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In short

A powerful method for analyzing the com-

putational abilities of neural networks based

on algorithmic information theory is intro-

duced.

It is shown that the idea of many interact-

ing computing units does not essentially fa-

cilitate the task of constructing intelligent

systems.

Furthermore, it is shown that the same

holds for building powerful learning systems.

This holds independently from the episte-

mological problems of inductive inference.
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Overview

• Describing neural networks

• Algorithmic information theory

• The complexity measure for neural net-

works

• Computational Limits of a particular net

structure

• Limitations of learning in neural net-

works

• Conclusions

+ 3



+ +

Describing neural networks

In general the following two aspects can be

distinguished.

a) the functionality of a single neuron.

Often a certain threshold function of

the sum of the weighted inputs to the

neuron is proposed.

b) the topological organization of a com-

plete network consisting of a large num-

ber of neurons.

Often nets are organized in layers. Thus,

nets can be distinguished depending on

their number of layers.
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Describing neural networks

Each node ν in a neural network can be

described by the following items:

• The number i of input signals of the

particular node

• The nodes in the network whose output

signals are connected to each input of ν

• The specification of the I/O behavior

of ν.
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Describing neural networks

The specification of the I/O behavior of ν

ν may be in different internal states. Let

the set of all possible internal states be Sν.

For each computation step of the network,

ν computes a function

f : {0,1}i × Sν → {0,1} as output value

of ν. Furthermore, ν possibly changes its

internal state determined by a function

g : {0,1}i × Sν → Sν. Both functions f

and g are encoded as programs pf , pg of

minimal length.
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Two neural networks with a similar struc-

ture.
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Algorithmic Information Theory

• The amount of information necessary

for printing certain strings is measured.

• Only binary strings consisting of ‘0’s

and ‘1’s are considered.

• The length of the shortest program for

printing a certain string s is called its

Kolmogorov complexity K(s).
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Examples

Strings of small Kolmogorov complexity:

11111111111111 or

0000000000000000000 or

1010101010101010 etc.

Strings of rather large Kolmogorov com-

plexity:

1000100111011001011101010 or

1001111010010110110111001 etc.
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The complexity of a neural net N

Definition Let descr(N) be the binary en-

coded description of an arbitrary discrete

neural net N . Then, the complexity of N

comp(N) is given by the Kolmogorov com-

plexity of descr(N)

comp(N) = K(descr(N))

Note: comp(N) reflects the minimal amount

of engineering work necessary for designing

the network N .

+ 10



+ +

Computational Limitations

Definition Let N be a static discrete neural

network with i binary input signals s1, ..., si

and one binary output signal. Then the

output behavior of N is in accordance to

a binary string s of length 2i, iff for any

binary number b of the i digits applied as

binary input values to N , N outputs exactly

the value at the bth position in s.

Theorem Let N be an arbitrary static dis-

crete neural network. Then, N ’s ouput be-

havior must be in accordance to some bi-

nary sequence s with a Kolmogorov com-

plexity K(s) ≤ comp(N) + const for a small

constant const.
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output

A 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
B 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
C 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
D 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

S 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 0
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Learning in Neural Networks

• We consider a set of objects X.

• The learning task: Determining for each

object in X whether it belongs to the

class to learn or not.

• A concept is a subset of X. A concept

class C is a set of concepts (subsets)

of X.

• For any learning system L there is ex-

actly one concept class C ⊆ 2X that

underlies L.
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t 1

t 2

t 3

t 4

t 5

t 9

t 7

t 8

t 6

c6

c4

c3
c5

c1c2

X

X = {1,2,3,4,5,6,7,8,9}, C = {c1, c2, c3, c4, c5, c6}.

c1 = {1,2,3,4,5,6,7,8,9},

c2 = {},

c3 = {1,3,5,7,9},

c4 = {1,4,6,7},

c5 = {2,4,6,8},

c6 = {1,2,4,6,9}
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The binary string representation s(c) of a

concept c ⊆ X indicates for each object

whether it belongs to c by a correspond-

ing ‘1’.

Definition The complexity Kmax(C) of a

concept class C is given by the Kolmogorov

complexity of the most complex concept in

C, i.e.

Kmax(C) = max
c∈C

[K(s(c))]
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Example X = {1,2,3,4,5,6,7,8,9}

C = {c1, c2, c3, c4, c5, c6}

c1 = {1,2,3,4,5,6,7,8,9};

s(c1) =‘111111111’

c2 = {};

s(c2) =‘000000000’

c3 = {1,3,5,7,9};

s(c3) =‘101010101’

c4 = {1,4,6,7};

s(c4) =‘100101100’

c5 = {2,4,6,8};

s(c5) =‘010101010’

c6 = {1,2,4,6,9};

s(c6) =‘110101001’

Kmax(C) = K(s(c6)) = K(110101001)

+ 16



+ +

Learning complex concepts

Theorem Let N be a neural net and comp(N)

its complexity. Let C be the concept class

underlying N . Then there are at least

2Kmax(C)−comp(N)−const

concepts in C, where const is a small con-

stant integer.
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Probably approximately correct

learning

Assumptions

• Each x ∈ X appears with a fixed proba-

bility according to some probability dis-

tribution D on X.

• This holds during the learning phase as

well as for the classification phase.

Goals

• Achieving a high probability for correct

classification

• Achieving the above goal with a high

confidence probability
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Probably approximately correct learning

Definition Let C be a concept class. We

say a learning system L pac-learns C iff

(∀ct ∈ C)(∀D)(∀ε > 0)(∀δ > 0)

L classifies correctly an object x randomly

chosen according to D with probability at

least of 1 − ε. This has to happen with a

confidence probability of at least 1 − δ.
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Probably approximately correct learning

Theorem Let N be a neural network. Let

C be the concept class underlying N .

Let be 0 < ε ≤ 1
4; 0 < δ ≤ 1

100. Then for

pac-learning C, N requires at least

Kmax(C) − comp(N) − const

32ε log2 |X|

examples randomly chosen according to D.

where const is a small constant integer.
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Conclusions

• The potential of neural networks for

modeling intelligent behavior is essen-

tially limited by the complexity of their

architectures.

• The ability of systems to behave intel-

ligently as well as to learn does not in-

crease by simply using many interacting

computing units.

• Instead the topology of the network has

to be rather irregular !
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Conclusions

• With any approach, intelligent neural

network architectures require much en-

gineering work.

• Simple principles cannot embody the

essential features necessary for building

intelligent systems.

• Any potential advantage of neural nets

for cognitive modelling will become more

and more neglectable with an increas-

ing complexity of the system.
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