Video Compression Standards (Part1)

Dr. Jian Zhang

NICTA & CSE UNSW
COMP9519 Multimedia Systems
S2 2007
jzhang@cse.unsw.edu.au
Tutorial 2: Image/video Coding Techniques
Basic Transform coding Tutorial 2

- Discrete Cosine Transform
 - For a 2-D input block U, the transform coefficients can be found as $Y = UC^T$
 - The inverse transform can be found as $Y = UC^T$
 - The $N \times N$ discrete cosine transform matrix $C=c(k,n)$ is defined as:

$$c(k, n) = \begin{cases}
\frac{1}{\sqrt{N}} & \text{for } k = 0 \text{ and } 0 \leq n \leq N - 1, \\
\frac{2}{N} \cos \frac{\pi(2n + 1)k}{2N} & \text{for } 1 \leq k \leq N - 1 \text{ and } 0 \leq n \leq N - 1.
\end{cases}$$
Basic Transform coding Tutorial 2

- The distribution of 2-D DCT Coefficients

Ref: H. Wu
Coding of DCT Coefficients (DC)

Tutorial 2

- DC coefficient is coded differentially as (size, amplitude). There are 12 size categories.

<table>
<thead>
<tr>
<th>Coeff</th>
<th>Size</th>
<th>Code</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00</td>
<td>2+0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>010</td>
<td>3+1</td>
</tr>
<tr>
<td>2..3</td>
<td>2</td>
<td>011</td>
<td>3+2</td>
</tr>
<tr>
<td>4..7</td>
<td>3</td>
<td>100</td>
<td>3+3</td>
</tr>
<tr>
<td>8...15</td>
<td>4</td>
<td>101</td>
<td>3+4</td>
</tr>
<tr>
<td>16..31</td>
<td>5</td>
<td>110</td>
<td>3+5</td>
</tr>
<tr>
<td>32..63</td>
<td>6</td>
<td>1110</td>
<td>4+6</td>
</tr>
<tr>
<td>64..127</td>
<td>7</td>
<td>11110</td>
<td>5+7</td>
</tr>
<tr>
<td>128..255</td>
<td>8</td>
<td>111110</td>
<td>6+8</td>
</tr>
<tr>
<td>256..511</td>
<td>9</td>
<td>1111110</td>
<td>7+9</td>
</tr>
<tr>
<td>512..1023</td>
<td>10</td>
<td>11111110</td>
<td>8+10</td>
</tr>
<tr>
<td>1024..2047</td>
<td>11</td>
<td>111111110</td>
<td>9+11</td>
</tr>
</tbody>
</table>

Final code: 01100
Coding of DCT Coefficients (AC)

Tutorial 2

- AC coefficients are re-arranged to a sequence of (run, level) pairs through a zigzag scanning process.
- Level is further divided into (Size Categories, Amplitude).
- Run and size are then combined and coded as a single event (2D VLC).
 - An 8-bit code ‘RRRRSSSS’ is used to represent the nonzero coefficients.
 - The SSSS is defined as size categories from 1 to 11.
 - The RRRR is defined as run-length of zeros in the zig-zag scan or number of zeros before a nonzero coefficient.
 - The composite value of RRRRSSSS is then Huffman coded.

Ex: 1) RRRRSSS=11110000 represents 15 run ‘0’ coef. and followed by a ‘0’ coef.
 2) Multiple symbols used for run-length of ‘0’ coef. exceeds 15.
 3) RRRRSSS=00000000 represents end-of-block (EOB).
Coding of DCT Coefficients (AC)

Tutorial 2

Zig-Zag scan

Composite values

<table>
<thead>
<tr>
<th>Zero Run</th>
<th>Category</th>
<th>Code length</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>000</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td>01</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>4</td>
<td>1011</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>5</td>
<td>11010</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>6</td>
<td>1110000</td>
</tr>
<tr>
<td>0</td>
<td>7</td>
<td>7</td>
<td>1110000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1100</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>6</td>
<td>111001</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>7</td>
<td>1111001</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>9</td>
<td>111110110</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5</td>
<td>11011</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>111110000</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>6</td>
<td>111010</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
<td>111110111</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>111011</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>7</td>
<td>1111010</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>7</td>
<td>1111011</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>8</td>
<td>11111001</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td>11111010</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>9</td>
<td>111111000</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>9</td>
<td>111111100</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>9</td>
<td>111111101</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EOB</td>
</tr>
</tbody>
</table>
Inter-frame Encoder Tutorial 2

