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Committee Machines
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Motivation

If several classifiers are trained on (subsets of) the same training items,

can their outputs be combined to produce a composite machine with better

accuracy than the individual classifiers?
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Outline

� Static structures (Combiner does not make direct use of the Input)

◮ Ensemble Averaging

◮ Bagging

◮ Boosting

� Dynamic structures (Combiner does make direct use of the Input)

◮ Mixture of Experts

◮ Hierarchical Mixture of Experts
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Ensemble Experiment

Distinguish between two classes, each generated according to a Gaussian

distribution:

Class 1:

µ1 =





0

0



 σ2
1 = 1

Class 2:

µ2 =





2

0



 σ2
2 = 4
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Ensemble Experiment

• Ten neural networks

• MLPs with 2 hidden nodes

• trained on same 500 patterns

• each with different initial weights

• same learning rate and momentum

• tested on the same 500 (new) patterns

• individual networks deliberately

“overtrained”

classifier % correct

Net 1 80.65

Net 2 76.91

Net 3 80.06

Net 4 80.47

Net 5 80.44

Net 6 76.89

Net 7 80.55

Net 8 80.47

Net 9 76.91

Net 10 80.38
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Ensemble Experiment

� The average probability of correct classification for the individual

networks is 79.37%.

� If we instead base our classification on the sum of the outputs of the

individual networks, the probability of correct classification rises, but

only marginally, to 80.27%

Question:

Can we do better?

Answer:

Yes, by feeding a different distribution of inputs to each classifier.
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Weak and Strong Learners

� a weak learner is one that is only guaranteed to achieve an error rate

slightly less than what would be achieved by random guessing

� a strong learner is one which can achieve an error rate arbitrarily close

to zero, in the PAC learning sense.

Question:

Can a weak learner be “boosted” into a strong learner, by

applying it repeatedly to different subsets of the training data?

Answer:

Yes!
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Boosting by Filtering

� the first classifier C1 is trained on a set of N1 examples

� repeat until N1 items have been collected to train C2:

◮ flip a fair coin

◮ if heads, keep “filtering out” items correctly classified by C1; the

first item incorrectly classified by C1 is set aside for training C2

◮ if tails, instead filter out items incorrectly classified by C1; the first

item correctly classified by C1 is set aside for training C2

� once C2 has been trained, items correctly classified by both C1 and C2

are filtered out, and the others set aside for training C3

(until N1 of them have been collected)
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Boosting by Filtering

� of the total number of items seen, only a subset are used for the actual

training of the classifiers; the procedure filters out items that are easy

to learn and focuses on those that are hard to learn.

� in the original work (Schapire, 1990) a voting mechanism was used

to combine the classifiers, but it has later been shown that summing

the outputs of the individual classifiers gives better performance.

� it can be proved that if the error rate for the individual classifiers is

ε < 1/2, then the error rate for the committee machine is less than

g(ε) = 3ε2 −2ε3

therefore, by applying the boosting algorithm recursively, the error

rate can be made arbitrarily close to zero.
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Discussion

� Boosting by Filtering has the drawback that it requires a huge number

of training items

� there are alternative algorithms which use fewer items, by judiciously

re-using data:

◮ Bagging

◮ AdaBoost
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Bagging

• start with a training set of N items

• for each classifier, choose a set of N items from the original set with

replacement; this means that some items can be chosen more than

once, while others are left out

• train each classifier on the chosen items

• once all classifiers have been trained, new (test set) items are classified

by a voting mechanism, or by summing the outputs of the individual

classifiers
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AdaBoost

• given: N training items (~x1,y1) . . . (~xN ,yN) where xi ∈ X , yi ∈ {−1,1}

• train a series of learners C1, . . . CT producing hypotheses h1 . . . hT

• training items for each learner Ct chosen using distribution Dt

• initialize D1(i) =
1
N

for i = 1 . . . N
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AdaBoost

• for each step t = 1, . . . ,T

– train weak learner Ct using distribution Dt

– this produces hypothesis ht : X →{−1,1} , with error εt

– set

αt =
1

2
ln(

1− εt

εt

)

– update the distribution

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))

Zt

where Zt is a normalising factor to produce a probability

distribution
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AdaBoost

• output the final hypothesis:

h′(x) = sign(
T

∑
t

αtht(x))

Theorem: Assuming γn =
1
2
− εn ≥ 0 for all n, then the training error of

the final hypothesis is at most

2
T

∏
n=1

√

εn(1− εn) =
T

∏
n=1

√

1−4γn
2 ≤ exp

(

−2
T

∑
n=1

γn
2
)
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AdaBoost Generalization

� the base learner for AdaBoost could be any kind of learner (neural

networks, decision trees, stumps ... )

� with AdaBoost, as with SVM’s, the test error often continues to

decrease even after the training error has already reached zero

� this goes against the traditional conception of bias-variance tradeoff,

Ockham’s Razor and overfitting

� although the number of “free parameters” is enormous, each

additional degree of freedom is highly costrained
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Sensitivity to Errors

� AdaBoost, like SVM, is very sensitive to mislabled data

� AdaBoost will assign enormous weight to incorrectly labeled items,

and put huge effort into learning them

� there are some alternative boosting algorithms which try to avoid this

problem; the most principled approach is DOOM II – a special case

of AnyBoost.
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Mixture of Experts
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Mixture of Experts

� Each individual “expert” tries to approximate the target function on

some subset of the input space

� the gating network tries to learn which expert(s) are best suited to the

current input

� for each expert k, the gating network produces a linear function uk of

the inputs.

