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In short

A powerful method for analyzing the com-
putational abilities of neural networks based
on algorithmic information theory is intro-
duced.

It is shown that the idea of many interact-
ing computing units does not essentially fa-
cilitate the task of constructing intelligent
systems.

Furthermore, it is shown that the same
holds for building powerful learning systems.
This holds independently from the episte-
mological problems of inductive inference.
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Describing neural networks

In general the following two aspects can be
distinguished.

a) the functionality of a single neuron.

Often a certain threshold function of
the sum of the weighted inputs to the
neuron is proposed.

b) the topological organization of a com-
plete network consisting of a large num-
ber of neurons.

Often nets are organized in layers. Thus,
nets can be distinguished depending on
their number of layers.



Describing neural networks

Each node v in a neural network can be
described by the following items:

e The number ¢ of input signals of the
particular node

e [ he nodes in the network whose output
signals are connected to each input of v

e The specification of the I/O behavior
of v.



Describing neural networks
The specification of the I/O behavior of v

v may be in different internal states. Let
the set of all possible internal states be S,.
For each computation step of the network,
v computes a function

f:{0,1}*x S, — {0,1} as output value
of v. Furthermore, v possibly changes its
internal state determined by a function

g: {0,1} xS, — S,. Both functions f
and g are encoded as programs pg, pg Of
minimal length.



ABCDABCD ABCDABCD ABCDABCD ABCDABCD

Two neural networks with a similar struc-
ture.




Algorithmic Information Theory

The amount of information necessary
for printing certain strings is measured.

Only binary strings consisting of ‘O's
and ‘l’'s are considered.

The length of the shortest program for
printing a certain string s is called its
Kolmogorov complexity K (s).



Examples

Strings of small Kolmogorov complexity:

111111171111111 or

0000000000000000000 or

1010101010101010 etc.

Strings of rather large Kolmogorov com-
plexity:

1000100111011001011101010 or

1001111010010110110111001 etc.



The complexity of a neural net N

Definition Let descr(N) be the binary en-
coded description of an arbitrary discrete
neural net N. Then, the complexity of N
comp(N) is given by the Kolmogorov com-
plexity of descr(IN)

comp(N) = K(descr(N))

Note: comp(N) reflects the minimal amount
of engineering work necessary for designing
the network N.
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Computational Limitations

Definition Let N be a static discrete neural
network with ¢ binary input signals sq, ..., s;
and one binary output signal. Then the
output behavior of N is in accordance to
a binary string s of length 2!, iff for any
binary number b of the ¢ digits applied as
binary input values to N, N outputs exactly
the value at the b" position in s.

Theorem Let N be an arbitrary static dis-
crete neural network. Then, N’'s ouput be-
havior must be in accordance to some bi-
nary sequence s with a Kolmogorov com-
plexity K(s) < comp(N) + const for a small
constant const.
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Learning in Neural Networks

We consider a set of objects X.

The learning task: Determining for each
object in X whether it belongs to the
class to learn or not.

A concept is a subset of X. A concept
class C is a set of concepts (subsets)
of X.

For any learning system L there is ex-
actly one concept class C C 2X that
underlies L.
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X ={1,2,3,4,5,6,7,8,9}, C = {c1,c,c3,c4,c5,c6}.
c1 ={1,2,3,4,5,6,7,8,9},

c2 = {},

c3 = {1,3,5,7,9},

cqa ={1,4,6,7},

cs = {2,4,6,8},

cCe = {1, 2,4,0, 9}
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The binary string representation s(c) of a
concept ¢ C X indicates for each object
whether it belongs to ¢ by a correspond-
ing ‘1.

Definition The complexity Kmqz(C) of a
concept class C' is given by the Kolmogorov
complexity of the most complex concept in

C, i.e.

Kmaz(C) = max [K(s(c))]
ceC
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Example X =4{1,2,3,4,5,6,7,8,9}

C = {Cla €2, C3,C4, Ch, C6}

c1 ={1,2,3,4,5,6,7,8,9};

s(c1) ='111111111°
co = {};

s(cp) ='000000000°
C3 — {1,3,5,7,9};

s(c3) ='101010101"
Cq = {1,4,6,7};

s(cg) ='100101100°
Cy = {2,4,6,8};

s(cg) ='010101010’
ce ={1,2,4,6,9},

s(cg) ='110101001"

Kmaz(C) = K(s(cg)) = K(110101001)



Learning complex concepts

Theorem Let N be a neural net and comp(N)
its complexity. Let C' be the concept class
underlying N. Then there are at least

2Kmax(0)—comp(N)—ConSt

concepts in C, where const is a small con-
stant integer.



Probably approximately correct
learning

Assumptions

e Each xz € X appears with a fixed proba-
bility according to some probability dis-
tribution D on X.

e [ his holds during the learning phase as
well as for the classification phase.

Goals

e Achieving a high probability for correct
classification

e Achieving the above goal with a high
confidence probability



Probably approximately correct learning

Definition Let C' be a concept class. We
say a learning system L pac-learns C' iff

(Ver € C)(VD) (Ve > 0)(Vé > 0)

L classifies correctly an object x randomly
chosen according to D with probability at
least of 1 — . This has to happen with a
confidence probability of at least 1 — 6.



Probably approximately correct learning

Theorem Let N be a neural network. Let
C be the concept class underlying N.

1. 1
Let be 0 <e < 7, 0 <9 < 155- Then for

pac-learning C, N requires at least

Kmaz(C) — comp(N) — const
32¢ logs X

examples randomly chosen according to D.
where const is a small constant integer.



Conclusions

The potential of neural networks for
modeling intelligent behavior is essen-
tially limited by the complexity of their
architectures.

The ability of systems to behave intel-
ligently as well as to learn does not in-
crease by simply using many interacting
computing units.

Instead the topology of the network has
to be rather irregular !
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Conclusions

e With any approach, intelligent neural
network architectures require much en-
gineering work.

e Simple principles cannot embody the
essential features necessary for building
intelligent systems.

e Any potential advantage of neural nets
for cognitive modelling will become more
and more neglectable with an increas-
ing complexity of the system.

22