Encoder
- Frame \(x(n) \) to Error image \(e(n) \)
- \(Q \) quantise and encode difference image
- \(Q^{-1} \) dequantise error image \(e'(n) \)
- \(z^{-1} \) reconstructed frame \(\hat{x}(n-1) \)

Transmission or Storage Media

Decoder
- \(z^{-1} \) reconstructed frame \(x'(n) \)
- \(+ \) add dequantised (residual) image to previous frame
- \(Q^{-1} \) dequantise error image
- \(Q \) quantise and encode difference image
- \(- \) calculate difference between current and previous frames

Step 1: Calculate the difference between the current and previous frames.
Step 2: Quantise and encode the difference image.
Step 3: Add the dequantised (residual) image to the previous frame to reconstruct the current frame of image.
Block Based Motion Estimation

Tutorial 2

- Block base search
Block Based Motion Estimation

Tutorial 2

- Block based search
Block Based Motion Estimation

Tutorial 2

- Block base search

Reconstructed Frame

Motion Compensated Frame

Motion Vector

Search Window

Position of Current Block

W = Search Range

16x16 -- Macroblock
4.1 Introduction to Video Coders – Motion Compensated Coder

- Motion Compensated Coder is a lossless coder
- Central to the operation of the coder is the frame store
- It contains one or more previously transmitted frames.
- A Marcoblock (MB) can be transmitted directly to the decoder is called “intra” mode transmission
- A different block between the current block and a corresponding block in a transmitted frame in the frame store is called “inter” mode transmission
- This is a hybrid MC/DPCM
4.1 Introduction to Video Coders – Motion Compensated Coder

Video Input

Frame N +1

Motion estimation & compensation

Prediction from previous frame

Frame N

Frame store

Motion Vectors

Diff/absolute values

MC on: Inter coding
MC off: Intra coding

Entropy Coding (VLC)

(011101010101000)

Coded Video

To transmission channel
The decoder plays the inverse process to the coder
4.1 Introduction to Video Coders –
Motion Compensated Coder with Quantization

- This is a lossy coder since a quantization scheme is introduced
- The key part for the coder is the quantizer to reduce the residue values after the motion compensation for inter-mode.
- This is a hybrid MC/DPCM with quantization coder
4.1 Introduction to Video Coders –
Motion Compensated Coder with Quantization

Video Input → Summation → Quantizer → Entropy Coding (VLC) → Coded Video

Frame N +1
Diff/absolute values
MC on: Inter coding
MC off: Intra coding

Prediction from previous frame
Motion estimation & compensation
Frame N
Frame store
Motion Vectors

To transmission channel
The decoder plays the inverse process to the coder
4.1 Introduction to Video Coders – Motion Compensated DCT/Quantization Coder

- The pixel data for a motion compensated MB is DCT transformed before quantization.
- The 2-D DCT coef. of each 8x8 block is then re-arranged by zig-zag into a 1-D arrangement
- A quantization scheme is applied to differently quantize each DCT coef. according to its frequency spectrum
- This will achieve a better compression result based on perceptual weight to the HVS
 - The HVS is less sensitive to high spatial frequencies than lower frequencies
 - The low DCT coef. the finely quantization
- This is a hybrid MC/DPCM/DCTcoder
4.1 Introduction to Video Coders – Motion Compensated DCT/Quantization Coder

Video Input

Frame N +1

Motion estimation & compensation

Frame N

Frame store

DCT

Quantizer

Entropy Coding (VLC)

Inverse DCT

De-quantizer

Coded Video

(011101010101000)

To transmission channel
The decoder plays the inverse process to the coder

Motion Vectors

Diff/absolute values

MC on: Inter coding
MC off: Intra coding

Prediction from previous frame
4.1 Introduction to Video Coders – Motion Compensated DCT/Quantization Decoder

- The procedure followed by the decoder does the inverse of the process performed at encoder.