� the outputs g1 . . . gK of the gating network are computed using the

“softmax” principle:

gk =
exp(uk)

∑ j exp(u j)

� in stochastic training, gk is treated as the probability of selecting

expert k; otherwise it is treated as a mixing parameter for expert k.
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Hierachical Mixture of Experts
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Hierachical Mixture of Experts

� HME can be trained either by maximum likelihood estimation, or by

the expectation maximization (EM) algorithm

� HME model is often seen as a “soft” version of decision trees
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Different Kinds of Modularity

� “Vertical” Modularity

◮ partitioning of the input space

◮ credit assignment easier, in principle

� “Horizontal” Modularity

◮ output of one module becomes input of another module

◮ credit assignment becomes really hard

◮ still no known algorithms to do this automatically.
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Vertical Modularity

� Each expert tries to do full processing from input to output,

but only for a limited range of inputs

� Effort can be divided arbitrarily between the “partitioner” and the

individual “experts” – at one extreme, the partitioner does nothing;

at the other extreme, the partitioner does everything and each expert

just parrots a fixed answer

� Algorithms such as ME and HME attempt to partition the input space

automatically, but with mixed success
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Other Modularity Issues

� “Structural” modularity

◮ each module is a physically identifiable anatomical unit (spleen,

liver, pancreas, etc.)

� “Functional” modularity

◮ system is made up of different “functions”, which might share

some of the same physical components

� What kind of modularity occurs in the brain?
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Summary

� Large man-made or evolved systems are always modular

� How can we get adaptive, machine learning systems to modularize

automatically?

� This is a major open question, sometimes called the “scaling up”

problem
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Recent Applications

� Techniques

� Examples

� Speech recognition

� Deep Networks for large scale image classification
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Training Techniques

� Scale inputs with mean 0 and standard deviation 1

� Antisymmetric activation functions have advantages (eg tanh)

� Alternative activation function: Rectified Linear Units (ReLUs)

f (x) = max(0,x)
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Dropout

� When neural networks are trained on small datasets, they often suffer

from overfitting

� One reason for this, is that feature detectors have learned to work

together based on what they have been trained on in the training set

� Complex co-adaptations can be developed between neurons, where

a feature is only useful in the context of a number of other specific

feature detectors

� “Dropout” is a technique to prevent the development of co-adaptations

between neurons
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Dropout

� During training, for each training step 50% of the neurons in the

network are disabled.

� Dropped-out neurons do not participate in feed-forward activations,

or in backpropagation

� Further advantages have been shown from setting 20% of the input

layer neurons as inactive
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Dropout
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Dropout
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Dropout

Features produced on MNIST, using backprop, and with dropout
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Dropout

Generalisation on TIMIT speech recognition
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Dropout

� Dropping out neurons is similar to capturing a mixture of models,

using various combinations of subsets of the network

� Training time is approximately doubled

� When performing testing, the activation of each hidden unit is halved,

which approximately represents an average of the child models

� This method is straightforward to implement, and can improve

generalisation, useful for smaller datasets
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Application- Natural Language Processing
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Application- Speech Recognition

� “Context-Dependent Deep Neural Network Hidden Markov Model”

� Hidden Markov Model- learn relationships of transitions between

hidden states, and between hidden states and observations
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Application- Speech Recognition

� The HMM system can be used to infer the symbolic representation,

based on the relationships between acoustic patterns and symbols,

and probabilities of symbol sequences

� Hidden Markov Model- learn relationships of transitions between

hidden states, and between hidden states and observations

� The Deep Neural Network is used to learn the probability distribution

of symbolic states from audio

� Training is performed on tied triphones (Context Dependent)
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Application- Speech Recognition
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Application- Speech Recognition

� These probabilities are used to determine emission likelihoods for

each state, that are used by the HMM to determine the most likely

symbol sequence for a given audio sample

� 7 layers, 2048 hidden units at each layer

� Trained on 309 hours of training data

� Each layer pre-trained as a Restricted Boltzmann Machine

� Fine-tuned using 9304 triphone states (output layer)

� Improvement from 27.4% to 18.5% error (30% improvement)

� Demonstration: http://www.youtube.com/watch?v=Nu-nlQqFCKg
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Application- Image Classification

� Convolutional Neural Networks are based on a fixed topology, using

layers of specialised neurons

� “Building high-level features using large scale unsupervised

learning”, study by researchers at Stanford and Google

� Large neural network, trained unsupervised. Not convolutionala, so

pooling can occur over different kinds of features.
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Application- Image Classification
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Application- Image Classification

� 3 types of (sub) layers- a filter layer (18x18), a pooling layer (5x5)

that provides a kind of averaging, and local contrast normalisation

(5x5), that provides competition between neurons addressing the

same region.

� 3 full layers are used (9 sub layers). Only the filter layer weights are

used for training.

� Unsupervised learning is used, and the network acts as an autoencoder.

� Activations are passed through the network, from larger to smaller

layers, and to perform reconstruction a reverse operation is used.

(weights are not tied)

COMP9444 c©Anthony Knittel and Alan Blair, 2013



COMP9444 13s2 Committee Machines, Recent Applications 42

Application- Image Classification

Optimal stimulus for a face sensitive neuron and cat sensitive neuron
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Application- Image Classification

� The network is trained on 10 million images, of size 200x200

� 1 billion connections

� Trained on a cluster of 1,000 machines (16,000) cores for 3 days

� After unsupervised pre-training, classification on 22,000 object

categories with 15.8% accuracy

� http://www.nytimes.com/2012/06/26/technology/in-a-big-network-of-co
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