dVC ≤ c2|~W | log |~W |

where |~W | is number of weights in the network.

� Some threshold networks have dVC ≥ c|~W | log |~W |.

� dVC(sigmoid net)≤ c|~W|4
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The Vapnik-Chervonenkis dimension
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The VC-dimension of all functions of the following form is inifinite!

f (x,α) = sin(α x), α ∈ ℜ.
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VC-Dimensions of Neural Networks

Any function class H that can be computed by a program that takes a real

input vector ~x and k real parameters and involves no more than t of the

following operations:

• +,−,×,/ on real numbers

• >,≥,=,≤,<, 6= on real numbers

• output value y ∈ {−1,+1}

has VC-dimension of O(kt).

(See work of Peter Bartlett)
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The Vapnik-Chervonenkis dimension

The following points on the line

x1 = 10−1, . . . ,xn = 10−n

can be shattered by functions from this set.

To separate these data into two classes determined by the sequence

δ1, . . . ,δn ∈ {0,1}

it is sufficient to choose the value of parameter

α = π(
n

∑
i=1

(1−δi)10i +1)
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Structural Risk Minimisation (SRM)

The general SRM principle:

Choose complexity parameter d, e.g. the number of hidden units in a

MLP, or the size of a decision tree, and function g ∈ H such that the

following is minimised:

Eout(g)≤ Ein(g)+ c

√

dVC(H)

N

where N is the number of training examples.

The higher the VC dimension is the more likely will the empirical error be

low.

Structural risk minimisation seeks the right balance.
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VC-Dimensions of Neural Networks

Any function class H that can be computed by a program that takes a real

input vector ~x and k real parameters and involves no more than t of the

following operations:

• +,−,×,/,eα on real numbers

• >,≥,=,≤,<, 6= on real numbers

• output value y ∈ {−1,+1}

has VC-dimension of O(k2t2).

This includes sigmoid networks, RBF networks, mixture of experts, etc.

(See work of Peter Bartlett)
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Structural Risk Minimisation (SRM)

dVC

*
VC dim

E
rr

o
r out-error

complexity

in-error

Eout ≤ Ein +Ω

Eout ≤ Ein +

√

8

N
log

4mH(2N)

1−δ

mH(N) ≤ NdVC(H)

Eout ≤ Ein + c

√

dVC(H)

N
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Structural Risk Minimisation (SRM)

The complexity (or capacity) of a function class from which the learner

chooses a function that minimises the empirical risk (i.e. the error on the

training data) determines the convergence rate of the learner to the optimal

function.

For a given number of independently and identically distributed training

examples, there is a trade-off between the degree to which the empirical

risk can be minimised and to which the empirical risk will deviate from

the true risk (i.e. the true error - error on unseen data according to the

underlying distribution).
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Summary (cont.)

Limitations of the VC Learning Theory

� The probabilistic bounds on the required number of examples are

worst case analysis.

� No preference relation on the functions of the learner are modelled.

� In practice, learning examples are not necessarily drawn from the

same probability distribution as the test examples.
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VC-dimension Heuristic

For neural networks and decision trees:

VC-dimension ≈ size.

Hence, the order of the misclassification probability is no more than

training error+

√

size

m

where m is the number of training examples.

This suggests that the number of training examples should grow roughly

linearly with the size of the hypothesis to be produced.

If the function to be produced is too complex for the amount of data

available, it is likely that the learned function is not a near-optimal one.

(See work of Peter Bartlett)

COMP9444 c©2011

COMP9444 11s2 VC-dimension and PAC-learning 33

Summary

� The VC-dimension is a useful combinatorial parameter of sets of

functions.

� It can be used to estimate the true risk on the basis of the empirical

risk and the number of independently and identically distributed

training examples.

� It can also be used to determine a sufficient number of training

examples to learn probably approximately correctly.

� Applications of the VC-dimension for choosing the most suitable

subset of functions for a given number of independently and

identically distributed examples.

� Trading empirical risk against confidence in estimate.
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