![Diagram of video decoder process]

- Entropy Decoding (VLC)
- De-quantizer
- Inverse DCT
- Motion compensation Prediction
- Frame store
- Reconstructed Video
- Frame N +1
- Frame N
- Delta of Frame N and N+1
- Motion Vectors
- Code Video Input
4.2 Digital Video Coding (DVC) Structure

- All the DVC standards are based on the Hybrid MC/DPCM/DCT video coding structure.

- Since the constant rate constraint for most of current video codec applications, the quantization scheme should be considered to achieve the maximum of rate/distortion (R-D) ratio.

- Standards defined the decoder process while provide verification model for industry to develop their encoder. Therefore, there are many challenges about how to develop advanced algorithms to realize encoder at low complexity, low power and high performance (e.g: R-D ratio).
4.2 Digital Video Coding (DVC) Structure — Hybrid MC/DPCM/DCT
4.2 Digital Video Coding (DVC) Structure – Hybrid MC/DPCM/DCT
4.2 Digital Video Coding (DVC) Structure – Video Block Data Structure

- Typical MC/DPCM/DCT video coding architectures use the 4:2:0 (YCbCr) format as block data structure.
- The architecture consists of the following layered data structure for each picture:
 - Picture layer
 - Slice or group of blocks (GOB) layer
 - Macroblock (MB) layer: 16x61 pixels 4Y,Cb & Cr
 - Block size layer: 8x8 pixels.
- MC is applied to the MBs.

Ref: H. Wu
4.3 Digital Video Coding (DVC) Standards -- Overview

- MPEG: Motion Pictures Experts Group
- MPEG-1 (ISO/IEC 11172, Nov 92).
 - Audio and video storage media such as CD-ROM 1x CD-ROM: 150 KB/s = 1.2 Mbps).
 - Targeted at 1 to 1.5 Mbps (~1.2 Mbps for video, and ~250 kbps for audio).
 - Digital TV: SDTV, HDTV, DVD, etc.
 - Wider range of bitrates: 4 to 80 Mbps (optimised for 4 Mbps).
 - Supports interlaced video and scalable coding.
4.3 Digital Video Coding (DVC) Standards—ITU-T H.261

- Target on a very specific area -- videophone and video conferencing.
 - Originally targeted for m x 384 kbit/s (m=1,…,5), changed to p x 64 kbit/s (p=1,…,30) (ISDN rates) in 1988. Also called ``p x 64``.
 - 40 kbit/s to 2 Mbit/s.
 - Required for low bit rates and low delays.
- It is part of an entire suite of standards which takes care of other aspects:
 - H.221 – Multiplexing, H.320 – Control & Indication
 - H.242 – Call setup, signaling, H.320 Terminal specification
- Fixed video formats: CIF and QCIF (YCbCr, 4:2:0) at ~ 30, 15, 10 and 7.5 frame/sec.
- A typical hybrid MC/DPCM/DCT coding structure is applied with addition of a loop filter after motion compensation. This is a low-pass filter with taps [1/4,1/2,1/4].
- Ref:
4.3 Digital Video Coding (DVC) Standards—ITU-T H.261

- **Video Input**
 - DCT
 - Quantizer
 - Entropy Coding (VLC)
 - Buffer
 - Rate control module

- **Loop Filter**
- **Prediction from previous frame**
- **Motion estimation & compensation**

- **Frame store**
- **Motion Vectors**

- **QCIIF Picture**
 - Y
 - Cb 8 5
 - Cr 8 6

- **CIF Picture**
 - GOB1
 - GOB2
 - GOB3
 - GOB4
 - GOB5
 - GOB6
 - GOB7
 - GOB8
 - GOB9
 - GOB10

- **176x144 pixels**
- **352x288 pixels**

- **MC on inter coding, MC off intra coding**
- **To transmission channel**
- **The decoder plays the inverse process to the coder**

- **A Macroblock**
4.3 Digital Video Coding (DVC) Standards– ITU-T H.261

- Macroblocks & mode selection

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>8</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Cb</td>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coded</th>
<th>Non-coded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q Same</td>
<td>Q changed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MTYPE</th>
<th>Coding type applied to each macroblock can vary (MTYPE):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-coded: Skipped, MC and MC+FIL</td>
<td></td>
</tr>
<tr>
<td>In intra-frame: with/without Q scale.</td>
<td></td>
</tr>
<tr>
<td>In inter-frame: with/without Q scale, and either MC or MC+FIL.</td>
<td></td>
</tr>
<tr>
<td>MTYPE is coded using Huffman VLC.</td>
<td></td>
</tr>
</tbody>
</table>
4.3 Digital Video Coding (DVC) Standards– ITU-T H.261

- Key points for H.261 codec
 - Zigzag scan of DCT coefficients.
 - DC value is differentially coded (same as JPEG).
 - AC coefficients run-length coded with run and level jointly coded using truncated Huffman coding.
 - Rate control involves
 - Quantisation step size selection (at MB or GOB or Picture level)
 - MTYPE Coding type (mode) selection
 - The range of Motion vectors (MV) is restricted to [-15, 15].
 - Differentially coded using the MVs of the neighboring block.
 - Motion vector differences are Huffman VLC coded.
 - Intra-refreshment
 - To avoid error propagation: every MB should be intra-coded at least once in every 132 transmitted picture frames.
4.3 Digital Video Coding (DVC) Standards—ITU-T H.261

- Motion compensation & the loop Filter
 - Motion Vector range [-15,15]
 - Optional use of loop filter when motion compensation is used
 - The loop filter is separable into one dimensional H and V 3-tap filters with coef. (1/4,1/2,1/4).

0.0625	0.1250	0.0625
0.1250	0.2500	0.1250
0.0625	0.1250	0.0625

- The use of the loop filter can alternatively be viewed as a form of mandatory post-processing in selected parts of a picture
- The technique is quite of useful in low bit-rate operation due to the full pixel ME/MC
4.3 Digital Video Coding (DVC) Standards—ITU-T H.261

- Quantization & rate control
 - Uniform Quantization step but can be changed at MB, GOB and Picture level).
 - Constant bit rate coding
 - Hypothetical Reference Decoder (HRD)
 - Rate control by varying quantizer step size/skipping frames.

```
\begin{align*}
  t_N & = t_{N+1} + 97/4, \\
  R_{\text{max}} & = B \cdot 29.97/
\end{align*}
```
4.4 Digital Video Coding (DVC) Standards—MPEG-1 (ISO/IEC 11172)

- Coded representation of moving pictures and associated audio stored on digital storage media
- Basic Requirements:
 - Generic video coding at 1 to 1.5 Mbps (~VHS and 1.2 Mbps for video, and ~250 kbps for audio)
 - Fast forward/reverse: seek and play in FF/FR using access points.
 - Random access to a frame in limited time: frequent access points
 - System supporting audio-visual synchronized play and access
- Typical features and parameters:
 - Bi-directional in temporal processing (I,P,B frame)
 - Larger motion compensation range with half pixel MC (no loop filters)
 - Quantization table
 - 4:2:0 format and SIF (~CIF) resolution 352x240@30 or 352x288@25
4.4 Digital Video Coding (DVC) Standards– MPEG-1 (ISO/IEC 11172)

- **Intra coded picture (I-Picture):**
 - Coded on their own (all MBs are intra) and serve as random access.

- **Predicted picture (P-Picture):**
 - Coded with reference (MC predictions) to the previous anchor I or P picture.

- **Bidirectionally predicted picture (B-Picture):**
 - Coded with reference to the previous and/or future anchor I or P pictures (forward or backward MC prediction and/or linear interpolation).

Group of Pictures (GOP): start with I or B, end with I or P.

N = number of pictures in GOP
M = prediction distance
(M−1 in-between B−pics)

Example: N=12, M=3

Coding order:
…0,3,1,2,6,4,5,9,7,8…
4.4 Digital Video Coding (DVC) Standards– MPEG-1 (ISO/IEC 11172)

The decoder needs to reorder using a delay, before displaying pictures.

Ref: H. Wu
4.4 Digital Video Coding (DVC) Standards—MPEG-1 (ISO/IEC 11172)

Forward prediction: Predict where the pixels in a current frame were in a past frame.
Backward prediction: Predict where the pixels in a current frame will go in a future frame.
Prediction for a macroblock may be backward, forward, or an average of both.

Advantages
Main Advantage:
• High coding efficiency (gain/cost is significant)
• No uncovered background problem

Main disadvantage: long delay and more memory to store two anchor frames

Ref: H. Wu
4.4 Digital Video Coding (DVC) Standards– MPEG-1 (ISO/IEC 11172)

- Half-pel refinement of motion vectors using simple linear interpolation.
- Half-pel causes filtering of prediction image: loop-filter not required.

Ref: H. Wu

The use of bi-directional prediction in MPEG-1 can also lead to sub-pixel accuracy motion compensation and top of half pixel MC to give better-than-half-pixel accuracy.

Horizontal interpolated pixel:
\[h = \frac{(A+B)}{2} \]

Vertical interpolated pixel:
\[v = \frac{(A+C)}{2} \]

Central interpolated pixel:
\[c = \frac{(A+B+C+D)}{4} \]
4.4 Digital Video Coding (DVC) Standards– MPEG-1 (ISO/IEC 11172)

- Quantization weighting matrix (QWM)
 - Diff quantizers for diff. DCT Coef.
 - Default QWM

\[C_{ij} = 16 \times \frac{C_{ij}}{(Q \times W_{ij})} \]

Recommended MPEG quantization matrix
4.5 Digital Video Coding (DVC) Standards—MPEG-2 (ISO/IEC 13818)

- ISO/IEC 13818-2 (or ITU-T H.262) -- An extension of MPEG-1 standard
- Broadcast TV, cable/satellite TV, HDTV, DVD, etc
 - To achieve PAL quality at rates between 4 and 9 Mbits/s -- SDTV
 - To cover HDTV around 20 Mbits/s
- To cope with fully interlaced content such as ITU-R 601 resolution (i.e. 720x576@50 Hz interlaced field rate).
- Extremely flexible to support adaptive filed/frame processing (ME and DCT) and higher chroma resolution (4:2:2 and 4:4:4)
- Downloadable quantization matrix
- Scalable video for multi-quality video applications
4.5 Digital Video Coding (DVC) Standards– MPEG-2 (ISO/IEC 13818)

- Profile and level
 - DVC standard subset to satisfy the functional requirements of different applications
 - Each profile “levels” are defined to restrict the values of various parameters to build flexible encoder/decoder

- Support for interlaced content (selected on frame-by-frame basis):
 - Frame-pictures: frame encoded as a single picture (as in MPEG1).
 - Field-pictures: two fields encoded as two pictures (can use prediction).

- Motion estimation from either alternate field, or previous frame

- For Intra_coding
 - Alternative Intra VLC table, Zig-zag scan order ….
4.5 Digital Video Coding (DVC) Standards—MPEG-2 (ISO/IEC 13818)

- MPEG-2 field and frame pictures
 - Two interlaced fields make up one frame
 - If first field is P/B, then second field will also be P/B
 - If first field is I, then second field can be I or P
 - Independent predictions for each field from one or more previous fields
 - The two files of the frame are interleaved
 - Each macroblock may be adaptively frame or field encoded and predicted to achieve high coding efficiency!

Ref: H. Wu
4.6 Digital Video Coding (DVC) Standards– MPEG-2 Profile/Levels

- Profiles and levels provide a means of defining subsets of the standard syntax and thereby the decoder capabilities.
- A profile defines a subset of constraints upon the allowed values of parameters within the full syntax.
- Conformance tests will be carried out against defined profiles at defined levels.
- Three profiles have been defined at this stage:
 - Main Profile
 - Next Profile
 - Simple Profile
4.6 Digital Video Coding (DVC) Standards – MPEG-2 Profile/Levels

Level/Profile parameters

<table>
<thead>
<tr>
<th>Level/Profile</th>
<th>Simple 4:2:0 Single Layer</th>
<th>Main 4:2:0 Single Layer</th>
<th>Nextg 4:2:2 Scalable</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixels/line</td>
<td>1920</td>
<td>1920</td>
<td>1920</td>
</tr>
<tr>
<td>Lines/frame</td>
<td>1152</td>
<td>1152</td>
<td>1152</td>
</tr>
<tr>
<td>Frame/s</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Pixels/s</td>
<td>62.7 million</td>
<td>62.7 million</td>
<td>62.7 million</td>
</tr>
<tr>
<td>High-1440</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixels/line</td>
<td>1440</td>
<td>1440</td>
<td>1440</td>
</tr>
<tr>
<td>Lines/frame</td>
<td>1440</td>
<td>1440</td>
<td>1440</td>
</tr>
<tr>
<td>Frame/s</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Pixels/s</td>
<td>44.9 million</td>
<td>44.9 million</td>
<td>44.9 million</td>
</tr>
<tr>
<td>Main</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixels/line</td>
<td>720</td>
<td>720</td>
<td>720</td>
</tr>
<tr>
<td>Lines/frame</td>
<td>576</td>
<td>576</td>
<td>576</td>
</tr>
<tr>
<td>Frame/s</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pixels/s</td>
<td>10.4 million</td>
<td>10.4 million</td>
<td>10.4 million</td>
</tr>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixels/line</td>
<td>352</td>
<td>352</td>
<td>Not defined</td>
</tr>
<tr>
<td>Lines/frame</td>
<td>288</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td>Frame/s</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Pixels/s</td>
<td>2.53 million</td>
<td>2.53 million</td>
<td></td>
</tr>
</tbody>
</table>
4.6 Digital Video Coding (DVC) Standards– MPEG-2 Profile/Levels

- MP@ML
 - Chroma format – 4:2:0
 - Bit rate flexibility: Yes, CBR and VBR operation
 - Random access: Yes, access point at I frames
 - Editability: Yes, but not necessarily at every frame
 - Error resilience: Yes, details in late slides
 - Video windowing: Yes, for display of 16:9 service on a 4:3 receiver need to signal part to be displayed
 - Low Delay: Yes
 - Trick Modes: Yes, basic fast forward/fast reverse supported in main syntax
 - Scalability: No
 - Compatibility: Full compatibility with MPEG-1
 - Quality: Able to trade picture quality against bit rate
 - Flexibility in implementation: Yes, a high degree of encoder flexibility provided
4.7 Digital Video Coding (DVC) Standards– MPEG-2 Scalability

- Scalable video coding means the ability to achieve more than one video resolution or quality simultaneously.

```
Scalable Encoder

<table>
<thead>
<tr>
<th>Enhanced Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Layer</td>
</tr>
</tbody>
</table>

2-Layer Scalable Decoder

  | Full (scale) decoded sequence |

Single Layer Decoder

  | Base-line decoded sequence |
```
4.7 Digital Video Coding (DVC) Standards– MPEG-2 Scalability

- Spatial Scalability
 - A spatially scalable coder operates by filtering and decimating a video sequence to a smaller size prior to coding.
 - An up-sampled version of this coded base layer representation is then available as a predicator for the enhanced layer.
 - As prediction is performed in the spatial domain, the coding at the base layer can take any other standards including (MPEG-1 or H.261).
 - This is an important feature to address compatibility in layered codec.
4.7 Digital Video Coding (DVC) Standards – MPEG-2 Scalability

- Spatial Scalability – Spatial Scalability Codec

![Diagram](image-url)
4.7 Digital Video Coding (DVC) Standards – MPEG-2 Scalability

- Spatial Scalability Types
 - Progress to progress
 - Progress to interlaced
 - Interlaced to progress
 - Interlaced to interlaced
4.7 Digital Video Coding (DVC) Standards– MPEG-2 Scalability

2 layer spatially scalable coder
4.7 Digital Video Coding (DVC) Standards– MPEG-2 Scalability

- Spatiotemporal weighted Prediction
4.7 Digital Video Coding (DVC) Standards– MPEG-2 Scalability

- SNR Scalability
 - It provides different quality reconstructions of the same spatial and temporal resolution at different layers
 - The BL encoder is the same as a single layer encoder
 - The EL bitstream is derived:
 - Calculating Delta of DCT = before quantization – after de-quantizing
 - Re-quantizing this Delta with a finer quantizer
 - It provides high coding efficiency with small overhead compared to single layer service
 - It may be subject to drift problem in various cases.
4.7 Digital Video Coding (DVC) Standards– MPEG-2 Scalability

- SNR Scalability (mode 1 encoder)

Drift will be introduced to the enhanced layer. This is because the diff. refinement coef. do not feed back into the lower MC Pred’ loop at the encoder whereas they do so at the decoder. If only the base layer works (error or packet loss in enhanced layer), no drift is expected.
4.7 Digital Video Coding (DVC) Standards – MPEG-2 Scalability

- SNR Scalability (mode 2 encode)
4.7 Digital Video Coding (DVC) Standards– MPEG-2 Scalability

- SNR Scalability (mode 2 encode)

Drift will not be to the enhanced layer. This is because that the diff. refinement coef. do feed back into the lower MC Pred’ loop at the encoder. However, the drift will be introduced once the error or packet loss is occurred in the enhanced layer.
4.7 Digital Video Coding (DVC) Standards – MPEG-2 Scalability

- SNR Scalability (mode 2 decoder)
4.7 Digital Video Coding (DVC) Standards– MPEG-2 Scalability

- Data partitioning
 - Data partitioning permits a video bitstream to be divided into two separate bitstreams
 - The BL contains the more info. including address and control info. as well as lower order DCT coef.
 - The HL contains the rest info. of the bitstream
 - The syntax elements in BL are indicated by propriety breakpoint (PBP)
 - Some syntax elements in BL are redundant in HL to facilitate error recovery
 - It has the advantage to introduce almost no additional overhead
 - The disadvantage of this scheme: considerable drift occurs if only the BL is available to a decoder.
4.7 Digital Video Coding (DVC) Standards—MPEG-2 Scalability

- Data partitioning
4.7 Digital Video Coding (DVC) Standards– MPEG-2 Scalability

- Data partitioning – bitstream example (PBP = 64)

<table>
<thead>
<tr>
<th>Quant Scale</th>
<th>DC Coeff</th>
<th>DCT Coeff Run/Level Pair 1</th>
<th>DCT Coeff Run/Level Pair 2</th>
<th>DCT Coeff Run/Level Pair 3</th>
<th>EOB</th>
<th>DC Coeff</th>
<th>DCT Coeff Run/Level Pair 1</th>
<th>EOB</th>
</tr>
</thead>
</table>

PBP = 64

- Base Partition
- Partition 2
- Partition 3
4.7 Digital Video Coding (DVC) Standards – MPEG-2 Scalability

- **Data partitioning**

<table>
<thead>
<tr>
<th>Priority Break Point</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>All data at sequence, GOP, Pic and slice layers</td>
</tr>
<tr>
<td>66</td>
<td>PBP=65 plus MB data to MB type</td>
</tr>
<tr>
<td>67</td>
<td>PBP=66 plus data to MB motion Vectors</td>
</tr>
<tr>
<td>0</td>
<td>PBP=67 plus MB data from CBP to DC (or 1st non-zero) Coeff.</td>
</tr>
<tr>
<td>1</td>
<td>PBP=0 plus to first coeff. Following DC to first non-zero coeff after the first coeff. in the scan order</td>
</tr>
<tr>
<td>2</td>
<td>PBP=0 plus up to first non-zero coeff after the 2nd coeff in the scan order</td>
</tr>
<tr>
<td>j</td>
<td>PBP=0 plus to first non-zero coeff after the jth coeff in the scan order</td>
</tr>
</tbody>
</table>